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Generalized Efficiency Bounds In Distributed Resource Allocation

Jason R. Marden Tim Roughgarden

Abstract—Game theory is emerging as a popular tool for dis-
tributed control of multiagent systems. To take advantage of these
game theoretic tools, the interactions of the autonomous agents
must be designed within a game-theoretic environment. A central
component of this game-theoretic design is the assignment of a
local utility function to each agent. One promising approach to
utility design is assigning each agent a utility function according
to the agent’s Shapley value. This method frequently results in
games that possess many desirable features, such as the existence
and of pure Nash equilibria with near-optimal efficiency. In
this paper, we explore the relationship between the Shapley
value utility design and the resulting efficiency of both pure
Nash equilibria and coarse correlated equilibria. To study this
relationship, we introduce a simple class of resource allocation
problems. Within this class, we derive an explicit relationship
between the structure of the resource allocation problem and the
efficiency of the resulting equilibria. Lastly, we derive a bicriteria
bound for this class of resource allocation problems — a bound
on the value of the optimal allocation relative to the value of an
equilibrium allocation with additional agents.

I. INTRODUCTION

Resource allocation is a fundamental problem that arises in
many application domains ranging from the social sciences
to engineering [2]–[7]. One example is the problem of rout-
ing information through a shared network, where the global
objective is to minimize average delay [7]. An alternative
example is the problem of allocating sensors to a given mission
space where the global objective is to maximize coverage area
[6]. Regardless of the specific application domain, the central
objective is always the same: allocate resources to optimize a
given global objective.

Research has focused on both centralized and distributed
approaches for resource allocation [2], [5], [8]–[13]. In this
paper, we study distributed algorithms for resource allocation
in large-scale engineering systems, where a centralized control
approach is undesirable or even infeasible. For example, a
centralized control approach may be impossible for the afore-
mentioned sensor allocation problem, due to the complexity
associated with a potentially large number of sensors, the
vastness/uncertainty of the mission space, or potential stealth
requirements that restrict communication capabilities. A more
desirable control approach is to establish a distributed control
algorithm that allows the sensors to allocate themselves ef-
fectively over the mission space without the need for global
intervention [14], [15]. Such an algorithm would eliminate the
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need for centralized communication and introduce an inherent
robustness to communication failures, sensor failures, and
environmental uncertainties. While desirable, establishing such
a distributed control algorithm comes with its share of chal-
lenges. Is it possible to characterize the global behavior that
results from the interactions of a large group of autonomous
agents each acting independently in response to its own local
information? How can we coordinate the agents behavior to
ensure that the emergent global behavior is desirable? What
do we give up in terms of efficiency when we transition from
a centralized to a distributed control approach?

A popular tool for distributed resource allocation is game
theory [11]–[13], [16]–[18]. Game theory is a well-established
discipline in the social sciences used for describing the emer-
gent global behavior in social systems such as traffic networks,
social networks, and auctions. More generally, “Game theory
is a bag of analytical tools designed to help us understand
the phenomena that we observe when decision-makers inter-
act” [19]. The appeal of applying game-theoretic tools to
distributed engineering systems stems from the fact that the
underlying decision-making architecture in social systems and
the desired decision-making architecture in distributed engi-
neering systems can be analyzed using the same mathematical
tools. Furthermore, the field of game theory provides a vast
array of tools that are extremely valuable for the design and
control of distributed engineering systems [20]–[22].

To take advantage of these game theoretic tools for dis-
tributed engineering systems, the interactions of the au-
tonomous agents must be designed within a game-theoretic
environment. This means that the system designer must specify
the following elements: (i) the set of decision-making agents,
(ii) a set of actions for each agent, and (iii) a local utility
function for each agent. While specifying the agents and their
respective actions can be relatively straightforward, assigning
local utility functions is somewhat more opaque. There are
many pertinent issues that need to be considered when design-
ing the agents’ utility functions including scalability, locality,
tractability, and efficiency of the resulting stable solutions [16].

It is worth contrasting utility design with the well-developed
field of economic mechanism design (e.g., [23]), which shares
the goal of designing games in which self-interested behaviour
leads to a desirable outcome. First, the primary challenge
of economic mechanism design — the incentive-compatible
elicitation of private preferences — is not relevant for utility
design. For example, in a single-item auction, the willingness
to pay of each bidder is a priori unknown, and the point
of an auction is to determine who is willing to pay the
most. By contrast, the point of utility design is to define the
preferences of agents (i.e., programmable components) so that
“self-interested” behavior in the resulting game leads to a good
outcome. Second, the primary challenge of utility design for
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decentralized systems — the lack of centralized control —
is not relevant in traditional mechanism design. For example,
in mechanism design it is usually assumed that the designer
can centrally allocate resources and select the most favorable
of many equilibria. These two fundamental differences render
most techniques of mechanism design unsuitable for the
decentralized control problems studied here.

To highlight the challenges inherent in utility design for
distributed engineering systems, we now introduce the well-
studied vehicle target assignment problem [24].

A. An Illustrative Example: The Vehicle Target Assignment
Problem

The vehicle target assignment problem consists of a finite
set of targets (or resources) denoted by R and each target
(or resource) r ∈ R has a relative worth vr ≥ 0 [24]. There
are a finite number of vehicles (or agents) denoted by N =
{1, 2, . . . , n}. The set of possible assignments for vehicle i
is Ai ⊆ 2R and A =

∏
i∈N Ai represents the set of joint

assignments. In general, the structure of A is not available
to a system designer a priori. Lastly, each vehicle i ∈ N
is parameterized with an invariant success probability 1 ≥
pi ≥ 0 that indicates the probability vehicle i will successfully
eliminate a target r given that r ∈ ai. The benefit of a subset
of agents S ⊆ N , S 6= ∅, being assigned to a target r is

Wr(S) = vr

(
1−

∏
i∈S

[1− pi]

)
, (1)

where
(
1−

∏
i∈S [1− pi]

)
represents the joint probability of

successfully eliminating target r. Accordingly, the goal of the
vehicle target assignment problem is to find a joint assignment
a ∈ A that maximizes the system level objective

W (a) =
∑

r∈R:{a}r 6=∅

Wr ({a}r) , (2)

where {a}r = {i ∈ N : r ∈ ai}.
In this paper we focus on the design of utility functions for

the individual vehicles to ensure both the existence and the
near-optimal efficiency of pure Nash equilibria.

One obvious choice is to assign each vehicle a utility
function in accordance with the system level objective, i.e.,
we could define the utility of every vehicle i ∈ N for an
assignment a ∈ A as

Ui(a) = W (a). (3)

This choice ensures that the optimal action profile is a pure
Nash equilibrium. However, an agent cannot even evaluate its
own utility unless it knows the entire assignment vector a.
These severe informational demands on the individual agents
preclude using such utility functions in the motivating appli-
cation.

Accordingly, it is more desirable to assign each agent a
utility function that depends only local information, meaning
information pertaining to the targets that the individual vehicle
is assigned to. The next obvious idea is to adapt system
objective utility functions to satisfy this locality constraint.
This can be done using the marginal contribution utility [16],

[25], which has the following form: for every agent i ∈ N
and every allocation a ∈ A

UMC
i (a) =

∑
r∈ai

(Wr ({a}r)−Wr ({a}r \ {i})) . (4)

The marginal contribution utility also ensures that the optimal
action profile is a pure Nash equilibrium. Unfortunately, there
are generally additional Nash equilibria that are suboptimal. In
a decentralized setting, it is not clear how to justify selecting
one Nash equilibrium over another, and it is therefore ideal to
have guarantees for all Nash equilibria.1

A second class of utility functions that satisfies these
informational restrictions is the Shapley value utility [16], [30],
[31], which has the following form: for every agent i ∈ N and
every allocation a ∈ A

USV
i (a) = (5)∑
r∈ai

∑
T⊆{a}r\{i}

|T |!(|S| − |T | − 1)!
|S|!

(Wr(T ∪ {i})−Wr(T )) .

