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1. INTRODUCTION

1.1 Preamble

Optimal mechanism design enjoys a beautiful and well-developed theory, and also
a number of killer applications. Rules of thumb produced by the field influence
everything from how governments sell wireless spectrum licenses to how the major
search engines auction off online advertising.

There are, however, some basic problems for which the traditional optimal mecha-
nism design approach is ill-suited — either because it makes overly strong assump-
tions, or because it advocates overly complex designs. The thesis of this paper
is that approximately optimal mechanisms allow us to reason about fundamental
questions that seem out of reach of the traditional theory.

1.2 Organization

This survey has three main parts. The first part reviews a couple of the greatest
hits of optimal mechanism design, the single-item auctions of Vickrey and Myerson.
We’ll see how taking baby steps beyond these canonical settings already highlights
limitations of the traditional optimal mechanism design paradigm, and motivates a
more relaxed approach. This part also describes the approximately optimal mech-
anism design paradigm — how it works, and what we aim to learn by applying
it.

The second and third parts of the survey cover two case studies, where we in-
stantiate the general design paradigm to investigate two basic questions. In the
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first example, we consider revenue maximization in a single-item auction with het-
erogeneous bidders. Our goal is to understand if complexity — in the sense of
detailed distributional knowledge — is an essential feature of good auctions for
this problem, or alternatively if there are simpler auctions that are near-optimal.
The second example considers welfare maximization with multiple items. Our goal
here is similar in spirit: when is complexity — in the form of high-dimensional bid
spaces — an essential feature of every auction that guarantees reasonable welfare?
Are there interesting cases where low-dimensional bid spaces suffice?

2. THE OPTIMAL AND APPROXIMATELY OPTIMAL MECHANISM DESIGN PARADIGMS:
VICKREY, MYERSON, AND BEYOND

2.1 Example: The Vickrey Auction

Let’s briefly recall the Vickrey or second-price single-item auction [Vickrey 1961].
Consider a single seller with a single item; assume for simplicity that the seller has
no value for the item. There are n bidders, and each bidder i has a valuation vi that
is unknown to the seller. Vickrey’s auction is designed to maximize the welfare,
which in a single-item auction just means awarding the item to the bidder with the
highest valuation. This sealed-bid auction collects a bid from each bidder, awards
the item to the highest bidder, and charges the second-highest price. The point of
the pricing rule is to ensure that truthful bidding is a dominant strategy for every
bidder. Provided every bidder follows its dominant strategy, the auction maximizes
welfare ex post (that is, for every valuation profile).

In addition to being theoretically optimal, the Vickrey auction has a simple and
appealing format. Plenty of real-world examples resemble the Vickrey auction. In
light of this confluence of theory and practice, what else could we ask for? To
foreshadow what lies ahead, we mention that when selling multiple non-identical
items, the generalization of the Vickrey auction is much more complex.

2.2 Example: Myerson’s Auction

What if we want to maximize the seller’s revenue rather than the social welfare?
Since there is no single auction that maximizes revenue ex post, the standard ap-
proach here is to maximize the expected revenue with respect to a prior distribution
over bidders’ valuations. So, assume bidder i’s valuation is drawn independently
from a distribution Fi that is known to the seller. For the moment, assume also
that bidders are homogeneous, meaning that their valuations are drawn i.i.d. from
a known distribution F .

Myerson [1981] identified the optimal auction in this context, and under mild
conditions on F it is a simple twist on the Vickrey auction — a second-price auction
with a reserve price r.1 Moreover, the optimal reserve price is simple and intuitive
— it is just the monopoly price argmaxp[p · (1− F (p))] for the distribution F , the
optimal take-it-or-leave-it offer to a single bidder with valuation drawn from F .
Thus, to implement the optimal auction, you don’t need to know much about the
valuation distribution F — just a single statistic, its monopoly price.

