
SIAM J. OPTIM. c© 2010 Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. 000–000

FULLY DISTRIBUTED ALGORITHMS FOR CONVEX
OPTIMIZATION PROBLEMS∗

DAMON MOSK-AOYAMA†, TIM ROUGHGARDEN† , AND DEVAVRAT SHAH‡

Abstract. We design and analyze a fully distributed algorithm for convex constrained opti-
mization in networks without any consistent naming infrastructure. The algorithm produces an
approximately feasible and near-optimal solution in time polynomial in the network size, the inverse
of the permitted error, and a measure of curvature variation in the dual optimization problem. It
blends, in a novel way, gossip-based information spreading, iterative gradient ascent, and the barrier
method from the design of interior-point algorithms.

Key words. convex optimization, distributed algorithms, gradient ascent

AMS subject classifications. 90C25, 68W15

DOI. 10.1137/080743706

1. Introduction. The development of modern networks, such as sensor and
peer-to-peer networks, has stimulated interest in decentralized approaches to compu-
tational problems. These networks often have unreliable nodes with limited power,
computation, and communication constraints. Frequent changes in the network topol-
ogy make it hard to establish infrastructure for coordinated centralized computation.
However, efficient use of network resources requires solving global optimization prob-
lems. This motivates the study of fully distributed algorithms for global optimization
problems that do not rely on any form of network infrastructure.

Informally, we call an algorithm fully distributed with respect to a network con-
nectivity graph G if each node of G operates without using any information beyond
that in its local neighborhood in G. More concretely, we assume that each node in the
network knows only its neighbors in the network, and that nodes do not have unique
identifiers that can be attached to the messages that they send. This constraint is
natural in networks that lack infrastructure (such as IP addresses or static GPS loca-
tions), including ad-hoc and mobile networks. It also severely limits how a node can
aggregate information from beyond its local neighborhood, thereby providing a clean
way to differentiate between distributed algorithms that are “truly local” and those
which gather large amounts of global information at all of the nodes and subsequently
perform centralized computations.

Previous work [8] observed that when every network node possesses a positive
real number, the minimum of these can be efficiently computed by a fully distributed
algorithm, and leveraged this fact to design fully distributed algorithms for evaluating
various separable functions, including the summation function. This paper studies
the significantly more difficult task of constrained optimization for a class of problems
that capture many key operational network problems such as routing and congestion

∗Received by the editors December 15, 2008; accepted for publication (in revised form) July 5,
2010; published electronically DATE. An announcement of the results in this paper appeared in the
21st International Symposium on Distributed Computing, Lemesos, Cyprus, September 2007.

http://www.siam.org/journals/siopt/x-x/74370.html
†Department of Computer Science, Stanford University, Stanford, CA 94305-5008 (damonma@

cs.stanford.edu, tim@cs.stanford.edu).
‡Laboratory for Information and Decision Systems, Department of Electrical Engineering

and Computer Science, MIT, 32-D670, 77 Massachusetts Avenue, Cambridge, MA 02139-4301
(devavrat@mit.edu).

1

2 D. MOSK-AOYAMA, T. ROUGHGARDEN, AND D. SHAH

control. Specifically, we consider a connected network of n nodes described by a
network graph GN = (V,EN) with V = {1, . . . , n}. Each node is assigned a non-
negative variable xi. The goal is to choose values for the xi’s to optimize a global
network objective function under network resource constraints. We assume that the
global objective function f is separable in the sense that f(x) =

∑n
i=1 fi(xi). The

feasible region is described by a set of nonnegative linear constraints.
Example 1 (network resource allocation). Given a capacitated network GN =

(V,EN), users wish to transfer data to specific destinations. Each user is associated
with a particular path in the network, and has a utility function that depends on the
rate xi that the user is allocated. The goal is to maximize the global network utility,
which is the sum of the utilities of individual users. The rate allocation x = (xi) must
satisfy capacity constraints, which are linear [6].

1.1. Related work. While many previous works have designed distributed algo-
rithms for network optimization problems, these primarily concern a different notion
of locality among decision variables. In the constraint graph GC of a mathematical
program, the vertices correspond to variables and edges correspond to pairs of vari-
ables that participate in a common constraint. As detailed below, several previous
network optimization algorithms are fully distributed with respect to this constraint
graph. In contrast, the primary goal of this paper is to design fully distributed algo-
rithms with respect to the network graph GN . For example, in the network resource
allocation problem above, the constraint graph GC contains an edge between two
users if and only if their paths intersect. Operationally, we want an algorithm for rate
allocation that is distributed with respect to the true underlying network GN . Note
that typically GC �⊆ GN (i.e., EC �⊆ EN), and hence a fully distributed algorithm
with respect to GC is not fully distributed with respect to GN . An example of this
distinction is provided in Figure 1.

1

2

3

5

4

1

2 3

(a) (b)

Fig. 1. (a) A network graph for a resource allocation problem with three users. The path of
user 1 is from node 1 to node 4, the path of user 2 is from node 2 to node 4, and the path of user 3
is from node 3 to node 5. (b) The constraint graph for this problem instance, which contains edges
not present in the network graph.

The design of distributed algorithms for convex minimization with linear con-
straints has been of interest since the early 1960’s. The essence of the work before
the mid-1980’s is well documented in the book by Rockafellar [10]. Rockafellar [10]
describes distributed algorithms for monotropic programs, which are separable con-
vex minimization problems with linear constraints. These algorithms leverage the
decomposable structure of the Lagrange dual problem arising from the separable pri-

DISTRIBUTED ALGORITHMS FOR CONVEX OPTIMIZATION 3

mal objective. This structure has also been used to design parallel and asynchronous
algorithms for monotropic programs; see the book by Bertsekas and Tsitsiklis [2] for
further details. All of these algorithms are by design distributed with respect to an
appropriate constraint graph GC , as opposed to an underlying network GN . For the
special case of a network routing problem, the distributed algorithm of Gallager [4] is
intuitively “closer” to being distributed with respect to GN ; however, it still requires
direct access to route information and hence is only fully distributed with respect to
the constraint graph GC .

The network resource allocation problems described above are special cases of
monotropic programs. Kelly, Maulloo, and Tan [6] used these known distributed
algorithmic solutions to explain the congestion control protocols for the resource allo-
cation problem. Moreover, they show that in an idealized model with perfect feedback
(in the form of packet drops) by network queues, these algorithms can also be inter-
preted as distributed over GN . See also Garg and Young [5] for similar results that
emphasize the rate of convergence to an optimal solution. See the book by Srikant
[11] for further work on congestion control.

Flow control also serves as the motivation for the work of Bartal, Byers, and Raz
[1] on distributed algorithms for positive linear programming (building on earlier work
by Papadimitriou and Yannakakis [9] and Luby and Nisan [7]). In this model, there
is a primal agent for each primal variable and a dual agent for each dual variable (or
primal constraint). In [1], direct communication is permitted between a dual agent
and all of the primal agents appearing in the corresponding constraint; in this model,
Bartal, Byers, and Raz [1] give a decentralized algorithm that achieves a (1 + ε)-
approximation in a polylogarithmic number of rounds.

1.2. Our contribution. The main contribution of this paper is the design and
analysis of a fully distributed algorithm for a class of convex minimization problems
with linear constraints. Our algorithm is distributed with respect to GN , irrespec-
tive of the structure of GC . The only informational assumption required is that each
node (variable) knows which constraints it is involved in. As an example, our algo-
rithm provides a fully distributed solution to the network resource allocation problem
without relying on any assumptions about the network queuing dynamics.