The Shapley value utility also guarantees the existence of a
pure Nash equilibrium; however, the optimal allocation is not
guaranteed to be a pure Nash equilibrium as was the case with
the marginal contribution utility. It is currently unresolved as
to whether the Shapley value or marginal contribution utility
provides better worst-case efficiency guarantees.

In this paper we focus on deriving efficiency bounds for
the Shapley value utility for a simplified class of resource
allocation problems described in Section I-B. Our motivation
for considering the Shapley value utility, as opposed to the
marginal contribution utility, is that the worst-case efficiency
guarantees for the marginal contribution utility are often worse
than those for the Shapley value utility (as we show in
Example 2). Our results will characterize how the structure
of the welfare functions impacts the efficiency of the resulting
equilibria. Before formally stating our results, we introduce
our model to make our contributions more clear.

B. Preliminaries: Model and Definitions

We consider the class of resource allocation problems where
there is a set of agents N = {1, ..., n} and a finite set of
resources R = {r1, ..., rm} that are to be shared by the
agents. Each agent i ∈ N is capable of selecting a single
resource from a set Ai ⊆ R. An action profile, or allocation, is
represented by an action tuple a = (a1, a2, ..., an) ∈ A where
the set of action profiles is denoted by A = A1×· · ·×An. We
restrict our attention to the class of separable and anonymous
welfare functions of the form

W (a) =
∑
r∈R

Wr (|a|r)

where |a|r = |{i ∈ N : ai = r}| is the number of agents that
selected resource r in the allocation a and Wr : {0, 1, ..., n} →

1There are distributed learning rules that often provide probabilistic con-
vergence to these best case Nash equilibria, e.g., log linear learning [26]–
[29]. However, the convergence rates associated with such rules is either
uncharacterized or has been shown to be exponential in the game size in
general resource allocation problems [26].
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R+ is the anonymous welfare function for resource r; hence,
the welfare generated at a particular resource depends only
on the number of players using that resource. We restrict our
attention to submodular welfare functions {Wr(·)}r∈R, i.e.,
each welfare function Wr(·) satisfies the following conditions:
(i) positive, i.e., Wr(k) ≥ 0 for all k ≥ 0, (ii) non-decreasing,
i.e., Wr(k) ≥Wr(k−1) for all k ≥ 1 and (iii) have decreasing
marginal returns, i.e., Wr(k)−Wr(k−1) ≥Wr(k+1)−Wr(k)
for all k ≥ 1.2 In general a system designer would like to find
an allocation that optimizes the system welfare

aopt ∈ arg max
a∈A

W (a).

As highlighted above, we focus on game theory as a tool
for obtaining distributed solutions to such resource allocation
problems. We model the interactions of the agents as a
strategic form game where the agent set is N , the action set
of each agent is Ai, and each agent is assigned the Shapley
value utility function given in (5). In the case of anonymous
welfare functions, the Shapley value utility simplifies to an
equal share utility, i.e.,

Ui(ai = r, a−i) =
1
|a|r

Wr(|a|r) (6)

where a−i = {a1, . . . , ai−1, ai+1, . . . , an} denotes the collec-
tion of action of all players other than player i. The Shapley
value utility in (6) ensures that the resulting game is an
instance of a congestion game; therefore, a pure Nash equilib-
rium is guaranteed to exist [34].3 This is true irrespective of the
agent set N , the resource set R, the action sets {Ai}i∈N , and
the welfare functions {Wr}r∈R. However, there are no general
results characterizing the efficiency of the Nash equilibria that
result from using the Shapley value utility design.

The focus of this paper is purely on understanding the
efficiency of the resulting Nash equilibria when utilizing
the Shapley value utility design in (6). To that end, de-
fine a single selection anonymous resource allocation game
with the Shapley value utility design by the tuple G =
{N,R, {Wr}r∈R, {Ai}i∈N , {Ui}i∈N} and let G be the the
entire class of such games. Note that we include {Ui}i∈N in
the tuple even though the agents’ utility functions are derived
explicitly from the welfare functions {Wr}r∈R as given in
(6). We use the worst case measure of the price of anarchy
(PoA) to measure the efficiency of equilibria [35]. Informally,
the price of anarchy provides an upper bound on the ratio
between the performance of an optimal allocation aopt and a
Nash equilibrium ane. More formally, the price of anarchy is
defined as

PoA = sup
G∈G

(
max
ane∈G

W (aopt;G)
W (ane;G)

)
Therefore, our definition implies that the price of anarchy
will always be greater than or equal to 1. According to our

2Submodularity corresponds to a notion of decreasing marginal returns and
is a common feature of many system-level objective functions for engineering
applications ranging from content distribution [32] to coverage problems [33].

3An action profile a ∈ A is a pure Nash equilibrium if for every agent
i ∈ N we have Ui(ai, a−i) = maxa′

i
∈Ai

Ui(a
′
i, a−i). We will commonly

express a pure Nash equilibrium as just a Nash equilibrium.

definition, a 50% efficiency guarantee would correspond to a
price of anarchy of 2. Defining the price of anarchy in this
fashion will be convenient for the upcoming analysis.

C. Our Results

Our first result focuses on bounding the efficiency of pure
Nash equilibria in the setting where the agents are symmetric.
By symmetric, we mean that the action set of each agent is
identical, i.e., Ai = Aj . Within this setting, in Theorem 2 we
prove that given n agents the price of anarchy relative to pure
Nash equilibria is of the form

W (aopt)
W (ane)

≤ 1 + max
r∈R, k≤m≤n

{
Wr(k)
Wr(m)

− k

m

}
. (7)

Accordingly, (7) provides a systematic methodology for com-
puting a price of anarchy for a specific resource allocation
problem by exploiting the structure of the objective functions
Wr. As we will show in Example 1, this characterization
will lead to significant improvements over the 50% efficiency
guarantees presented in [16], [36].

Our second result focuses on bounding the efficiency of a
broader class of equilibria, termed coarse correlated equilibria,
in the setting where the agents are asymmetric. By asymmetric,
we mean that the agents’ action sets need not be identical, i.e.,
Ai 6= Aj . Here, a coarse correlated equilibrium is represented
by a distribution over the joint action set, i.e., zcce ∈ ∆(A)
where ∆(A) denotes the simplex over the finite joint action
set A.4 The performance associated with a coarse correlated
equilibrium is taken as the expected value of the welfare.
Obviously, by considering a broader setting with a broader
set of equilibria the price of anarchy can only degrade over
the characterization presented in (7). Within this setting, in
Theorem 6 we prove that given n agents the price of anarchy
relative to coarse correlated equilibria, i.e., a bound on the
ratio W (aopt)

W (zcce) , is bounded above by

1+max

 max
r∈R,k≤m≤n

(
Wr(k)
Wr(m)

−
(

max{m+k−n,0}+min{n−m,k}·β̃r(m)
m

))
,

max
r∈R,k≤m≤n

(
1−
(

max{k+m−n,0}+min{n−m,k}·β̃r(k)
k

))
,

(8)
where

β̃r(m) =
m

m+ 1
Wr(m+ 1)
Wr(m)

.

To highlight the implications of the characterizations pre-
sented in Theorems 2 and 6 we consider the following exam-
ple.