1That is, the winner is the highest bidder with bid at least r, if any. If there is a winner, it pays

either the reserve price or the second-highest bid, whichever is larger.
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Once again, in addition to being theoretically optimal, Myerson’s auction is sim-
ple and appealing. It is more or less equivalent to an eBay auction, where the
reserve price is implemented using an opening bid. Given this success, why do we
need to enrich the traditional optimal mechanism design paradigm? As we’ll see,
when bidders’ valuations are not i.i.d., the theoretically optimal auction is much
more complex and no longer resembles the auction formats that are common in
practice.

2.3 The Optimal Mechanism Design Paradigm

Having reviewed two famous examples, let’s zoom out and be more precise about
the optimal mechanism design paradigm. The first step is to identify the design
space of possible mechanisms, such as the set of all sealed-bid auctions. The second
step is to specify some desired properties. In this talk, we focus only on cases where
the goal is to optimize some objective function that has cardinal meaning, and for
which relative approximation makes sense. We have in mind objectives such as the
seller’s revenue (in expectation with respect to a prior) or social welfare (ex post)
in a transferable utility setting. The goal of the analyst is then to identify one or
all points in the design space that possess the desired properties — for example, to
characterize the mechanism that maximizes the welfare or expected revenue.

What can we hope to learn by applying this framework? The traditional answer is
that by solving for the optimal mechanism, we hope to receive some guidance about
how to solve the problem. With the Vickrey and Myerson auctions, we can take the
theory quite literally and simply implement the mechanism advocated by the theory.
More broadly, one looks for features present in the theoretically optimal mechanism
that seem broadly useful — for example, Myerson’s auction suggests that combining
welfare maximization with suitable reserve prices is a potent approach to revenue-
maximization.

There is a second, non-traditional answer that we exploit explicitly when we ex-
tend the paradigm to accommodate approximation. Even when the theoretically
optimal mechanism is not directly useful to the practitioner, for example because
it is too complex, it is directly useful to the analyst. The reason is that the per-
formance of the optimal mechanism can serve as a benchmark, a yardstick against
which we measure the performance of other designs that are more plausible to
implement.

2.4 The Approximately Optimal Mechanism Design Paradigm

To study approximately optimal mechanisms, we again begin with a design space
and an objective function. Often the design space is limited by side constraints
such as a “simplicity” constraint. For example, we later consider mechanisms with
limited distributional knowledge, and those with low-dimensional bid spaces.

The new ingredient of the paradigm is a benchmark. This is a target objective
function value that we would be ecstatic to achieve. Generally, the working hy-
pothesis will be that no mechanism in the design space realizes the full value of the
benchmark, so the goal is to get as close to it as possible. In the two examples we
discuss, where the design space is limited by a simplicity constraint, a simple and
natural benchmark is the performance achieved by an unconstrained, arbitrarily
complex mechanism. The goal of the analyst is to identify a mechanism in the

ACM SIGecom Exchanges, Vol. 10, No. 2, May 2011



4 ·

design space that approximates the benchmark as closely as possible. For exam-
ple, it is clearly interesting to establish that there is a “simple” mechanism with
performance almost as good as an arbitrarily complex one.

What is the point of applying this design paradigm? The first goal is exactly the
same as with the traditional optimal mechanism design paradigm. Whenever you
have a principled way of selecting out one mechanism from many, you can hope
that the distinguished mechanism is literally useful or highlights features that are
essential to good designs. The approximation paradigm provides a novel way to
identify candidate mechanisms.

There is a second reason to use the approximately optimal mechanism design
paradigm, which has no analog in the traditional approach. The approximation
framework enables the analyst to quantify the cost of imposing side constraints
on a mechanism design space. For example, if there is a simple mechanism with
performance close to that of the best arbitrarily complex mechanism, then this fact
suggests that simple solutions might be good enough. Conversely, if every point in
the design space is far from the benchmark, then this provides a forceful argument
that complexity is an essential feature of every reasonable solution to the problem.