This algorithm is simple in that it could be implemented in a network in which the
communication infrastructure is limited. It effectively reduces the convex optimiza-
tion problem to the problem of computing sums via the technique of dual gradient
ascent. The algorithm in [8] computes sums approximately using a simple gossip-based
communication protocol.

In more detail, we consider the problem of minimizing a convex separable func-
tion over linear inequalities. Given an error parameter ε, our algorithm produces
an ε-approximately feasible solution with objective function value close to that of an
optimal feasible solution. The running time of our algorithm is polynomial in 1/ε,
the number of constraints, the inverse of the conductance of the underlying network
graph, and a measure of curvature variation in the dual objective function.

We now briefly highlight our main techniques. Our algorithm is based on the La-
grange dual problem. As noted earlier, due to the separable primal objective function,
the dual problem can be decomposed so that an individual node can recover the value
of its variable in a primal solution from a dual feasible solution. We solve the dual
problem via a dual ascent algorithm. The standard approach for designing such an
algorithm only leads to a distributed algorithm with respect to the constraint graph
of the problem.

4 D. MOSK-AOYAMA, T. ROUGHGARDEN, AND D. SHAH

Specifically, consider the setup of Figure 1 and the rate control problem considered
in [6]. Here, three flows starting from nodes 1, 2, and 3 wish to send data at rates
x1, x2, and x3 so as to maximize log x1 + log x2 + log x3 subject to the network link
capacity constraints. Let us assume that the only constraining link in Figure 1 is
the link that is shared by the three flows. Following the dual-decomposition-based
approach, let λ be the dual variable corresponding to the constraint imposed by this
shared link capacity and involving x1, x2, and x3. The values of the variables x1,
x2, and x3 are naturally determined by nodes 1, 2, and 3, respectively. Suppose the
value of the dual variable λ is maintained by the end node of the common link shared
by the three flows. To perform steps of the primal-dual algorithm, nodes 1, 2, and 3
require exact information about λ, and the common link requires a summation of the
exact values of x1, x2, and x3 to update λ.

In a general network setup, to update each flow variable, one requires a weighted
summation of the dual variables across the links used by that particular flow. To
update each dual variable, one requires a summation of the values of the flow variables
that are using the corresponding link. If these summations are performed using direct
communication between the nodes that maintain the values of the different variables,
the algorithm will be distributed with respect to the constraint graph GC , but not
necessarily with respect to the network graph GN . In our dual ascent algorithm,
we need to overcome the following technical challenges: (a) making the algorithm
distributed with respect to GN , and (b) respecting the nonnegativity constraints on
the primal variables.

To overcome the first challenge, we employ the fully distributed randomized sum-
mation algorithm from [8] as a subroutine. This leads to a fully distributed overall
algorithm design. However, the randomization and approximate nature of this algo-
rithm makes the analysis technically challenging. We overcome the second challenge
by introducing a barrier function that is inspired by (centralized) interior-point math-
ematical programming algorithms. We believe that this barrier technique may have
further applications in the design of distributed optimization algorithms.

1.3. Organization. The remainder of this paper is organized as follows. Sec-
tion 2 defines the class of problems we study, presents some of their properties, and
describes the main result of this paper. Section 3 presents our distributed algorithm
for solving a convex optimization problem in the class, under the assumption that
certain parameters of the problem instance are known to the algorithm. An analysis
of the convergence rate of the algorithm appears in section 4. Section 5 describes
how to set and efficiently search for the necessary parameter values. In section 6,
we discuss modifications to our algorithm, which is presented in the case of linear
equality constraints, for handling linear inequality constraints.

2. Problem statement and main result. We consider an undirected graph
GN = (V,EN) with V = {1, . . . , n}, where each node i has a nonnegative decision
variable xi ≥ 0. We write R, R+ , and R++ to denote the set of real numbers, the set
of nonnegative real numbers, and the set of positive real numbers, respectively. The
vector x ∈ Rn contains the variables in the optimization problem.

Throughout this paper, ‖v‖ denotes the �2-norm of a vector v ∈ Rd. The ball
of radius r about the point v is denoted by B(v, r) and is defined as B(v, r) = {w |
‖w − v‖ ≤ r}.

We consider optimization problems of the following general form. The objective
function is f(x) =

∑n
i=1 fi(xi), and we assume that each fi : R+ → R has a continu-

ous second derivative and is convex, with limxi↓0 f ′
i(xi) <∞ and limxi↑∞ f ′

i(xi) =∞.

DISTRIBUTED ALGORITHMS FOR CONVEX OPTIMIZATION 5

The constraints are linear equality constraints of the form Ax = b, specified by a
matrix A ∈ Rm×n

+ and a vector b ∈ Rm
++ , and nonnegativity constraints xi ≥ 0 on

the variables. Section 6 describes modifications to our approach for handling linear
inequality constraints. We assume that m ≤ n, and the matrix A has linearly inde-
pendent rows. For i = 1, . . . , n, let ai = [A1i, . . . , Ami]T denote the ith column of the
matrix A. In this distributed setting, we assume that node i is given the vectors b
and ai, but not the other columns of the matrix A.

For a real matrix M , we write σmin(M) and σmax(M) to denote the smallest and
largest singular values, respectively, of M , so that σmin(M)2 and σmax(M)2 are the
smallest and largest eigenvalues of MTM . Note that σmin(M) = min{‖Mv‖ | ‖v‖ =
1} and σmax(M) = max{‖Mv‖ | ‖v‖ = 1}. If M is symmetric, then the singular
values and the eigenvalues of M coincide, so σmin(M) and σmax(M) are the smallest
and largest eigenvalues of M .

We refer to the following convex optimization problem as the primal problem:

minimize f(x)(P)
subject to Ax = b,

xi ≥ 0, i = 1, . . . , n.

Let OPT denote the optimal value of (P). Associated with the primal problem (P)
is the Lagrangian function L(x, λ, ν) = f(x) +λT (Ax− b)− νTx, which is defined for
λ ∈ Rm and ν ∈ Rn, and the Lagrange dual function

g(λ, ν) = inf
x∈Rn

+

L(x, λ, ν)

= −bTλ+
n∑

i=1

inf
xi∈R+

(
fi(xi) +

(
aT

i λ− νi

)
xi

)
.

The Lagrange dual problem to (P) is

maximize g(λ, ν)(D)
subject to νi ≥ 0, i = 1, . . . , n.

Although we seek a solution to the primal problem (P), to avoid directly enforcing
the nonnegativity constraints, we introduce a logarithmic barrier. For a parameter
θ > 0, we consider the primal barrier problem

minimize f(x)− θ
n∑

i=1

lnxi(Pθ)

subject to Ax = b.

The Lagrange dual function corresponding to (Pθ) is

gθ(λ) = −bTλ+
n∑

i=1

inf
xi∈R++

(
fi(xi)− θ lnxi + aT

i λxi

)
,

and the associated Lagrange dual problem is the unconstrained optimization problem

maximize gθ(λ).(Dθ)

6 D. MOSK-AOYAMA, T. ROUGHGARDEN, AND D. SHAH

We assume that the primal barrier problem (Pθ) is feasible; that is, there exists
a vector x ∈ Rn

++ such that Ax = b. Under this assumption, the optimal value of
(Pθ) is finite, and Slater’s condition implies that the dual problem (Dθ) has the same
optimal value, and there exists a dual solution λ∗ that achieves this optimal value [3].
Furthermore, because (Dθ) is an unconstrained maximization problem with a strictly
concave objective function, the optimal solution λ∗ is unique.