Example 1 Consider a resource allocation problem where
each resource rj ∈ R has a submodular objective of the form
Wrj (x) = xdj where dj ∈ [0, 1]. Without loss of generalities
let 0 ≤ d1 ≤ ... ≤ dn ≤ 1. Suppose each agent i ∈ N
is assigned a utility function according to the Shapley value
as in (6). Figure 1 highlights the price of anarchy for both
the symmetric and asymmetric settings as a function of d1

where d1 varies between [0, 1] when there are 100 agents.
The price of anarchy is always bounded by 2; however, as

4We will formally define coarse correlated equilibria in Section III.
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Fig. 1. Consider the resource allocation problem depicted in Example 1 where
each resource rj ∈ R has a submodular objective of the form Wrj (x) = xdj

where dj ∈ [0, 1] and each agent i ∈ N is assigned a utility function in
accordance with the Shapley value as in (6). Without loss of generality let
0 ≤ d1 ≤ ... ≤ dn ≤ 1. This figure highlights the price of anarchy for
both the symmetric and asymmetric settings as a function of d1 where d1
varies between [0, 1]. There are 100 agents. The price of anarchy is always
bounded by 2; however, as d1 → 1, i.e., the objective functions become
closer to linear, the price of anarchy approaches 1. Notice that the price of
anarchy for the asymmetric setting is higher than the price of anarchy for the
symmetric setting as expected.

d1 → 1, i.e., the objective functions become closer to linear,
the price of anarchy approaches 1. Is is important to highlight
that the values of d2, . . . , dn do not impact the price of
anarchy guarantees. This example illustrates that the structure
of the welfare function plays a prominent role in bounding the
efficiency of either pure Nash equilibria or coarse correlated
equilibria. Notice that the price of anarchy for the asymmetric
setting is higher than the price of anarchy for the symmetric
setting as expected.

A natural question is whether the Shapley value utility
design provides better efficiency guarantees over the marginal
contribution design. The following example illustrates that this
is indeed the case for certain classes of resource allocation
problems.

Example 2 Consider the resource allocation problem de-
picted in Example 1 where the welfare function associate with
each resource r ∈ R is of the form Wr(x) = cr · x0.5 where
cr ≥ 0. The marginal contribution utility is of the form

UMC
i (ai = r, a−i) = Wr(|a|r)−Wr(|a|r − 1).

Consider a specific resource allocation problem with player
set N = {1, 2}, resource set R = {r1, r2, r3}, action sets
A1 = {r1, r2} and A2 = {r2, r3}, and resource specific
coefficients cr1 = cr2 = 1 and cr3 =

√
2 − 1. The optimal

allocation for this setup is aopt = (a1 = r1, a2 = r2) which
yields a total welfare of 2. Under the marginal contribution
utility, it is straightforward to verify that there exists a pure
Nash equilibrium of the form ane = (a1 = r2, a2 = r3)
which yields a total welfare of

√
2. Accordingly, for this

specific example we have that W (aopt)/W (ane) = 1.412.
Note that this exceeds the price of anarchy bound guarantees

associated with the Shapley value for such scenarios which
is approximately 1.3 (see Figure 1). Consequently, this proves
that the Shapley value utility provides strictly better efficiency
guarantees over the marginal contribution utility for this
example. It is also important to highlight that this conclusion
can be verified for all d ∈ [0, 1] using this same example where
cr3 = 2d − 1. It remains an open question as to whether the
Shapley value utility provides stronger efficiency guarantees
for all welfare functions.

Our second set of results focus on establishing bicriteria
bounds, which we also refer to as the relative price of anarchy,
for both the symmetric and asymmetric settings. By bicriteria
bounds, we mean a bound on the value of the optimal
allocation relative to the value of an equilibrium allocation
with additional agents.

Bicriteria bounds are useful for weighing the relative
cost/benefit of improving system behavior through (i) advance-
ments in the underlying control design or (ii) introducing
additional agents to the system. In particular, a bicriteria bound
permits us to explore the tradeoff between the computational
expense associated with more sophisticated dynamics for
equilibrium selection, such as log-linear learning [27]–[29],
and the physical cost associated with adding more agents to
our system.

For the symmetric setting, in Theorem 3 we prove that
given ln players in a pure Nash equilibrium and n players
in a optimal allocation where l ∈ {1, 2, . . . }, the relative price
of anarchy (or bicriteria bound), i.e., a bound on the ratio
W (aopt;n)
W (ane;ln) , is bounded above by

max
{

1,
1
l

+ max
r∈R, k≤m≤ln

(
Wr(k)
Wr(m)

− k

m

)}
. (9)

It is important to highlight that this bound is not tight and just
provides an upper bound on the ratio W (aopt;n)/W (ane; ln).
For the asymmetric setting, in Theorem 8 we prove that given
ln players in a coarse correlated equilibrium and n players in
a optimal allocation where l ∈ {1, 2, . . . }, the relative price
of anarchy (or bicriteria bound), i.e., a bound on the ratio
W (aopt;n)
W (zcce;ln) , is bounded above by

1/l+max

 max
r∈R,k≤min{m1,n},m1≤ln

(
Wr(k)
Wr(m1)

− k
m1+1

Wr(m1+1)
Wr(m1)

)
,

max
r∈R,m2≤ln

(
1− m2

m2+1
Wr(m2+1)
Wr(m2)

)
.

(10)
Note that the bicriteria bound for pure Nash equilibria given

in (9) is always greater than or equal to 1; hence, this bound
cannot be used to determine the number of additional agents
necessary for the Nash equilibrium associated with ln agents
to offer a strict improvement over the performance of the
optimal allocation with n agents. On the other hand, the
bicriteria bound for coarse correlated equilibria given in (10)
may attain values less than 1. Since the price of anarchy
associated with coarse correlated equilibria must be greater
than or equal to the price of anarchy associated with pure Nash
equilibria, the bound given in (10) can be used to strengthen
the bound given in (9) by providing a characterization of
the price of anarchy when values are less than 1. Figure 2
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Fig. 2. Consider the resource allocation problem depicted in Example 1 where
each resource rj ∈ R has a submodular objective of the form Wrj (x) =

xdj where dj ∈ [0, 1] and each agent i ∈ N is assigned a utility function
in accordance with the Shapley value. Without loss of generality let 0 ≤
d1 ≤ ... ≤ dn ≤ 1. This figure highlights the relative price of anarchy
for both the symmetric and asymmetric settings as a function of d1, where
d1 varies between [0, 1]. There are 100 agents when l = 2 and l = 3.
The blue lines indicate the relative price of anarchy for pure Nash equilibria
and symmetric agents given in Theorem 3 while the green lines indicate the
relative price of anarchy for coarse correlated equilibria and asymmetric agents
given in Theorem 8. Note that the relative price of anarchy associated with the
symmetric setting is always less than the price of anarchy associated with the
asymmetric setting as expected. However, the gap between the two bounds
is relatively small. Furthermore, both bounds ensure that the performance
associated with equilibrium behavior matches optimal behavior for certain
ranges of d1. For example, when l = 2, performance associated with a pure
Nash equilibrium matches optimal behavior for d1 ≥ 0.23 while performance
associated with a coarse correlated equilibrium matches optimal behavior for
d1 ≥ 0.25.

illustrates these bounds on the resource allocation problem
given in Example 1.

Lastly, in Section IV we conclude the paper with a detailed
study of these bounds on the well-studied vehicle target
assignment problem [24] which represents a special class of
the resource allocation problems discussed in this paper.

II. THE SYMMETRIC CASE

In this section, we focus on deriving efficiency bounds for
pure Nash equilibria in the above class of resource allocation
problems with symmetric agents. By symmetric, we mean that
each agent’s action set is identical, i.e., Ai = R for all i ∈ N .
We consider asymmetric agents in Section III.

A. Review of Valid Utility Games

We begin by reviewing the results in [36] pertaining to valid
utility games. A valid utility game is any game which satisfies
the conditions set forth in the following theorem.

Theorem 1 (Vetta, 2002 [36]) Consider a game with agents
N , action sets {Ai}i∈N , utility functions {Ui}i∈N , and a
global objective W : A → R+. Suppose the following
conditions are satisfied:

(i) The global objective W is submodular.5

(ii) For every agent i ∈ N and action profile a ∈ A we
have Ui(a) ≥W (a)−W (∅, a−i) where ∅ represents the
“null” action.6

(iii) For every action profile a ∈ A the agents’ utility functions
satisfy

∑
i∈N Ui(a) ≤W (a).

Then if a pure Nash equilibrium exists the price of anarchy is
2.