2.5 Two Case Studies

Sections 3 and 4 instantiate the approximately optimal mechanism design paradigm
to study two fundamental questions. We first study expected revenue-maximization
in single-item auctions, with bidders that have independent but not necessarily
identically distributed valuations. The theoretically optimal mechanism can be
complex, in the sense that it requires detailed distributional knowledge. We use the
approximation paradigm to identify when such complexity is an inevitable property
of every near-optimal auction.

Our second case study concerns welfare maximization. Here, the complexity
stems from selling multiple non-identical items. Again, the theoretically optimal
mechanism is well known but suffers from several drawbacks that preclude direct
use. We apply the approximation paradigm to identify when simpler mechanisms,
meaning mechanisms with low-dimensional bid spaces, can perform well, versus
when complex bid spaces are necessary for non-trivial welfare guarantees.

2.6 Other Applications of the Approximation Paradigm

An enormous amount of research over the past fifteen years, largely but not entirely
in the computer science literature, can be viewed as instantiations of the approx-
imately optimal mechanism design paradigm. This paper merely singles out two
recent examples that are near and dear to the author’s heart.

For example, all of the following questions have been studied through the lens of
approximately optimal mechanisms.

(1) What is the cost of imposing bounded communication in settings with very large
type spaces, such as combinatorial auctions? This line of research originated
in Nisan and Segal [2006] and is surveyed by Segal [2006].

(2) What is the cost of imposing bounded computation in settings that involve
computationally difficult optimization problems, such as combinatorial auc-
tions? Two early papers are Lehmann et al. [2002] and Nisan and Ronen [2001]
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and a recent survey is Nisan [2014].
(3) What is the cost of limiting the distributional knowledge of a mechanism?

Several papers in the economics literature shed light on this question [Baliga
and Vohra 2003; Bulow and Klemperer 1996; Neeman 2003; Segal 2003]. The
approximation interpretation is explicit in Dhangwatnotai et al. [2010]; see
also Hartline [2013] for a survey. The case study in Section 3 is another example
of work in this vein.

(4) Are there auctions that achieve good revenue in the worst case (i.e., ex post)?
This question was formalized using the approximately optimal mechanism de-
sign framework in Goldberg et al. [2006]; see Hartline [2013] for a recent survey.

(5) Are there mechanisms with “simple” allocation rules that perform almost as
well as arbitrarily complex mechanisms? For example, see Chawla et al. [2007]
and Hartline and Roughgarden [2009] for revenue guarantees for auctions that
make use only of welfare-maximization supplemented by reserve prices.

(6) Are there mechanisms with “simple” pricing rules that perform almost as well
as arbitrarily complex mechanisms? See Lucier and Borodin [2010] and Cara-
giannis et al. [2012] for case studies in combinatorial and keyword auctions,
respectively. The case study in Section 4 is another example of this and the
preceding directions.

3. CASE STUDY: DO GOOD SINGLE-ITEM AUCTIONS REQUIRE DETAILED DIS-
TRIBUTIONAL KNOWLEDGE?

This section applies the approximately optimal mechanism design paradigm to the
problem of revenue-maximization in single-item auctions. The take-away from this
exercise is that the amount of distributional knowledge required for near-optimal
revenue is governed by the degree of bidder heterogeneity.

3.1 Optimal Single-Item Auctions

We now return to expected revenue-maximization in single-item auctions, but allow
heterogeneous bidders, meaning that each bidder i’s private valuation vi is drawn
independently from a distribution Fi that is known to the seller. Myerson [1981]
characterized the optimal auction, as a function of the distributions F1, . . . , Fn.

The trickiest step of Myerson’s optimal auction is the first one, where each bid bi
is transformed into a virtual bid ϕi(bi), defined by

ϕi(bi) = bi −
1− Fi(bi)
fi(bi)

. (1)

The exact functional form in (1) is not important for this paper, except to notice
that computing φi(bi) requires knowledge of the distribution, namely of fi(bi) and
Fi(bi).