2.1. Main result. The main result of this paper is a fully distributed algorithm
for solving approximately the primal problem (P). A precise statement of the perfor-
mance guarantees of the algorithm requires some notation that we will introduce in the
description of the algorithm. The following informal theorem statement suppresses
the dependence of the running time of the algorithm on some parameters.

Theorem (informal). There exists a fully distributed algorithm for the problem
(P) that, for any ε > 0 and θ > 0, produces a dual vector λ and a primal solution x
such that ‖Ax − b‖ ≤ ε‖b‖ and f(x) ≤ OPT + ε‖b‖‖λ‖ + nθ with high probability.
The running time of the algorithm is polynomial in the number of constraints and
ε−1.

2.2. Preliminaries. For a vector of dual variables λ ∈ Rm, let x(λ) ∈ Rn
++

denote the corresponding primal minimizer in the Lagrange dual function: for i =
1, . . . , n,

(1) xi(λ) = arg inf
xi∈R++

(
fi(xi)− θ lnxi + aT

i λxi

)
.

We can solve for each xi(λ) explicitly. As fi(xi)− θ lnxi + aT
i λxi is convex in xi,

(2) f ′
i(xi(λ))− θ

xi(λ)
+ aT

i λ = 0.

Define hi : R++ → R by hi(xi) = f ′
i(xi)−θ/xi; since fi is convex, hi is strictly increas-

ing and hence has a well-defined and strictly increasing inverse. Since limxi↓0 f ′
i(xi) <

∞ and limxi↑∞ f ′
i(xi) = ∞, the inverse function h−1

i (y) is defined for all y ∈ R. We
now have xi(λ) = h−1

i

(−aT
i λ
)
.

Also, we assume that, given a vector λ, a node i can compute xi(λ). This is
reasonable since computing xi(λ) is simply an unconstrained convex optimization
problem in a single variable (1), which can be done by several methods, such as
Newton’s method.

Next, in our convergence analysis, we will argue about the gradient of the La-
grange dual function gθ. A calculation shows that

∇gθ(λ) = −b+
n∑

i=1

aixi(λ)

= Ax(λ) − b.(3)

We will use p(λ) to denote ‖∇gθ(λ)‖ = ‖Ax(λ) − b‖ for a vector λ ∈ Rm. We note
that at the optimal dual solution λ∗, we have p(λ∗) = 0 and Ax(λ∗) = b.

To control the rate of decrease in the gradient norm p(λ), we must understand
the Hessian of gθ. For j1, j2 ∈ {1, . . . ,m}, component (j1, j2) of the Hessian ∇2gθ(λ)

DISTRIBUTED ALGORITHMS FOR CONVEX OPTIMIZATION 7

of gθ at a point λ is

∂gθ(λ)
∂λj1∂λj2

=
n∑

i=1

Aj1i
∂xi(λ)
∂λj2

= −
n∑

i=1

Aj1iAj2i

(
h−1

i

)′ (−aT
i λ
)
.(4)

As the functions h−1
i are strictly increasing, min�=1,...,n((h−1

�)′(−aT
� λ)) > 0. Hence,

for any μ ∈ Rm other than the zero vector,

μT∇2gθ(λ)μ =
m∑

j1=1

μj1

m∑
j2=1

∂gθ(λ)
∂λj1∂λj2

μj2

= −
m∑

j1=1

μj1

m∑
j2=1

n∑
i=1

Aj1iAj2i

(
h−1

i

)′ (−aT
i λ
)
μj2

= −
n∑

i=1

(
h−1

i

)′ (−aT
i λ
) m∑

j1=1

Aj1iμj1

m∑
j2=1

Aj2iμj2

= −
n∑

i=1

(
h−1

i

)′ (−aT
i λ
) (
aT

i μ
)2

≤ − min
�=1,...,n

((
h−1

�

)′ (−aT
� λ
)) (

ATμ
)T (

ATμ
)

(5)

< 0,

and gθ is a strictly concave function.

3. Algorithm description.

3.1. The basic algorithm. We consider an iterative algorithm for obtaining an
approximate solution to (P), which uses gradient ascent for the dual barrier problem
(Dθ). The algorithm generates a sequence of feasible solutions λ0, λ1, λ2, . . . for (Dθ),
where λ0 is the initial vector. To update λk−1 to λk in an iteration k, the algorithm
uses the gradient ∇gθ(λk−1) to determine the direction of the difference λk − λk−1.
We assume that the algorithm is given as inputs the initial point λ0, and an accuracy
parameter ε such that 0 < ε ≤ 1. The goal of the algorithm is to find a point x ∈ Rn

+

that is nearly feasible in the sense that ‖Ax − b‖ ≤ ε‖b‖, and that has objective
function value close to that of an optimal feasible point.

In this section, we describe the operation of the algorithm under the assumption
that it has knowledge of certain parameters that affect its execution and performance.
We refer to an execution of the algorithm with a particular set of parameters as an
inner run of the algorithm. To address the fact that these parameters are not available
to the algorithm at the outset, we add an outer loop to the algorithm. The outer loop
uses binary search to find appropriate values for the parameters, and performs an inner
run for each set of parameters encountered during the search. Section 5 discusses the
operation of the outer loop of the algorithm.

An inner run of the algorithm consists of a sequence of iterations. Iteration k, for
k = 1, 2, . . . , begins with a current vector of dual variables λk−1, from which each node
i computes xi(λk−1). Let sk−1 = Ax

(
λk−1

)
, so that, by (3), ∇gθ

(
λk−1

)
= sk−1 − b.

In order for the algorithm to perform gradient ascent, each node must compute
the vector sk−1. A component sk−1

j =
∑n

i=1 Ajixi

(
λk−1

)
of sk−1 is the sum of

8 D. MOSK-AOYAMA, T. ROUGHGARDEN, AND D. SHAH

the values yi = Ajixi

(
λk−1

)
for those nodes i such that Aji > 0. As such, any

algorithm for computing sums of this form that is fully distributed with respect to
the underlying networkGN can be used as a subroutine for the gradient ascent. In this
algorithm, the nodes apply the distributed gossip algorithm from [8] (m times, one
for each component) to compute a vector ŝk−1, where ŝk−1

j is an estimate of sk−1
j for

j = 1, . . . ,m. (The appendix recapitulates this subroutine, which is fully distributed
with respect to GN , in more detail; in the notation used there, D = {i ∈ V | Aji > 0}.)

The summation subroutine takes as input parameters an accuracy ε1 and an error
probability δ. When used to compute sk−1

j for a particular value of j, the estimate
ŝk−1

j it produces will satisfy

(6) (1− ε1) sk−1
j ≤ ŝk−1

j ≤ (1 + ε1) sk−1
j

with probability at least 1 − δ. (We discuss how to choose ε1 and δ in the next
section and in section 5, respectively.) In the analysis of an inner run, we assume that
each invocation of the summation routine succeeds, so that (6) is satisfied. Provided
we choose δ sufficiently small (see section 5), this assumption will hold with high
probability.

A description of an iteration k of an inner run of the algorithm is shown in
Figure 2. We specify values for the step size t and the error tolerance ε1 in the next
section. An inner run is essentially standard gradient ascent, where the stopping
criterion (sufficiently small gradient norm) is modified to reflect the potential error in
nodes’ estimates of the gradient. Note that (8) does not imply (7); the nodes must
check both of the two conditions, because the error tolerance ε1 for the summation
subroutine could be much smaller than ε. The summation subroutine ensures that all
nodes obtain a common estimate of the sum, and as a consequence either all or no
nodes will determine that both stopping conditions are met in a given iteration.