B. Bounding the Efficiency of Pure Nash Equilibria

It is straightforward to show that every single selec-
tion anonymous resource allocation game with submodular
resource-specific welfare functions and the Shapley value
utility design satisfies Conditions (i)–(iii) in Theorem 1 [16].
Hence, Theorem 1 ensures that the price of anarchy is at most
2 irrespective of the number of resources or the number of
players. The central question that we explore in this section
is whether this price of anarchy of 2 is tight. It turns out that
we can significantly sharpen this price of anarchy bound by
taking into account the structure of the welfare function and
the number of agents as shown in the following theorem.

Theorem 2 Consider any anonymous single selection re-
source allocation game with n agents, symmetric action sets,
the Shapley value utility design, and submodular welfare
functions. The price of anarchy associated with pure Nash
equilibria is bounded above by

W (aopt)
W (ane)

≤ 1 + max
r∈R, k≤m≤n

{
Wr(k)
Wr(m)

− k

m

}
. (11)

Proof: Let ane and aopt represent a Nash equilibrium and
an optimal allocation respectively. For notational simplicity,
define |ane| = {x1, ..., xm} and |aopt| = {y1, ..., ym}. Let zr

denote the number of agents that select resource r in both ane

and aopt, i.e.,

zr =
∣∣{i ∈ N : ane

i = r} ∩
{
i ∈ N : aopt

i = r
}∣∣ .

Note that zr ≤ min{xr, yr} for all resources r ∈ R.
We begin with a fairly generic derivation. First, we utilize

the fact that the Shapley value utility is budget-balanced, i.e.,
W (a) =

∑
i∈N Ui(a) for any action profile a ∈ A, and the

fact that ane is a Nash equilibrium to derive the following

W (ane) =
∑
i∈N

Ui(ane
i , a

ne
−i),

≥
∑
i∈N

Ui(a
opt
i , ane

−i),

=
∑
r∈R

zr
Wr(xr)
xr

+ (yr − zr)
Wr(xr + 1)
xr + 1

.

(12)

5A global objective function W is submodular if for any action profile
a ∈ A, agent sets S ⊆ T ⊆ N , and agent i ∈ N we have W (aS∪{i}) −
W (aS) ≥W (aT∪{i})−W (aT ) where aS = {ai : i ∈ S}. Here, we use
the shorthand notation aS to describe the action profile a = (aS , {∅}j /∈S),
i.e., all players j /∈ S selected the null action.

6Alternative, a player’s utility is always greater than or equal to the player’s
marginal contribution to the global objective W .
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Let R1 and R2 denote the resources on which xr ≥ yr and
xr < yr, respectively. Focusing on the second set of terms in
(12), we have that for any resource r ∈ R2

(yr − zr)
Wr(xr + 1)

xr + 1

= (xr − zr)
Wr(xr + 1)

xr + 1
+ (yr − xr)

Wr(xr + 1)

xr + 1
,

≥ (xr − zr)
Wr(xr + 1)

xr + 1
+ (yr − xr) (Wr(xr + 1)−Wr(xr)) ,

≥ (xr − zr)
Wr(xr + 1)

xr + 1
+Wr(yr)−Wr(xr),

where the second and third steps result from the discrete
concavity of Wr. Therefore∑

r∈R2

(yr − zr)
Wr(xr + 1)

xr + 1

≥
∑
r∈R2

(
(xr − zr)

Wr(xr + 1)

xr + 1
+Wr(yr)−Wr(xr)

)
,

= W (aopt)−
∑
r∈R1

Wr(yr)

+
∑
r∈R2

(
(xr − zr)

Wr(xr + 1)

xr + 1
−Wr(xr)

)
,

where the equality results from adding and subtracting∑
r∈R1

Wr(yr). Plugging into (12) and simplifying gives us

W (ane) ≥W (aopt) +∑
r∈R1

(
zr
Wr(xr)

xr
+ (yr − zr)

Wr(xr + 1)

xr + 1
−Wr(yr)

)
+

∑
r∈R2

(
zr
Wr(xr)

xr
+ (xr − zr)

Wr(xr + 1)

xr + 1
−Wr(xr)

)
. (13)

Since the players are symmetric, this means that each player
i ∈ N can select any resource r ∈ R. Therefore, permuting
the players in the optimal allocation aopt is well-defined
and yields another optimal solution. Thus, for every pure
Nash equilibrium ane, we can choose the optimal allocation
aopt such that, for every resource r ∈ R, there is a set
of min{xr, yr} players that use r in both ane and aopt.
Accordingly, for every resource r ∈ R1 we have zr = yr

and for every resource r ∈ R2 we have zr = xr. Therefore,
after the appropriate cancellations, (13) simplifies to

W (ane) ≥ W (aopt) +
∑

r∈R1

(
yr
Wr(xr)
xr

−Wr(yr)
)
,

= W (aopt)−
∑

r∈R1

Wr(xr)
(
Wr(yr)
Wr(xr)

− yr

xr

)
.

(14)

Define

γ(n) = max
r∈R, k≤m≤n

(
Wr(k)
Wr(m)

− k

m

)
. (15)

Substituting (15) into (14) gives us

W (ane) ≥ W (aopt)− γ(n)
∑

r∈R1

Wr(xr)

≥ W (aopt)− γ(n)W (ane).

Finally, rearranging shows that

W (aopt)
W (ane)

≤ 1 + γ(n).

The value of Theorem 2 is that it provides a systematic
method for establishing a price of anarchy by identifying the
situation that gives rise to the worst efficiency given any set
of submodular welfare functions. Regardless of the structural
form of the welfare function, establishing a price of anarchy
simplifies to a maximization of (11) over the parameter set
k ≤ m ≤ n and R.

Lastly, it is important to highlight that in general it is
impossible to get a tighter bound than the bound presented
in (11) as several welfare functions have examples which hit
this bound. To see this, consider a resource allocation problem
with resource set R = {r1, r2, . . . , rn} where each resource
has a scaled resource-specific welfare function of the form
Wr(S) = cr · W̃ (S) where cr > 0 is a scaling coefficient and
W̃ : N → R is the “base” welfare function. Notice that the
chosen constants cr do not impact the price of anarchy bounds
given in (11). Let

{k∗,m∗} ∈ arg max
k≤m≤n

(
W̃ (k)
W̃ (m)

− k

m

)
and suppose that n is divisible by m∗, which we require to
show tightness. Denote the scaling coefficient associated with
resource rk as ck. Let ck = 1 for all k ∈ {1, . . . , n/m∗}. For
all k ∈ {n/m∗ + 1, . . . , n}, define the scaling coefficient to
satisfy

ck

(
W̃ (1)− W̃ (0)

)
=
W̃ (m∗)
m∗

.

Here, a pure Nash equilibrium is characterized by m∗ agents
at each of the first n/m∗ resources, i.e., all resources rk ∈ R
where ck = 1. The optimal allocation is characterized by k∗

agents at each of the first n/m∗ resources and the remaining
agents are alone at n− nk∗

m∗ of the additional n− n
m∗ resources.

Accordingly, the inefficiency of this equilibrium is

W (aopt)
W (ane)

=
n

m∗ W̃ (k∗) +
(
n− nk∗

m∗

)
W̃ (m∗)

m∗

n
m∗ W̃ (m∗)

,

= 1 +
W̃ (k∗)
W̃ (m∗)

− k∗

m∗
,

which precisely equals the derived price of anarchy bound in
(11).