Given this transformation, the rest of the auction is straightforward. The winner
is the bidder with the highest positive virtual bid (if any). To make truthful bidding
a dominant strategy, the winner is charged the minimum bid at which it would
continue to be the winner.2

2We have only described the optimal auction in the special case where each distribution Fi is reg-
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When all the distributions Fi are equal to a common F , and hence all virtual
valuation functions ϕi are identical, the optimal auction simplifies and is merely
a second-price auction with a reserve price of ϕ−1(0), which turns out to be the
monopoly price for F . In this special case, the optimal auction requires only modest
distributional knowledge — a singe statistic, the monopoly price. In general, the
optimal auction does not simplify further than the description above, and detailed
distributional knowledge is required to compute and compare the virtual bids of
bidders with different valuation distributions.

3.2 Motivating Question

This section uses the approximately optimal mechanism design paradigm to study
the following question.

Does a near-optimal single-item auction require detailed distributional knowledge?

To study this question formally, we need to parameterize the “amount of knowl-
edge” that the seller has about the valuation distributions. We look to computa-
tional learning theory, a well-developed branch of computer science [Valiant 1984],
for inspiration. We consider a seller that does not know the valuation distribu-
tions F1, . . . , Fn, except inasmuch as it knows s valuation profiles v(1), . . . ,v(s)

that have been sampled i.i.d. from these distributions. In an auction context, an
obvious interpretation of these samples is as the valuations of comparable bidders
in past auctions for comparable items, as inferred from bid data. See Ostrovsky
and Schwarz [2009] for a real-world example of this approach, in the context of
setting reserve prices in Yahoo! keyword auctions.

Thus, our design space is the set of auctions that depend on the valuation distri-
butions only through samples. Formally, for a parameter s ≥ 1, a point in the design
space is a function from s valuation profiles (the samples) to a single-item auction,
which is then run tomorrow on a fresh valuation profile drawn from F1 × · · · × Fn.
Our objective function is the expected revenue, where the expectation is over both
the samples (which determines the auction used) and the final valuation profile
(which determines the revenue earned by the chosen auction).

Our benchmark — the highest expected revenue we could conceivably obtain — is
simply the expected revenue earned by Myerson’s optimal auction for the distribu-
tions F1, . . . , Fn. We call this the Myerson benchmark. Thus, we are comparing the
optimal expected revenue obtainable by a seller with partial distributional knowl-
edge to that by a seller with full distributional knowledge. The goal is to understand
the amount of knowledge (i.e., the number of samples) needed to earn expected rev-
enue at least (1− ε) times the Myerson benchmark, where ε is a parameter such as
0.1 or 0.01.

3.3 Formalism: One Bidder

To make sure that the formalism is clear, let’s warm up with a simple example. In
addition to only one seller with one item, suppose there is also only one bidder, with

ular, meaning that the virtual valuation functions ϕi are nondecreasing. The general case “mono-
tonizes” the virtual valuation functions — monotonicity is essential for incentive-compatibility —

but otherwise applies the same three steps [Myerson 1981].
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m"samples"
v1,...,vs""

price"
p(v1,...,vs)"

valua2on"vs+1"

revenue"of"
p"on"vs+1"

Fig. 1. Single-bidder formalism. A take-it-or-leave-it offer p is chosen as a function of s i.i.d.
samples v1, . . . , vs from an unknown distribution F , and applied to a fresh sample vs+1 from the

same distribution. The goal is to understand, given a parameter ε > 0, how many samples s are

needed so that there exists a price function with expected revenue at least 1− ε times that of the
monopoly price for F .

valuation drawn from a distribution F unknown to the seller. With only one bid-
der, auctions are merely take-it-or-leave-it offers.3 The goal is to design a function
p(v1, . . . , vs) from samples v1, . . . , vs ∼ F to prices that, for every F , achieves ex-
pected revenue Ev1,...,vs

[p(v1, . . . , vs) · (1− F (p(v1, . . . , vs)))] close to that achieved
by the monopoly price argmaxp p · (1 − F (p)) of F . In other words, given data
from s past transactions, the goal is to set a near-optimal price for a new bidder
encountered tomorrow. See also Figure 1.