3.2. Choosing the parameters. The step size t and the convergence rate of our
algorithm are governed by the variation in curvature of the Lagrange dual function.

Iteration k
1. For j = 1, . . . ,m, the nodes compute an estimate ŝk−1

j of sk−1
j =∑n

i=1Ajixi(λk−1).
2. The nodes check the following two stopping conditions:

(7) (1 − ε1)
(

1− 2
3
ε

)
‖b‖ ≤ ∥∥ŝk−1

∥∥ ≤ (1 + ε1)
(

1 +
2
3
ε

)
‖b‖

and

(8)
∥∥ŝk−1 − b∥∥ ≤ (2

3
ε+ ε1

(
1 + ε1
1− ε1

)(
1 +

2
3
ε

))
‖b‖.

If both conditions (7) and (8) are satisfied, the inner run terminates,
producing as output the vector x

(
λk−1

)
.

3. The nodes update the dual vector by setting Δλk−1 = ŝk−1 − b and
λk = λk−1 + tΔλk−1.

Fig. 2. The kth iteration of an inner run.

DISTRIBUTED ALGORITHMS FOR CONVEX OPTIMIZATION 9

(This is standard in a dual ascent context; intuitively, regions of large curvature
necessitate a small step size to guarantee convergence, and if small steps are taken
in regions with small curvature, then progress toward an optimal solution is slow.)
Examining the Hessian of the Lagrange dual function in (4), we see that the curvature
variation depends both on variation in (h−1

i)′, which roughly corresponds to variation
in the curvature of the fi’s, and on the variation in the singular values of AT . Precisely,
note that (

h−1
i

)′ (−aT
i λ
)

=
1

h′i
(
h−1

i

(−aT
i λ
))

=
1

f ′′
i

(
h−1

i

(−aT
i λ
))

+ θ

(h−1
i (−aT

i λ))2

.

The fact that each function fi has a continuous second derivative implies that the
derivative of h−1

i is continuous as well. For a distance r > 0, define

qf (r) = min
�=1,...,n

min
λ∈B(λ∗,r)

(
h−1

�

)′ (−aT
� λ
)
,

Qf (r) = max
�=1,...,n

max
λ∈B(λ∗,r)

(
h−1

�

)′ (−aT
� λ
)
.

Our step size and convergence rate will depend on the parameters defined as
follows:

q = qf
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2
,

Q = Qf

(∥∥λ0 − λ∗∥∥)σmax

(
AT
)2
,

R =
Q

q
.

For simplicity of notation, we have suppressed the dependence of these parameters
on ‖λ0 − λ∗‖ and the matrix A. Note that R ≥ 1. These parameters measure the
minimum and maximum curvature variation of the Lagrange dual function only in
a ball of radius ‖λ0 − λ∗‖ around the optimal dual solution λ∗; this is because the
sequence of dual solutions generated by our algorithm grows monotonically closer
to λ∗, as shown below in Lemma 4, and we are concerned only with variation in
the region in which our algorithm executes (as opposed to the entire feasible region,
which is all of Rm). Thus a better initial estimate of the optimal dual solution yields
a tighter bound on curvature variation and a better convergence result.

When we analyze the inner run, we assume that both q and Q are known to the
algorithm. We discharge this assumption in section 5 using standard binary search
techniques.

We define α = 1/(6R) = q/(6Q). For the summation subroutine, nodes use the
accuracy parameter ε1 = εα/3, where ε is the error tolerance given to the distributed
algorithm. For gradient ascent, nodes compute and employ the following step size:

(9) t =

(
1− α (1

2 + ε
3

))2 − 1
6

(
1
2 + ε

3

) (
1 + α

(
1
2 + ε

3

))
(
1 + α

(
1
2 + ε

3

))2
QR

.

We have t > 0 since α ≤ 1/6 and ε ≤ 1. Note that t = Θ(q/Q2). An inner run
continues to execute iterations for increasing values of k until both stopping conditions
are satisfied, or the outer loop of the algorithm terminates the inner run as described
in section 5.

10 D. MOSK-AOYAMA, T. ROUGHGARDEN, AND D. SHAH

4. Convergence analysis. In this section, we provide an analysis of the number
of iterations required for an inner run of the algorithm to obtain a solution x(λk) such
that ‖Ax(λk)−b‖ ≤ ε‖b‖, and we also prove an approximation bound on the objective
function value of the final solution. We assume in this analysis that the summation
subroutine used by an inner run is always successful; that is, (6) holds for every sum
computation. Furthermore, we assume that an inner run executes until both stopping
conditions are satisfied. The possibility of an inner run being terminated by the outer
loop is addressed in section 5.

First, we consider the extent to which Δλk−1 deviates from the correct gradient
∇gθ(λk−1), provided that the inner run does not terminate in iteration k. To this
end, let uk−1 = ŝk−1 − sk−1 be a vector representing the error in the computation of
sk−1. Note that Δλk−1 = ∇gθ(λk−1) + uk−1. The following lemma shows that the
error introduced by the approximate summation subroutine is small relative to our
key measure of progress, the gradient norm.

Lemma 1. If the stopping conditions (7) and (8) are not both satisfied in iteration
k, then

(10)
∥∥uk−1

∥∥ ≤ α(1
2

+
ε

3

)∥∥∇gθ

(
λk−1

)∥∥
and

(11)(
1− α

(
1
2

+
ε

3

))∥∥∇gθ

(
λk−1

)∥∥ ≤ ∥∥Δλk−1
∥∥ ≤ (1 + α

(
1
2

+
ε

3

))∥∥∇gθ

(
λk−1

)∥∥ .
Proof. As the inequalities in (11) follow from (10) and the triangle inequality, we

focus on proving the inequality in (10). If (7) is not satisfied, then

∥∥ŝk−1
∥∥ < (1− ε1)

(
1− 2

3
ε

)
‖b‖ or

∥∥ŝk−1
∥∥ > (1 + ε1)

(
1 +

2
3
ε

)
‖b‖,

and so, by (6),

∥∥sk−1
∥∥ < (1− 2

3
ε

)
‖b‖ or

∥∥sk−1
∥∥ > (1 +

2
3
ε

)
‖b‖.

By the triangle inequality, this implies that∥∥∇gθ

(
λk−1

)∥∥ =
∥∥sk−1 − b∥∥

≥ ∣∣∥∥sk−1
∥∥− ‖b‖∣∣

>
2
3
ε‖b‖.(12)

Suppose that (7) is satisfied and (8) is not satisfied. Note that (6) implies that
‖uk−1‖ ≤ ε1‖sk−1‖, and so (7) and (6) yield

(13)
∥∥uk−1

∥∥ ≤ ε1 ∥∥sk−1
∥∥ ≤ ε1

(
1 + ε1
1− ε1

)(
1 +

2
3
ε

)
‖b‖.