C. A Bicriteria Bound for Pure Nash Equilibria

In this section we explore the relative price of anarchy,
or bicriteria bound, in single selection anonymous resource
allocation games with submodular objective functions. By
bicriteria bound, we mean a bound on the value of the optimal
allocation relative to the value of an equilibrium allocation
with additional agents. The following theorem establishes an
explicit relationship between the price of anarchy and the
number of additional agents present at the Nash allocation.
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Theorem 3 Consider any anonymous single selection re-
source allocation game with symmetric action sets, the Shalpey
value utility design, and submodular welfare functions. The
relative price of anarchy associated with any pure Nash
equilibrium with ln players and an optimal allocation with
n players where l ∈ {1, 2, . . . } is bounded above by

W (aopt;n)
W (ane; ln)

≤ max
{

1,
1
l

+ γ(ln)
}
. (16)

Proof: Let ane and aopt represent a pure Nash equilibrium
and an optimal allocation respectively. For notational simplic-
ity, define |ane| = {x1, ..., xm} and |aopt| = {y1, ..., ym}.
Here, we have

∑m
k=1 xk = ln and

∑m
k=1 yk = n. Let R1 and

R2 denote the resources on which xr ≥ yr and xr < yr,
respectively. Since the game is symmetric, we can define
hypothetical deviations for the players from ane as follows:
(i) For each r ∈ R2, xr players deviate from r to itself, i.e.,

do not deviate at all.
(ii) For each r ∈ R2, (lyr − xr) players from resources in

R1 deviate to r.
(iii) The remaining players (on R1) do not deviate.
Let ã be the resulting action profile after the above deviations
and let gr denote the number of such players utilizing resource
r ∈ R1 after the above deviations. Since

∑
r∈R xr =

l
∑

r∈R yr and lyr players deviated to each resource r ∈ R2,
i.e., through (i) and (ii), we have

∑
r∈R1

gr = l
∑

r∈R1
yr.

Since gr ≤ xr for each resource r ∈ R1, we have

W (ane; ln) (17)

=
ln∑

i=1

Ui(ane),

≥
ln∑

i=1

Ui(ãi, a
ne
−i),

=
∑

r∈R1

gr
Wr(xr)
xr

+
∑

r∈R2

xr
Wr(xr)
xr

+
∑

r∈R2

(lyr − xr)
Wr(xr + 1)
xr + 1

,

=
∑

r∈R1

gr
Wr(xr)
xr

+
∑

r∈R2

Wr(xr) (18)

+
∑

r∈R2

(lyr − xr)
Wr(xr + 1)
xr + 1

.

Focusing on the third set of terms in (18) gives us∑
r∈R2

(lyr − xr)
Wr(xr + 1)

xr + 1

=
∑
r∈R2

(yr − xr)
Wr(xr + 1)

xr + 1
+
∑
r∈R2

(lyr − yr)
Wr(xr + 1)

xr + 1
,

≥
∑
r∈R2

(Wr(yr)−Wr(xr)) + (l − 1)
∑
r∈R2

yr
Wr(xr + 1)

xr + 1
,

≥
∑
r∈R2

(Wr(yr)−Wr(xr)) + (l − 1)
∑
r∈R2

yr
Wr(yr)

yr
,

= l
∑
r∈R2

Wr(yr)−
∑
r∈R2

Wr(xr),

where the final inequality follows from the discrete concavity
of Wr and the fact that yr ≥ xr+1 for every r ∈ R2. Plugging
into (18) and simplifying gives us

W (ane; ln) ≥
∑

r∈R1

gr
Wr(xr)
xr

+ l
∑

r∈R2

Wr(yr). (19)

By the statement of the theorem, we are done unless
W (aopt;n) ≥ W (ane; ln), so suppose that this is the case.
For each resource r ∈ R1, multiply the welfare function Wr

by a constant λr which satisfies

λr
Wr(xr)
xr

= min
r∈R2

Wr(xr + 1)
xr + 1

.

Since the allocation {x1, . . . , xm} represents an allocation for
a pure Nash equilibrium, we know that λr ≤ 1 for all r ∈
R2. Since xr ≥ yr for all resource r ∈ R1, this welfare
function scaling decreases the welfare of ane by at least as
much as aopt. Since W (aopt;n) ≥ W (ane; ln), this decrease
only increases the ratio W (aopt;n)/W (ane; ln).

The point is that we can assume, for the remainder of
the analysis, that all resources in R1 have a common value
of Wr(xr)/xr. Recalling that

∑
r∈R1

gr = l
∑

r∈R1
yr and

continuing the above derivation yields

W (ane; ln) ≥
∑
r∈R1

gr
Wr(xr)

xr
+ l
∑
r∈R2

Wr(yr),

=
∑
r∈R1

lyr
Wr(xr)

xr
+ l
∑
r∈R2

Wr(yr),

=
∑
r∈R1

lyr
Wr(xr)

xr
+ lW (aopt;n)− l

∑
r∈R1

Wr(yr),

= l

[
W (aopt;n)−

∑
r∈R1

Wr(xr)

(
Wr(yr)

Wr(xr)
− yr
xr

)]
,

≥ l
(
W (aopt;n)− γ(ln)W (ane; ln)

)
.

Rearranging terms proves that

W (aopt;n)
W (ane; ln)

≤ max
{

1,
1
l

+ γ(ln)
}
.

With regards to the bound set forth in the previous theorem,
it seems natural that the bound of 1

l + γ(ln) may hold in
general irrespective of whether W (aopt;n) ≥W (ane; ln). The
following example demonstrates that such intuition is false.

Example 3 Consider a situation with two resource r1 and
r2 with resource specific welfare functions

√
x and

√
4x/5

respectively. Let n = 2 and l = 4. Then 1/l + γ(ln) = 0.5
as γ(ln) = 0.25. One can observe this by noticing that√

1/
√

4−1/4 = 0.25. In this example, aopt, which consists of
2 players, has one player on each resource for a total welfare
of 1 +

√
4/5. The Nash allocation, ane, which consists of

8 players, has 5 players on resource r1 and 3 players on
resource r2 for a total welfare of

√
5 +

√
12/5. Note that

W (aopt; 2)/W (ane; 8) ≈ 0.5005 which violates the above
bound.
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III. THE ASYMMETRIC CASE

In this section we focus on deriving more general efficiency
bounds for resource allocation problems with asymmetric
agents. By asymmetric, we mean that each agent’s action
set is not necessarily identical, i.e., Ai need not equal Aj

for all agents i, j ∈ N . Here, we focus on characterizing
efficiency bounds for a more general class of equilibria, termed
coarse correlated equilibria, which pertain to distributions
over the joint action set A. More specifically, consider a joint
distribution z = {za}a∈A ∈ ∆(A) where 1 ≥ za ≥ 0
denotes the component of the distribution associated with the
joint action profile a. A joint distribution z ∈ ∆(A) is a
coarse correlated equilibria if for all agents i ∈ N and actions
a′i ∈ Ai [21]:∑

a∈A
Ui(a)za ≥

∑
a∈A

Ui(a′i, a−i)za. (20)

The set of coarse correlated equilibria, which are commonly
referred to as no-regret points, contain the set of correlated
equilibria, mixed Nash equilibria, as well pure Nash equilibria.
The question that we focus on in this section is how the
efficiency bounds derived in Section II extend to this broader
class of equilibria where the welfare associated with a joint
distribution z ∈ ∆(A) is taken as the expected welfare, i.e.,

W (z) =
∑
a∈A

W (a)za.

The importance of these bounds stem from the existence of
simple and efficient dynamical processes which converge to
the set of coarse correlated equilibria for any game [37]–[39].

A. A Motivating Example

We begin by focusing on whether the efficiency bounds
for pure Nash equilibria given in Theorems 2 and 3 hold
for the more general setting considered here. The following
two examples shows that relaxations in either direction, i.e.,
considering pure Nash equilibria with asymmetric agents or
considering mixed Nash equilibria with symmetric agents,
violates the derived bounds.

Example 4 (Asymmetric Action Sets) Consider a situation
with n + 1 resources and n asymmetric players where each
player i can select either resource i or i + 1. The resource
specific welfare functions are of the form Wr1(x) =

√
x and

Wrk
(x) =

√
x ·
(
1/
√

2
)k−2

for all k ≥ 2 and x ≥ 1.
The price of anarchy bound for pure Nash equilibria and
symmetric agents given in Theorem 2 is 5/4. For the asym-
metric case, there exists a pure Nash equilibrium where each
agent i selects resource i + 1 which yields a total welfare is
1/(1 − 1/

√
2) as n → ∞. The optimal allocation is when

each agent i selects resource i which yields a total welfare of
(2 − 1/

√
2)/(1 − 1/

√
2) as n → ∞. This lower bounds the

price of anarchy as 2−1/
√

2 ≈ 1.29 which violates the price
of anarchy bound for symmetric agents given in Theorem 2.