3.4 Results for a Single Bidder

We next state a series of results for the single-bidder special case. These results are
not the main point of this case study, and instead serve to calibrate our expectations
for what might be possible for single-item auctions with multiple bidders.

The bad news is that, without any assumptions about the unknown distribu-
tion F , no finite number of samples yields a non-trivial expected revenue guarantee
for every F . That is, for every finite s, there is a valuation distribution F such that
you learn essentially nothing about F from s samples.4 This observation motivates
restrictions on the unknown distribution.

The good news is that under a standard “regularity” condition, intuitively stating
that the tail of F is no heavier than a power-law distribution, is sufficient for
interesting positive results.5 Even just one sample can be used to obtain a non-
trivial revenue guarantee for unknown regular distributions: for every such F , the
function p(v1) = v1 — using yesterday’s bid as tomorrow’s price — yields expected
revenue at least 50% times that of the monopoly price.6

3Probability distributions over take-it-or-leave-it-offers are also allowed. We discuss only determin-

istic auctions for simplicity of presentation, but the results of this section also apply to randomized

auctions.
4For example, for a parameter M → ∞, consider distributions F that put a point mass of 1/M

at M and are otherwise zero.
5Formally, a distribution F is regular if its virtual valuation distribution (1) is nondecreasing.
6This is a consequence of the following special case of the Bulow-Klemperer theorem on auctions

vs. negotiations [Bulow and Klemperer 1996]: the expected revenue of a Vickrey auction with two
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Fig. 2. Multiple-bidder formalism. A single-item auction A is chosen as a function of s i.i.d.

samples v1, . . . ,vs from an unknown distribution F1 × · · · × Fn, and applied to a fresh sample

vs+1 from the same distribution. The benchmark is the expected revenue of the Myerson-optimal
auction for F1, . . . , Fn.

What if we want a better revenue guarantee, like 90% or 99% of this bench-
mark? To achieve a (1 − ε)-approximation guarantee, we expect the number of
samples required to increase with 1/ε. Happily, the amount of data required is
relatively modest, scaling as a polynomial function of 1/ε. For an unknown regular
distribution, this function is roughly ε−3 [Dhangwatnotai et al. 2010; Huang et al.
2014]. The sample complexity improves if we impose stronger conditions on the
tails of the valuation distribution. For example, if F satisfies the monotone hazard
rate condition — meaning f(x)/(1− F (x)) is nondecreasing in x —- then roughly
ε−3/2 samples are necessary and sufficient to achieve a (1 − ε)-approximation of
the benchmark [Huang et al. 2014]. The upper bounds on sample complexity fol-
low from natural pricing strategies, such as choosing the monopoly price for the
empirical distribution of the samples.

3.5 Formalism: Multiple Bidders

Generalizing the formalism to single-item auctions with multiple bidders proceeds
as one would expect. The seller is now given s samples v1, . . . ,vs, where each
sample vj is a valuation profile, comprising one valuation (drawn from Fi) for
each bidder i. The seller picks an auction A(v1, . . . ,vs) that is a function of these
samples only. Recall that the Myerson benchmark is the expected revenue of the
optimal auction for F1, . . . , Fn. The goal is to design a function A(v1, . . . , vs) from
samples v1, . . . ,vs ∼ F1×· · ·×Fn to single-item auctions that, for every F1, . . . , Fn,
achieves expected revenue close to this benchmark. As in the single-bidder case,
the expectation is over both the past bid data (the samples) and the bidders (a
fresh sample from the same distributions). See also Figure 2.

3.6 Positive Results

The hope is that our positive results for the single-bidder problem (Section 3.4)
carry over to single-item auctions with multiple bidders. First, provided F1, . . . , Fn

are regular distributions, it is still possible to get a coarse but non-trivial approx-

bidders with valuations drawn i.i.d. from a regular distribution F is at least that of an optimal

auction (i.e., the monopoly price) for a single bidder with valuation drawn from F .
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imation (namely, 25%) with a single sample — this follows from a generalization
of the Bulow-Klemperer theorem given by Hartline and Roughgarden [2009]. But
what about very close approximations, like 90% or 99%?