By the triangle inequality and (13),∥∥Δλk−1
∥∥ =

∥∥ŝk−1 − b∥∥ =
∥∥∇gθ

(
λk−1

)
+ uk−1

∥∥
≤ ∥∥∇gθ

(
λk−1

)∥∥+ ε1

(
1 + ε1
1− ε1

)(
1 +

2
3
ε

)
‖b‖,

DISTRIBUTED ALGORITHMS FOR CONVEX OPTIMIZATION 11

and so the fact that (8) is not satisfied implies that

∥∥∇gθ

(
λk−1

)∥∥ ≥ ∥∥ŝk−1 − b∥∥− ε1
(

1 + ε1
1− ε1

)(
1 +

2
3
ε

)
‖b‖

>

(
2
3
ε+ ε1

(
1 + ε1
1− ε1

)(
1 +

2
3
ε

))
‖b‖ − ε1

(
1 + ε1
1− ε1

)(
1 +

2
3
ε

)
‖b‖

=
2
3
ε‖b‖.(14)

Combining (12) and (14), it follows that if the two stopping conditions are not
both satisfied, then

∥∥∇gθ

(
λk−1

)∥∥ > 2
3
ε‖b‖.

Now, applying the triangle inequality yields

∥∥uk−1
∥∥ ≤ ε1 ∥∥sk−1

∥∥ ≤ ε1 (∥∥∇gθ

(
λk−1

)∥∥+ ‖b‖) ≤ ε1
(

1 +
3
2ε

)∥∥∇gθ

(
λk−1

)∥∥
= α

(
1
2

+
ε

3

)∥∥∇gθ

(
λk−1

)∥∥ ,
where the last equality follows from the fact that ε1 = εα/3. This proves the inequality
in (10), and completes the proof of the lemma.

Next, we develop some inequalities that will be useful in understanding the evo-
lution of an inner run from one iteration to the next. The following lemma translates
the parameters q and Q of section 3.2 to inequalities that bound the variation in the
gradient at different dual points.

Lemma 2. For any two points ρ1, ρ2 ∈ B(λ∗, ‖λ0 − λ∗‖),
(15)

∥∥Ax (ρ2
)−Ax (ρ1

)∥∥ ≤ Q ∥∥ρ2 − ρ1
∥∥

and

(16)
(∇gθ

(
ρ2
)−∇gθ

(
ρ1
))T (

ρ2 − ρ1
) ≤ −q ∥∥ρ2 − ρ1

∥∥2
.

Proof. Let [ρ1, ρ2] denote the line segment joining ρ1 and ρ2. Since B(λ∗, ‖λ0 −
λ∗‖) is a convex set, for any i = 1, . . . , n and any λ ∈ [ρ1, ρ2], (h−1

i)′(−aT
i λ) ≤

Qf (‖λ0 − λ∗‖). As a result,∣∣xi

(
ρ2
)− xi

(
ρ1
)∣∣ =

∣∣h−1
i

(−aT
i ρ

2
)− h−1

i

(−aT
i ρ

1
)∣∣

≤ Qf

(∥∥λ0 − λ∗∥∥) ∣∣aT
i

(
ρ2 − ρ1

)∣∣
= Qf

(∥∥λ0 − λ∗∥∥) aT
i ρ,

where ρ ∈ Rm is defined by ρj = |ρ2
j − ρ1

j | for j = 1, . . . ,m. This implies that∥∥Ax (ρ2
)−Ax (ρ1

)∥∥ =
∥∥A (x (ρ2

)− x (ρ1
))∥∥

≤ Qf

(∥∥λ0 − λ∗∥∥)∥∥AATρ
∥∥

≤ Qf

(∥∥λ0 − λ∗∥∥)σmax

(
AAT

) ‖ρ‖
= Qf

(∥∥λ0 − λ∗∥∥)σmax

(
AT
)2 ∥∥ρ2 − ρ1

∥∥ ,

12 D. MOSK-AOYAMA, T. ROUGHGARDEN, AND D. SHAH

and the inequality in (15) is proved.
For any λ ∈ [ρ1, ρ2

]
and any μ ∈ Rm, a calculation analogous to the one in (5)

yields

μT∇2gθ(λ)μ = −
m∑

j1=1

μj1

m∑
j2=1

n∑
i=1

Aj1iAj2i

(
h−1

i

)′ (−aT
i λ
)
μj2

≤ −qf
(∥∥λ0 − λ∗∥∥)μTAATμ

≤ −qf
(∥∥λ0 − λ∗∥∥)σmin

(
AAT

)
μTμ

= −qf
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2 ‖μ‖2.(17)

From the second-order expansion of the function gθ, there exist vectors μ1, μ2 ∈[
ρ1, ρ2

]
such that

gθ

(
ρ2
)

= gθ

(
ρ1
)

+∇gθ

(
ρ1
)T (

ρ2 − ρ1
)

+
1
2
(
ρ2 − ρ1

)T ∇2gθ

(
μ1
) (
ρ2 − ρ1

)
and

gθ

(
ρ1
)

= gθ

(
ρ2
)

+∇gθ

(
ρ2
)T (

ρ1 − ρ2
)

+
1
2
(
ρ1 − ρ2

)T ∇2gθ

(
μ2
) (
ρ1 − ρ2

)
.

Adding the two above equations and applying (17) yields

(∇gθ

(
ρ2
)−∇gθ

(
ρ1
))T (

ρ2 − ρ1
)

=
1
2
(
ρ2 − ρ1

)T ∇2gθ

(
μ1
) (
ρ2 − ρ1

)
+

1
2
(
ρ1 − ρ2

)T ∇2gθ

(
μ2
) (
ρ1 − ρ2

)
≤ −qf

(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2 ∥∥ρ2 − ρ1

∥∥2
.

This establishes the inequality in (16) and completes the proof of the lemma.
Corollary 3. For any λ ∈ B(λ∗, ‖λ0 − λ∗‖), ‖∇gθ(λ)‖ ≤ Q ‖λ− λ∗‖ and

∇gθ(λ)T (λ− λ∗) ≤ −q ‖λ− λ∗‖2.
Proof. This follows from an application of Lemma 2 with ρ1 = λ∗ and ρ2 = λ,

using the additional observations that ∇gθ(λ) = Ax(λ) − b = Ax(λ) − Ax (λ∗), and
∇gθ (λ∗) = 0 because λ∗ is an optimal solution to (Dθ).

We now show that the dual vector λk at the end of any iteration k executed by an
inner run in which the stopping conditions are not satisfied is as close to the optimal
solution λ∗ as the vector λk−1 at the start of the iteration. While this guarantee is
too weak to imply directly a convergence analysis, it is necessary to justify our use of
the fixed parameters q and Q throughout the entire course of the algorithm.

Lemma 4. For each iteration k executed by an inner run, if λk−1 ∈ B(λ∗, ‖λ0 −
λ∗‖) and the stopping conditions are not satisfied, then ‖λk − λ∗‖ ≤ ‖λk−1 − λ∗‖.

Proof. Suppose the stopping conditions are not satisfied in iteration k, and so
λk − λk−1 = tΔλk−1. The square of the distance from λk to λ∗ can be expressed as

∥∥λk − λ∗∥∥2
=
∥∥(λk − λk−1

)
+
(
λk−1 − λ∗)∥∥2

=
∥∥λk−1 − λ∗∥∥2

+
∥∥λk − λk−1

∥∥2
+ 2

(
λk − λk−1

)T (
λk−1 − λ∗)

=
∥∥λk−1 − λ∗∥∥2

+ t2
∥∥Δλk−1

∥∥2
+ 2t

(
Δλk−1

)T (
λk−1 − λ∗) .(18)

DISTRIBUTED ALGORITHMS FOR CONVEX OPTIMIZATION 13

The third term on the right-hand side of (18) can be bounded from above by
applying Corollary 3, the Cauchy–Schwarz inequality, and Lemma 1 to obtain(

Δλk−1
)T (

λk−1 − λ∗) =
(∇gθ

(
λk−1

)
+ uk−1

)T (
λk−1 − λ∗)

≤ −q ∥∥λk−1 − λ∗∥∥2
+
∥∥uk−1

∥∥∥∥λk−1 − λ∗∥∥
≤ ∥∥λk−1 − λ∗∥∥2

(
α

(
1
2

+
ε

3

)
Q− q

)
.