Example 5 (Mixed Nash equilibria) Consider a situation
with 3 symmetric players, 3 resources, and each resource has

an identical welfare function of the form Wr(x) = x0.9. The
optimal welfare associated with this setting is 3 achieved when
each agent selects a distinct resource. The price of anarchy
bound for pure Nash equilibria and symmetric agents given in
Theorem 2 is 1.0387 = 1+(1)/(30.9)−1/3. There is a mixed
Nash equilibrium where each agent selects the resources with a
uniform strategy (1/3, 1/3, 1/3). This mixed Nash equilibrium
yields an expected welfare of 2.876 and an efficiency ratio
of 3/2.876 = 1.0431. Hence, this efficiency bound violates
the price of anarchy bound for symmetric agents given in
Theorem 2.

B. Preliminaries: Smoothness Arguments

“Smoothness arguments” represent an effective methodol-
ogy for proving price of anarchy bounds for more general
equilibrium concepts than that of pure Nash equilibria [40]. A
smoothness argument requires proving that for some constants
λ, µ > 0 the following holds: for every pair of allocations
a, a∗ ∈ A (equilibrium, optimal, and otherwise),

n∑
i=1

Ui(a∗i , a−i) ≥ λ ·W (a∗)− µ ·W (a). (21)

By [40], establishing such a λ, µ > 0 implies a price of
anarchy bound of (1 + µ)/λ for all mixed Nash equilibria,
correlated equilibria, and coarse correlated equilibria. We will
refer to such a price of anarchy bound as the robust price of
anarchy. It is important to note that the derivations given in
Section II do not utilize smoothness arguments as only the
optimal allocation aopt and Nash allocation ane were consid-
ered. Furthermore, such smoothness arguments also hold for
establishing bicriteria bounds where there are variations in the
number of agents in the two allocations a and a∗.

C. Bounding the efficiency of coarse correlated equilibria

We begin by proving that the price of anarchy bound of 2
in Theorem 1 also covers all mixed Nash equilibria, correlated
equilibria, and coarse correlated equilibria.

Theorem 4 Consider any single selection resource allocation
game with n agents, asymmetric action sets, the Shapley value
utility design, and submodular welfare functions. The robust
price of anarchy is bounded above by 2.

Proof: Let a and a′ represent any two allocations and let
|a| = {x1, ..., xm} and |a′| = {y1, ..., ym}. Let zr denote the
number of agents that select resource r in both a and a′, i.e.,

zr = |{i ∈ N : ai = r} ∩ {i ∈ N : a′i = r}| .

Note that zr ≤ min{xr, yr} for all resources r ∈ R. The proof
of Theorem 2 demonstrates that∑
i∈N

Ui(a
′
i, a−i) (22)

≥W (a′) +
∑
r∈R1

(
zr
Wr(xr)

xr
+ (yr − zr)

Wr(xr + 1)

xr + 1
−Wr(yr)

)
+
∑
r∈R2

(
zr
Wr(xr)

xr
+ (xr − zr)

Wr(xr + 1)

xr + 1
−Wr(xr)

)
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where R1 and R2 denote the resources on which xr ≥ yr and
xr < yr, respectively. Using the fact that (22) is increasing in
zr, setting zr = 0 for each r ∈ R gives us the lower bound

∑
i∈N

Ui(a
′
i, a−i)

≥W (a′) +
∑
r∈R1

(
yr
Wr(xr + 1)

xr + 1
−Wr(yr)

)
+
∑
r∈R2

(
xr
Wr(xr + 1)

xr + 1
−Wr(xr)

)
, (23)

≥W (a′) +
∑
r∈R1

yr
Wr(xr + 1)

xr + 1
−
∑
r∈R1

Wr(yr)−
∑
r∈R2

Wr(xr),

≥W (a′) +
∑
r∈R1

(Wr(yr + xr)−Wr(xr))

−
∑
r∈R1

Wr(yr)−
∑
r∈R2

Wr(xr), (24)

≥W (a′)−W (a). (25)

where (24) stems from the discrete concavity of Wr and (25)
stems from the fact that Wr is nondecreasing. Accordingly, the
game is smooth with parameter λ = 1 and µ = 1. Therefore,
the robust price of anarchy is 2.

Theorem 4 proves that the efficiency bound of 2 holds
for all coarse correlated equilibria even in the setting with
asymmetric players. The following theorem demonstrates that
we can provide a tighter characterization of the robust price of
anarchy by exploiting the structure of the objective functions.

Theorem 5 Consider any single selection resource allocation
game with n agents, asymmetric action sets, the Shapley value
utility design, and submodular welfare functions. The robust
price of anarchy is bounded above by

1 + max
r∈R

max
k≤m≤n

max
{
Wr(k)
Wr(m)

− β(n)
k

m
, 1− β(n)

}
(26)

where

β(n) = min
r∈R

min
1≤x≤n

Wr(x+ 1)/(x+ 1)
Wr(x)/x

.

Proof: Consider the proof of Theorem 4 up to equation
(23). The first nontrivial term in (23) can be bounded below
by

∑
r∈R1

(
yr
Wr(xr + 1)

xr + 1
−Wr(yr)

)
= −

∑
r∈R1

Wr(xr)

[
Wr(yr)

Wr(xr)
−
yr

xr

(
Wr(xr + 1)

Wr(xr)

xr

xr + 1

)]
,

≥ −
∑
r∈R1

Wr(xr)

[
Wr(yr)

Wr(xr)
−
yr

xr
β(n)

]
,

≥ −
∑
r∈R1

Wr(xr) ·max
r∈R

max
k≤m≤n

(
Wr(k)

Wr(m)
− β(n)

k

m

)
,

≥ −W (a) ·max
r∈R

max
k≤m≤n

(
Wr(k)

Wr(m)
− β(n)

k

m

)
.

The second nontrivial term in (23) can be bounded below by∑
r∈R2

(
xr
Wr(xr + 1)
xr + 1

−Wr(xr)
)

= −
∑

r∈R2

Wr(xr)
[
1−

(
Wr(xr + 1)
Wr(xr)

xr

xr + 1

)]
,

≥ −
∑

r∈R2

Wr(xr) (1− β(n)) ,

≥ −W (a) · (1− β(n)) .

Accordingly, we have that for any action profiles a, a′ ∈ A,∑
i∈N

Ui(a′i, a−i) ≥W (a′)− δ(n)W (a)

where

δ(n) = max
r∈R

max
k≤m≤n

max
{
Wr(k)
Wr(m)

− β(n)
k

m
, 1− β(n)

}
.

Hence, the robust price of anarchy is 1 + δ(n).
First, it is important to highlight that δ(n) ≥ γ(n) as

expected since the price of anarchy associated with pure Nash
equilibria cannot be larger than the price of anarchy associated
with a broader class of equilibria. For example, in the case of
constant welfare functions, i.e., Wr(x) = c for all x ≥ 1, we
have that

γ(n) = max
k≤m≤n

(
Wr(k)
Wr(m)

− k

m

)
= 1− 1

n

and

δ(n) = max
k≤m≤n

max
{
Wr(k)
Wr(m)

− β(n)
k

m
, 1− β(n)

}
= max

{
1− 1

2n
,

1
2

}
= 1− 1

2n
.

Here, δ(n) uses the fact that β(n) = 1/2 where the minimizer
is x = 1.

The following theorem shows that the robust price of anar-
chy bound presented in Theorem 5 can be further improved
by exploiting the following property in the above derivation.
Consider any two allocations a and a′ and suppose there are
x players using resource r in a and y players using resource
r in a′. If x+ y > n, then the number of players using both
resource r in both a and a′ is at least x+y−n. The following
theorem makes this idea precise.

Theorem 6 Consider any single selection resource allocation
game with n agents, asymmetric action sets, the Shapley value
utility design, and submodular welfare functions. The robust
price of anarchy is bounded above by 1 + η(n) where

η(n) = max

 max
r∈R,k≤m≤n

(
Wr(k)
Wr(m)

−
(

max{m+k−n,0}+min{n−m,k}·β̃r(m)
m

))
,

max
r∈R,k≤m≤n

(
1−
(

max{k+m−n,0}+min{n−m,k}·β̃r(k)
k

)) (27)
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where

β̃r(m) =
m

m+ 1
Wr(m+ 1)
Wr(m)

.

Proof: Consider the proof of Theorem 4 up to equation
(22). One way to slightly optimize the analysis in the proof of
Theorem 5 is to observe that if xr + yr > n, then the number
zr of shared players is at least xr + yr − n. Accordingly, the
first nontrivial term in (22) can be bounded below by

∑
r∈R1

zr
Wr(xr)

xr
+ (yr − zr)

Wr(xr + 1)

xr + 1
−Wr(yr)

=
∑
r∈R1

zr

(
Wr(xr)

xr
−
Wr(xr + 1)

xr + 1

)
+ yr

Wr(xr + 1)

xr + 1
−Wr(yr),

≥
∑
r∈R1

(
max{xr + yr − n, 0}

(
Wr(xr)

xr
−
Wr(xr + 1)

xr + 1

)
+yr

Wr(xr + 1)

xr + 1
−Wr(yr)

)
,

=
∑
r∈R1

(
max{xr + yr − n, 0}

Wr(xr)

xr

+min{n− xr, yr}
Wr(xr + 1)

xr + 1
−Wr(yr)

)
,

= −
∑
r∈R1

Wr(xr)

(
Wr(yr)

Wr(xr)
−

max{xr + yr − n, 0}
xr

−
min{n− xr, yr}

xr + 1

Wr(xr + 1)

Wr(xr)

)
≥ −W (a) ·max

r∈R
max

k≤m≤n

(
Wr(k)

Wr(m)
−

max{m+ k − n, 0}
m

−
min{n−m, k} · β̃r(m)

m

)
.

where the first inequality stems from the fact that
Wr(xr)/xr ≥ Wr(xr + 1)/(xr + 1) and the last inequality
stems from the fact that xr ≥ yr for all resources r ∈ R1.
The second nontrivial term in (22) can be bounded below by

∑
r∈R2

(
zr
Wr(xr)

xr
+ (xr − zr)

Wr(xr + 1)

xr + 1
−Wr(xr)

)
≥
∑
r∈R2

(
max{xr + yr − n, 0}

Wr(xr)

xr

+min{n− yr, xr}
Wr(xr + 1)

xr + 1
−Wr(xr)

)
,

= −
∑
r∈R2

Wr(xr)

(
1−

max{xr + yr − n, 0}
xr

−
min{n− yr, xr}

xr + 1

Wr(xr + 1)

Wr(xr)

)
,

= −
∑
r∈R2

Wr(xr)

(
1−

max{xr + yr − n, 0}
xr

−
min{n− yr, xr}β̃r(xr)

xr

)
,

≥ −W (a) ·max
r∈R

max
k≤m≤n

(
1−

max{k +m− n, 0}
k

−
min{n−m, k} · β̃r(k)

k

)
,
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Fig. 3. Consider the resource allocation problem depicted in Example 1 where
each resource rj ∈ R has a submodular objective of the form Wrj (x) =

xdj where dj ∈ [0, 1] and each agent i ∈ N is assigned a utility function
in accordance with the Shapley value. Without loss of generality let 0 ≤
d1 ≤ ... ≤ dn ≤ 1. This figure highlights the robust price of anarchy for
both the symmetric and asymmetric settings as a function of d1 where d1
varies between [0, 1] and when there are 100 agents. Theorem 2 provides the
price of anarchy bound associated with pure Nash equilibria in the symmetric
setting while Theorems 5 and 6 provide the price of anarchy bound associated
with coarse correlated equilibria in the asymmetric setting. Note that the gap
between the two bounds is relatively small. However, there is definitely a gap
as highlighted by Examples 4 and 5.

where the last inequality stems from the fact that xr < yr for
all resources r ∈ R2. Therefore, we have that∑

i∈N

Ui(a′i, a−i) ≤W (a)− η(n)W (a′)

which completes the proof.
Figure 3 illustrates the bounds derived in Theorems 5 and 6

bounds on the resource allocation problem given in Example 1.

D. A Bicriteria Bound for Coarse Correlated Equilibria

In this section we derive bicriteria bounds for resource allo-
cation problems with asymmetric players. Unlike the analysis
presented in Section II-C, the forthcoming bounds will hold
for a broad class of equilibria including coarse correlated
equilibria. Hence, we will refer to this bound as the robust
bicriteria bound. As before, we will consider situations where
there are n players in the optimal allocation and ln players in
the equilibrium allocation where l ∈ {1, 2, . . . }. Since players
are asymmetric in this setting, we will focus on the case where
each player in the optimal allocation has l “copies” in the
equilibrium allocation.

Theorem 7 Consider any anonymous single selection re-
source allocation game with asymmetric action sets, the
Shalpey value utility design, and submodular welfare func-
tions. The robust bicriteria bound associated with any coarse
correlated equilibrium with ln players and an optimal alloca-
tion with n players where l ∈ {1, 2, . . . } is bounded above by
1 + 1

l .

Proof: Let a be an action profile for the game con-
sisting of ln players and a′ be an action profile for the
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game consisting of n players. For notational simplicity, define
|a| = {x1, ..., xm} and |a′| = {y1, ..., ym}. Here, we have∑m

k=1 xk = ln and
∑m

k=1 yk = n. Assume that for each
j ∈ {0, . . . , l− 1}, the players i ∈ {jn+ 1, . . . , (j + 1)n} are
in bijective correspondence with the players in the original
game. We write “a′i” even when i > n with the understanding
that i means [(i− 1) mod n] + 1. Accordingly, we have

l−1∑
j=0

(
(j+1)n∑
i=jn+1

Ui(a
′
i, a−i)

)
≥

l−1∑
j=0

(∑
r∈R

yr
Wr(xr + 1)

xr + 1

)
,

≥
l−1∑
j=0

(∑
r∈R

Wr(xr + yr)−Wr(xr)

)
,

≥ l ·W (a′)− l ·W (a).

where the second inequality follows from the discrete concav-
ity of Wr and the third inequality follows from the fact that
Wr is increasing. Hence, the game is smooth with parameters
λ = l and µ = l which gives a robust bicriteria bound of
1 + 1/l.

The following theorem strengthens the bound presented
in Theorem 7 by exploiting the structure of the objective
functions.

Theorem 8 Consider any anonymous single selection re-
source allocation game with asymmetric action sets, the
Shalpey value utility design, and submodular welfare func-
tions. The robust bicriteria bound associated with any coarse
correlated equilibrium with ln players and an optimal alloca-
tion with n players where l ∈ {1, 2, . . . } is bounded above by
1/l + η(l, n) where η(l, n) is defined as

max


max

r∈R,k≤min{m1,n},m1≤ln

(
Wr(k)

Wr(m1)
− k

m1+1
Wr(m1+1)

Wr(m1)

)
,

max
r∈R, m2≤ln

(
1− m2

m2+1
Wr(m2+1)

Wr(m2)

)
.