Substituting this inequality into (18), and again applying Lemma 1 and Corollary 3
yields∥∥λk − λ∗∥∥2

≤ ∥∥λk−1 − λ∗∥∥2

(
1 + t2

(
1 + α

(
1
2

+
ε

3

))2

Q2 + 2t
(
α

(
1
2

+
ε

3

)
Q− q

))
.

As αQ = q/6, we will have ‖λk − λ∗‖ ≤ ‖λk−1 − λ∗‖ provided that

t ≤
(
2− 1

3

(
1
2 + ε

3

))
q(

1 + α
(

1
2 + ε

3

))2
Q2

.

The step size in (9) used by an inner run satisfies this inequality because ε ≤ 1. This
completes the proof of the lemma.

To establish that an inner run makes progress as it executes iterations, we show
that the norm of the gradient of gθ(λk), p(λk) = ‖Ax(λk)− b‖ decreases by a multi-
plicative factor in each iteration.

Lemma 5. For each iteration k executed by an inner run in which the stopping
conditions are not satisfied,

∥∥∇gθ

(
λk
)∥∥ ≤

(√
1− 1

4R2

)∥∥∇gθ

(
λk−1

)∥∥ .
Proof. If the stopping conditions are not satisfied in iteration k, then Lemma 4

implies that λk−1, λk ∈ B (λ∗, ∥∥λ0 − λ∗∥∥). The squared norm of the gradient of gθ at
λk can be expressed as∥∥∇gθ

(
λk
)∥∥2

=
∥∥(∇gθ

(
λk
)−∇gθ

(
λk−1

))
+∇gθ

(
λk−1

)∥∥2

=
∥∥∇gθ

(
λk−1

)∥∥2
+
∥∥∇gθ

(
λk
)−∇gθ

(
λk−1

)∥∥2

+ 2
(∇gθ

(
λk
)−∇gθ

(
λk−1

))T ∇gθ

(
λk−1

)
.(19)

By Lemmas 2 and 1, the second term on the right-hand side of (19) can be bounded
from above by∥∥∇gθ

(
λk
)−∇gθ

(
λk−1

)∥∥ =
∥∥(Ax (λk

)− b)− (Ax (λk−1
)− b)∥∥

=
∥∥Ax (λk

)−Ax (λk−1
)∥∥

≤ Q ∥∥λk − λk−1
∥∥

= tQ
∥∥Δλk−1

∥∥
≤ t

(
1 + α

(
1
2

+
ε

3

))
Q
∥∥∇gθ

(
λk−1

)∥∥ .(20)

14 D. MOSK-AOYAMA, T. ROUGHGARDEN, AND D. SHAH

To bound the third term on the right-hand side of (19), we again apply Lemmas 2
and 1 to obtain(∇gθ

(
λk
)−∇gθ

(
λk−1

))T ∇gθ

(
λk−1

)
=
(∇gθ

(
λk
)−∇gθ

(
λk−1

))T (
Δλk−1 − uk−1

)
≤ −tq ∥∥Δλk−1

∥∥2
+
∥∥uk−1

∥∥∥∥∇gθ

(
λk
)−∇gθ

(
λk−1

)∥∥
≤ −t

(
1− α

(
1
2

+
ε

3

))2

q
∥∥∇gθ

(
λk−1

)∥∥2

+ tα

(
1
2

+
ε

3

)(
1 + α

(
1
2

+
ε

3

))
Q
∥∥∇gθ

(
λk−1

)∥∥2
.(21)

Substituting (20) and (21) into (19) yields

∥∥∇gθ

(
λk
)∥∥2

≤ ∥∥∇gθ

(
λk−1

)∥∥2

(
1 + t2

(
1 + α

(
1
2

+
ε

3

))2

Q2

+ 2t

(
1
6

(
1
2

+
ε

3

)(
1 + α

(
1
2

+
ε

3

))

−
(

1− α
(

1
2

+
ε

3

))2
)
q

)
,

where we have used the fact that αQ = q/6. For the step size t in (9), we have

∥∥∇gθ

(
λk
)∥∥2

≤ ∥∥∇gθ

(
λk−1

)∥∥2

⎛
⎜⎝1−

⎛
⎝
((

1− α (1
2 + ε

3

))2 − 1
6

(
1
2 + ε

3

) (
1 + α

(
1
2 + ε

3

)))
q(

1 + α
(

1
2 + ε

3

))
Q

⎞
⎠

2
⎞
⎟⎠ .

Since α ≤ 1/6 and ε ≤ 1, it follows that

∥∥∇gθ

(
λk
)∥∥2 ≤ ∥∥∇gθ

(
λk−1

)∥∥2

(
1−

(
q

2Q

)2
)
,

and the proof is complete.
Lemma 5 implies an upper bound on the number of iterations executed by an

inner run.
Theorem 6. An inner run terminates after

O

(
R2 log

(
p
(
λ0
)

ε‖b‖

))

iterations with a solution x(λ) such that ‖Ax (λ)− b‖ ≤ ε‖b‖.
Proof. If an inner run terminates with a solution x(λ), then the stopping condi-

tions (7) and (8) are both satisfied for the estimate ŝ = s+u of the vector s = Ax(λ).

DISTRIBUTED ALGORITHMS FOR CONVEX OPTIMIZATION 15

Applying (6) and the triangle inequality yields

‖Ax (λ) − b‖ = ‖s− b‖
≤ ‖ŝ− b‖+ ‖u‖
≤ ‖ŝ− b‖+ ε1‖s‖
≤
(

2
3
ε+ ε1

(
1 + ε1
1− ε1

)(
1 +

2
3
ε

))
‖b‖+ ε1

(
1 + ε1
1− ε1

)(
1 +

2
3
ε

)
‖b‖

=
(

2
3
ε+

2εα
3

(
1 + ε1
1− ε1

)(
1 +

2
3
ε

))
‖b‖.

Because ε ≤ 1 and α ≤ 1/6, ε1 = εα/3 ≤ 1/18, and so we obtain ‖Ax (λ)− b‖ ≤ ε‖b‖.
Now, we show that if ‖sk−1 − b‖ ≤ (2/3)ε‖b‖ at the start of an iteration k, then

the inner run will terminate in that iteration. Since |‖sk−1‖ − ‖b‖| ≤ ‖sk−1 − b‖, (6)
implies that

(1− ε1)
(

1− 2
3
ε

)
‖b‖ ≤ ∥∥ŝk−1

∥∥ ≤ (1 + ε1)
(

1 +
2
3
ε

)
‖b‖,

and (7) is satisfied. Moreover,∥∥ŝk−1 − b∥∥ ≤ ∥∥sk−1 − b∥∥+
∥∥uk−1

∥∥
≤ 2

3
ε‖b‖+ ε1

∥∥sk−1
∥∥

≤
(

2
3
ε+ ε1

(
1 +

2
3
ε

))
‖b‖

≤
(

2
3
ε+ ε1

(
1 + ε1
1− ε1

)(
1 +

2
3
ε

))
‖b‖,

and so (8) is satisfied as well, and the inner run terminates.
Repeated application of Lemma 5 implies that, if an inner run does not terminate

in or before an iteration k, then

∥∥∇gθ

(
λk
)∥∥ ≤ (1− 1

4R2

) k
2

p
(
λ0
)
.