(28)

Proof: Consider the setup for the proof of Theorem 7.
As before, define R1 = {r ∈ R : xr ≥ yr} and R2 = {r ∈
R : xr < yr}. Incorporating R1 and R2 into the above proof
gives us for any j ∈ {0, . . . , l − 1}

(j+1)n∑
i=jn+1

Ui(a
′
i, a−i) ≥

∑
r∈R

yr
Wr(xr + 1)

xr + 1
,

=
∑
r∈R1

yr
Wr(xr + 1)

xr + 1
+
∑
r∈R2

xr
Wr(xr + 1)

xr + 1

+
∑
r∈R2

(yr − xr)
Wr(xr + 1)

xr + 1
, (29)

≥
∑
r∈R1

yr
Wr(xr + 1)

xr + 1
+
∑
r∈R2

xr
Wr(xr + 1)

xr + 1

+
∑
r∈R2

(Wr(yr)−Wr(xr)), (30)

= W (a′)−
∑
r∈R1

(
Wr(yr)− yr

Wr(xr + 1)

xr + 1

)
−
∑
r∈R2

(
Wr(xr)− xr

Wr(xr + 1)

xr + 1

)
. (31)

Focusing on the first non-trivial term in (31) we have∑
r∈R1

(
Wr(yr)− yr

Wr(xr + 1)

xr + 1

)
=
∑
r∈R1

Wr(xr)

(
Wr(yr)

Wr(xr)
−

yr

xr + 1

Wr(xr + 1)

Wr(xr)

)
,

≤W (a) max
r∈R, k≤min{m1,n},m1≤ln

(
Wr(k)

Wr(m1)
−

k

m1 + 1

Wr(m1 + 1)

Wr(m1)

)
.

Focusing on the second non-trivial term in (31) we have∑
r∈R2

(
Wr(xr)− xr

Wr(xr + 1)

xr + 1

)
=
∑
r∈R2

Wr(xr)

(
1− Wr(xr + 1)

Wr(xr)

xr
xr + 1

)
,

≤W (a) max
r∈R, m2≤ln

(
1− m2

m2 + 1

Wr(m2 + 1)

Wr(m2)

)
.

Therefore, from (31) we obtain

l−1∑
j=0

(
jn∑

i=jn+1

Ui(a
′
i, a−i)

)
≥

l−1∑
j=0

(
W (a′)− η(l, n) ·W (a)

)
,

= l ·W (a′)− l · η(l, n) ·W (a).

Hence, the game is smooth with parameters λ = l and µ =
l ·η(l, n) which gives a robust bicriteria bound of 1/l+η(l, n).

Note that this bound is below 1 for welfare functions
which η is sufficiently small. For example, for linear welfare
functions, η(l, n) = 0 for all l and n. Hence, we recover the
tight bound of 1/l. See Figure 4 for an illustration of the
bounds derived in this Section.

IV. ILLUSTRATING EXAMPLE: THE VEHICLE TARGET
ASSIGNMENT PROBLEM

In this section we apply the theoretical developments in this
paper to a special class of the vehicle target assignment prob-
lem introduced in Section I-A. The two variations from the
setup provided in Section I-A are as follows: (i) each vehicle
i ∈ N has a common detection/destroy probability p ∈ [0, 1]
and (ii) each vehicle can assign itself to just a single target,
i.e., Ai ⊆ R. To study the impact of the results contained
within this paper, we analyze a game-theoretic formulation of
the vehicle target assignment where each vehicle is assigned
a Shapley value utility of the form

Ui(ai = r, a−i) =
vr

(
1− (1− p)|a|r

)
|a|r

. (32)

Such a design approach will guarantee the existence of a pure
Nash equilibrium irrespective of the number of vehicles, the
structure of the action sets, or the number or relative worth
of the targets. The value of this work is that it provides
a systematic approach for evaluating the efficiency of the
resulting equilibria for a broad class of resource allocation
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Fig. 4. Consider the resource allocation problem depicted in Example 1 where
each resource rj ∈ R has a submodular objective of the form Wrj (x) = xdj

where dj ∈ [0, 1] and each agent i ∈ N is assigned a utility function in
accordance with the Shapley value. Without loss of generality let 0 ≤ d1 ≤
... ≤ dn ≤ 1. This figure highlights the relative price of anarchy for the
asymmetric settings as a function of d1 where d1 varies between [0, 1] when
there are 100 agents for l = 2 and l = 3. The blue dotted lines indicate the
the bounds provided in Theorem 7 while the green lines indicate the optimized
bounds derived in Theorem 8.

problems including the presented vehicle target assignment
problem. The characterization of the price of anarchy is
provided in the following corollary.

Corollary 9 Consider any single selection vehicle target as-
signment problem where each vehicle i ∈ N has a common
detection probability p and a utility function in accordance
with the vehicle’s Shapley value as in (32). If the vehicles are
symmetric, then the price of anarchy for pure Nash equilibria
is bounded above by

1 + max
k≤m≤n

(
1− (1− p)k

1− (1− p)m
− k

m

)
(33)

and the bicriteria bound for any l ∈ {1, 2, . . . } is bounded
above by

max
{

1,
1
l

+ max
k≤m≤ln

(
1− (1− p)k

1− (1− p)m
− k

m

)}
. (34)

If the vehicles are asymmetric, then the robust price of anarchy
is bounded above by

1+max

 max
k≤m≤n

(
1−(1−p)k

1−(1−p)m −
max{m+k−n,0}

m
− min{n−m,k}·β̃r(m)

m

)
max

k≤m≤n

(
1−
(

max{k+m−n,0}+min{n−m,k}·β̃r(k)
k

))
,

(35)

and the robust bicriteria bound for any l ∈ {1, 2, . . . } is
bounded above by

1/l+max

 max
k≤min{m1,n},m1≤ln

(
1−(1−p)k

1−(1−p)m1 −
k

m1+1
1−(1−p)m1+1

1−(1−p)m1

)
max

k≤m2≤ln

(
1− m2

m2+1
1−(1−p)m2+1

1−(1−p)m2

)
,

(36)
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Fig. 5. This figure presents the price of anarchy as a function of detection
probability for the vehicle target assignment problem with 100 vehicles and the
Shapley value utility design. For the situation consisting of an equal number
of vehicles in both the equilibrium and optimal allocation, it turns out that the
efficiency bounds provided by Theorems 2 and 6 are identical as highlighted
above. For the bicriteria bounds, we plotted the case when l = 2 and l = 3.
For these situations, the efficiency bounds provided by Theorems 3 and 8
are close but not identical. As expected, the efficiency bound provided by
Theorem 3 is less than the efficiency bound provided by Theorem 8 for all
situations which resulted in a price of anarchy ≥ 1.

where

β̃r(m) =
(

m

m+ 1

)(
1− (1− p)m+1

1− (1− p)m

)
.

In the above corollary, (33) follows from Theorem 2, (34)
follows from Theorem 3, (35) follows from Theorem 6, and
(36) follows from Theorem 8.

Figure 5 plots the above efficiency guarantees for the vehicle
target assignment problem with 100 vehicles and a common
detection probability p ranging from 0 to 1. Notice that the
gap between the efficiency guarantees for pure Nash in the
symmetric setting versus coarse correlated equilibria in the
asymmetric setting is virtually non-existent. It turns out that
this bound matches the price of anarchy bound for single
selection anonymous vehicle target assignment problems as
derived in [16]. However, the price of anarchy in [16] was
derived explicitly for the specific vehicle target assignment
problem and hence has limited ability to be extended beyond
that domain. Using the results in this paper, deriving this price
of anarchy boils down to a systematic procedure and requires
no tweaking for the specific domain.

V. CONCLUDING REMARKS

There is a large body of literature focused on character-
izing the inefficiency of Nash equilibria for a wide array of
application domains [41]. However, from a control-theoretic
perspective these results are unsatisfying since utility functions
can be designed in engineering systems. Hence, developing
utility design methodologies to optimize the price of anarchy is
of fundamental importance. This paper explores one promising
utility design methodology for accomplishing this task – the
Shalpey value. The results in this paper provide guarantees
on the efficiency of the resulting equilibria when utilizing this
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Shapley value utility design for a class of resource allocation
problems.

One interesting direction for future research is to understand
the role of budget balance in utility design. The Shapley value
utility is budget-balanced, meaning that

∑
i∈N Ui(a) = W (a)

in every assignment a. There is no obvious motivation for
requiring budget-balance in utility design and yet, at least
in the case of the Shapley value, this property is correlated
with good efficiency guarantees. Determining whether or not
there is a deeper connection between these two properties is
an intriguing open question.

More generally, with the goal of identifying the methodol-
ogy that optimizes the price of anarchy, it is important that
the presented analysis be extended to alternative utility design
methodologies, such as the marginal contribution utility and
weighted Shapley value [16].
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