For

k ≥ 8R2 ln

(
3p
(
λ0
)

2ε‖b‖

)
,

we have ‖∇gθ(λk)‖ ≤ (2/3)ε‖b‖, and hence the stopping conditions will be satisfied
and an inner run will terminate in the claimed number of iterations.

Finally, we bound the difference between the objective function value of the so-
lution produced by an inner run and the optimal value of the primal problem.

Corollary 7. The objective function value of the solution x(λ) produced by an
inner run satisfies

f(x(λ)) ≤ OPT + ε‖b‖‖λ‖+ nθ.

16 D. MOSK-AOYAMA, T. ROUGHGARDEN, AND D. SHAH

Proof. Given the solution x(λ) produced by an inner run, define a vector ν (λ) ∈
Rn

++ by, for all i = 1, . . . , n,

νi (λ) =
θ

xi (λ)
.

The pair (λ, ν (λ)) is a feasible solution to the dual problem (D) with objective function
value

g(λ, ν(λ)) = inf
x∈Rn

+

L(x, λ, ν(λ))

= −bTλ+
n∑

i=1

inf
xi∈R+

(
fi(xi) +

(
aT

i λ−
θ

xi (λ)

)
xi

)
.

As the components of the vector x(λ) satisfy (2), we have L(x(λ), λ, ν(λ)) = g(λ, ν(λ)).
From the definition of the Lagrangian and the fact that (λ, ν(λ)) is feasible for

(D),

f(x(λ)) + λT (Ax(λ) − b)− ν(λ)T x(λ) = L(x(λ), λ, ν(λ))
= g(λ, ν(λ))
≤ OPT.

Applying the Cauchy–Schwarz inequality and Theorem 6 yields

f(x(λ)) ≤ OPT− λT (Ax(λ) − b) + ν(λ)T x(λ)

≤ OPT + ‖λ‖ ‖Ax(λ) − b‖+
n∑

i=1

(
θ

xi(λ)

)
xi(λ)

≤ OPT + ε‖b‖‖λ‖+ nθ,

which is the claimed upper bound on the objective function value of the vector
x(λ).

Since the dual solution λ produced by the algorithm satisfies ‖λ‖ ≤ ‖λ0‖+2‖λ0−
λ∗‖, by choosing the parameters ε and θ appropriately, the approximation error can
be made as small as desired (though, of course, the convergence time increases as each
of these parameters decreases).

5. Setting parameters. In this section, we consider the setting of some pa-
rameters that were assumed known by an inner run in section 4. First, we describe
the outer loop of the algorithm. The purpose of the outer loop is to invoke inner
runs with various parameter values, and to terminate runs if they do not end in the
allotted number of iterations.

As the outer loop does not know the values q and Q, it uses binary search to
choose the parameter values for the inner runs. Note that the analysis in section 4
remains valid if we replace the former quantity with a lower bound on it, and the
latter quantity with an upper bound on it. Let U > 0 be an upper bound on the ratio
between the largest and smallest possible values of these two quantities.

The outer loop enumerates logU possible values q1, q2, . . . , qlog U for q, with q�+1 =
2q� for each �. Similarly, it considers values Q1, Q2, . . . , Qlog U for Q. For each pair
of values (q�1 , Q�2) such that q�1 ≤ Q�2 , it computes an upper bound T (q�1 , Q�2) on
the number of iterations required for an inner run with these parameter values, using
Theorem 6.

DISTRIBUTED ALGORITHMS FOR CONVEX OPTIMIZATION 17

Now, the outer loop sorts the T (q�1 , Q�2) values and executes inner runs according
to this sorted order. When an inner run is executed with parameter values (q�1 , Q�2),
the outer loop lets it execute for T (q�1 , Q�2) iterations. If it terminates due to the
stopping conditions being satisfied within this number of iterations, then by Theorem 6
the solution x(λ) produced satisfies ‖Ax(λ)−b‖ ≤ ε‖b‖, and so the outer loop outputs
this solution. On the other hand, if the stopping conditions for the inner run are not
satisfied within the allotted number of iterations, the outer loop terminates the inner
run, and then executes the next inner run with new parameter values according to
the order induced by T (q�1, Q�2).

By the choice of q�1 and Q�2 , there exist q�∗1 and Q�∗2 such that q/2 ≤ q�∗1 ≤ q and
Q ≤ Q�∗2 ≤ 2Q. For the parameter pair (q�∗1 , Q�∗2), T (q�∗1 , Q�∗2) is, up to constant fac-
tors, the bound in Theorem 6. Hence, when the outer loop reaches the pair (q�∗1 , Q�∗2),
the corresponding inner run will terminate with the stopping conditions satisfied in
the number of iterations specified in Theorem 6. Since the inner runs executed prior
to this one will also be terminated in at most this number of iterations, and there are
at most log2 U such runs, we obtain the following upper bound on the total number
of iterations executed by the algorithm.

Lemma 8. The total number of iterations executed in all the inner runs initiated
by the outer loop is

O

(
R2 log

(
p
(
λ0
)

ε‖b‖

)
log2 U

)
.

In an iteration k of an inner run, the nodes must compute an estimate ŝk−1
j for

each of the m components of the vector sk−1. As such, the summation routine must
be invoked m times in each iteration. When the error probability δ satisfies δ ≤ 1/n,
the summation algorithm in [8] computes an estimate satisfying (6) with probability
at least 1 − δ in O(ε−2

1 log2 δ−1/Φ(P)) time, where Φ(P) is the conductance of a
doubly stochastic matrix P that determines how nodes communicate with each other.
We assume here that the nodes have an upper bound N on the number of nodes in
the network, and a lower bound φ on Φ(P). (If necessary, the trivial lower bound
Ω(1/N2) can be used for the latter parameter.) Using these bounds, the nodes can
terminate the summation algorithm in O(ε−2

1 log2 δ−1/φ) time with an estimate ŝk−1
j

such that the probability that (6) is not satisfied is at most δ.
Given Lemma 8 and the fact that there are m summation computations per itera-

tion, to ensure that every summation computation satisfies (6) with high probability,
it suffices to set

δ ≤
(
N2mR2 log

(
p
(
λ0
)

ε‖b‖

)
log2 U

)−1

.

By setting δ within a constant factor of this upper bound, and using the fact that
ε1 = εα/3 = ε/(18R), we conclude that one invocation of the summation subroutine
will run in

O

⎛
⎝ R2

ε2φ

(
log

(
NmR log

(
p
(
λ0
)

ε‖b‖

)
logU

))2
⎞
⎠

time. Combining this with Lemma 8 yields the following upper bound on the total
running time of the algorithm.

18 D. MOSK-AOYAMA, T. ROUGHGARDEN, AND D. SHAH

Theorem 9. The algorithm produces a solution x(λ) that satisfies ‖Ax(λ)−b‖ ≤
ε‖b‖ and the objective function value bound in Corollary 7 with high probability in a
total running time of

O

⎛
⎝mR4

ε2φ
log

(
p
(
λ0
)

ε‖b‖

)
log2 U

(
log

(
NmR log

(
p
(
λ0
)

ε‖b‖

)
logU

))2
⎞
⎠ .

6. Extension to linear inequalities. The algorithm we have presented for
the primal problem (P) can be adapted to handle problems with linear inequalities
of the form Ax ≤ b. Our first step is to rewrite the inequalities as equalities by
introducing slack variables zj for the constraints. The slack variables are constrained
to be nonnegative, and so the Lagrange dual function now has an additional vector
of dual variables corresponding to these constraints on the slack variables. Also, the
infimum in the definition of the Lagrange dual function is now taken over the slack
variables z as well as the primal variables x. To ensure that the infimum is finite, we
introduce an additional term ψ(z) =

∑m
j=1 ψj(zj) into the objective function for the

slack variables. The functions ψj must satisfy the same technical conditions as the
functions fi. An example of a natural choice of ψj(zj) is a quadratic function in zj .

We introduce logarithmic barriers for the nonnegativity constraints on both the
primal and the slack variables to obtain the primal barrier problem

minimize f(x)− θ
n∑

i=1

lnxi + ψ(z)− θ
m∑

j=1

ln zj

subject to Ax+ z = b.

The corresponding Lagrange dual function gθ has the gradient

∇gθ(λ) = Ax(λ) + z(λ)− b,
where z(λ) is the vector defined by

zj(λ) = arg inf
zj∈R++

(ψj(zj)− θ ln zj + λjzj)

for all j = 1, . . . ,m.
In the basic algorithm, the nodes now perform gradient ascent for the new dual

barrier problem. Computation of the gradient in each iteration requires the nodes to
compute the vector z

(
λk−1

)
for the current dual vector λk−1. This can be accom-

plished by each node if it is given the functions ψj for all j. The stopping conditions
that the nodes check to determine whether the approximate feasibility guarantee is
satisfied are modified to account for the additional term z(λ) in the gradient.

When an inner run terminates with a solution x(λ) such that ‖Ax(λ)+z(λ)−b‖ ≤
ε‖b‖, the corresponding approximate feasibility bound for the inequality constraints
is ‖v(x(λ))‖ ≤ ε‖b‖, where the vector v is defined by vj(x(λ)) = max((Ax(λ))j−bj, 0)
for all j = 1, . . . ,m. The addition of the ψ(z) term to the primal objective function
leads to further error in the approximate guarantee on the value of f(x(λ)) relative
to OPT, although this error can be made small by appropriate choice of the functions
ψj . Choosing the functions ψj to minimize this error will affect the running time of
the algorithm, however, because the definitions of the curvature variation parameters
q and Q now have additional terms that account for variation in the curvature of the
ψj functions.

DISTRIBUTED ALGORITHMS FOR CONVEX OPTIMIZATION 19

7. Discussion. We presented a randomized, distributed algorithm with a poly-
nomial running time for solving a convex minimization (or concave maximization)
problem with a separable convex objective function and linear constraints. The
key contribution lies in making the existing dual-decomposition-based algorithm dis-
tributed with respect to the communication network graph rather than the constraint
network graph. The analysis presented here could be of interest in many other con-
texts. For example, we strongly believe that it can be adapted to recover most of
the known results on convergence bounds for a class of stochastic gradient algorithms
with varying step size.

The algorithm presented here requires some amount of synchronization to select
the correct step size. Removing this synchronization and thus making the algorithm
asynchronous could be an interesting direction for future research.

Appendix. Description of summation subroutine. For completeness, we
describe the summation subroutine from [8] used by the algorithm in this paper.
Suppose that, for a subset of nodes D ⊆ V , each node i ∈ D has a number yi > 0. The
nodes wish to compute y =

∑
i∈D yi. Each node i ∈ D generates a random variable

W i (independently of the other nodes) that is distributed according to the exponential
distribution with rate yi (mean 1/yi). The approximate summation algorithm is based
on the following property of exponential random variables.

Proposition 10. The random variable

W̄ = min
i∈D

W i

is distributed as an exponential random variable of rate y.
This suggests that 1/W̄ is a reasonable estimate of y. To reduce the variance of

the estimate, the nodes repeat this procedure c times, where c is an integer parameter,
and average the results. That is, each node i ∈ D generates independent exponential
random variables W i

1 , . . . ,W
i
c , the nodes compute W̄� = mini∈D W i

� for � = 1, . . . , c,
and each node outputs

ŷ =
c∑c

�=1 W̄�

as an estimate of y.
To compute the minima W̄�, the nodes use a gossip algorithm, which proceeds

in a sequence of rounds. Each node i maintains a collection of numbers Ŵ i
1 , . . . , Ŵ

i
c ,

where Ŵ i
� is an estimate of W̄� for � = 1, . . . , c. Initially, Ŵ i

� = W i
� if i ∈ D, and

Ŵ i
� = ∞ otherwise. In any round, each node i contacts a neighbor j in the graph

with probability Pij , so the communication pattern is described by a stochastic n×n
matrix P . When two nodes i and j communicate, they update their estimates of W̄�

according to

Ŵ i
� , Ŵ

j
� ← min(Ŵ i

� , Ŵ
j
�)

for � = 1, . . . , c. In any round, node i uses its estimates Ŵ i
� of W̄� to compute an

estimate

ŷi =
c∑c

�=1 Ŵ
i
�

of y.

20 D. MOSK-AOYAMA, T. ROUGHGARDEN, AND D. SHAH

The summation algorithm takes as accuracy parameters two inputs ε1 ∈ (0, 1)
and δ ∈ (0, 1). When c = Θ(ε−2

1 (1+ log δ−1)) and P is doubly stochastic, the amount
of time required for the estimates of the nodes to achieve an accuracy of (1 ± ε1) is
bounded as follows. Let

Φ(P) = min
S⊂V,0<S≤n/2

∑
i∈S,j �∈S Pij

|S|
be the conductance of the matrix P .

Theorem 11 (see [8]). After

O

(
ε−2
1

(
1 + log δ−1

)(logn+ log δ−1

Φ(P)

))

time, the probability that the estimate ŷi of any node i is not in [(1− ε1)y, (1 + ε1)y]
is at most δ.

REFERENCES

[1] Y. Bartal, J. W. Byers, and D. Raz, Fast, distributed approximation algorithms for pos-
itive linear programming with applications to flow control, SIAM J. Comput., 33 (2004),
pp. 1261–1279.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, 2nd ed., Prentice-Hall, Upper Saddle River, NJ, 1989.

[3] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cam-
bridge, UK, 2004.

[4] R. G. Gallager, A minimum delay routing algorithm using distributed computation, IEEE
Trans. Comm., 25 (1977), pp. 73–85.

[5] N. Garg and N. E. Young, On-line end-to-end congestion control, in Proceedings of the 43rd
Annual Symposium on Foundations of Computer Science, IEEE Computer Society, Los
Alamitos, CA, IEEE, Washington, DC, 2002, pp. 303–312.

[6] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, Rate control for communication networks:
Shadow prices, proportional fairness and stability, J. Oper. Res. Soc., 49 (1998), pp. 237–
252.

[7] M. Luby and N. Nisan, A parallel approximation algorithm for positive linear programming,
in Proceedings of the 25th Annual ACM Symposium on Theory of Computing, ACM, New
York, 1993, pp. 448–457.

[8] D. Mosk-Aoyama and D. Shah, Fast distributed algorithms for computing separable functions,
IEEE Trans. Inform. Theory, 54 (2008), pp. 2997–3007.

[9] C. H. Papadimitriou and M. Yannakakis, Linear programming without the matrix, in Pro-
ceedings of the 25th Annual ACM Symposium on Theory of Computing, ACM, New York,
1993, pp. 121–129.

[10] R. T. Rockafellar, Network Flows and Monotropic Optimization, John Wiley & Sons, New
York, 1984.

[11] R. Srikant, The Mathematics of Internet Congestion Control (Systems and Control: Foun-
dations and Applications), Birkhäuser Boston, Boston, 2004.