In the special case where bidders are homogeneous — meaning have identically
distributed valuations — the positive results for a single bidder continue to hold.
Intuitively, the reason is that the form of the optimal auction is independent of the
number of bidders — it is simply a second-price auction with a reserve set to the
monopoly price for the distribution F . Since a single statistic about the distribution
F determines the optimal auction for an arbitrary number of homogeneous bidders,
it makes sense that the sample complexity of approximating this optimal auction
is independent of n.

Thus, in these cases, the amount of data — the granularity of knowledge about
the valuation distributions — necessary to achieve near-optimal revenue is relatively
modest, and does not depend on the number of bidders.

3.7 Negative Results

The approximately optimal mechanism design paradigm identifies a qualitative dif-
ference between the cases of homogeneous and heterogeneous bidders. When bid-
ders are heterogeneous and we seek a close approximation of the optimal revenue,
the sample complexity depends fundamentally on the number of bidders.

Theorem 3.1 [Cole and Roughgarden 2014]. There is a constant c > 0
such that, for every sufficiently small ε > 0 and every n ≥ 2, there is no auction
that depends on at most cn/

√
ε samples and has expected revenue at least 1 − ε

times the Myerson benchmark for every profile F1, . . . , Fn of regular distributions.

The valuation distributions used in the proof of Theorem 3.1 are not pathological
— exponential distributions, truncated at different maximum values, already yield
the lower bound.

The proof of Theorem 3.1 shows more generally that every auction that fails to
implicitly learn all bidders’ virtual valuation functions (recall (1)) up to small error
is doomed to having expected revenue less than 1−ε times the Myerson benchmark
in some cases. In this sense, detailed knowledge of the valuation distributions is an
unavoidable feature of every near-optimal single-item auction with heterogeneous
bidders.7

4. CASE STUDY: DO GOOD COMBINATORIAL AUCTIONS REQUIRE COMPLEX
BID SPACES?

In this section we switch gears and study the problem of allocating multiple items
to bidders with private valuations to maximize the social welfare. We instanti-
ate the approximately optimal mechanism design paradigm to identify conditions
on bidders’ valuations that are necessary and sufficient for the existence of sim-
ple combinatorial auctions. The take-away from this section is that rich bidding

7There is also a converse to Theorem 3.1: for every ε > 0 and n ≥ 1, and for an arbitrary number

of bidders with n distinct valuation distributions, a polynomial number (in n and ε−1) of samples
is sufficient to achieve a (1− ε)-approximation of the Myerson benchmark [Cole and Roughgarden

2014].
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spaces are an essential feature of every good combinatorial auction when items are
complements, while simple auctions can perform well when bidders’ valuations are
complement-free.

4.1 The VCG Mechanism

We adopt the standard setup for allocating multiple items via a combinatorial
auction. There are n bidders and m non-identical items. Each bidder has, in
principle, a different private valuation vi(S) for each bundle S of items it might
receive. Thus, each bidder has 2m private parameters. In this section, we assume
that the objective is to determine an allocation S1, . . . , Sn that maximizes the social
welfare

∑n
i=1 vi(Si).

The Vickrey auction can be extended to the case of multiple items; this extension
is the Vickrey-Clarke-Groves (VCG) mechanism [Vickrey 1961; Clarke 1971; Groves
1973]. The VCG mechanism is a direct-revelation mechanism, so each bidder i
reports a valuation bi(S) for each bundle of items S. The mechanism then computes
an allocation that maximizes welfare with respect to the reported valuations. As
in the Vickrey auction, suitable payments make truthful revelation a dominant
strategy for every bidder.

Even with a small number of items, the VCG mechanism is a non-starter in
practice, for a number of reasons [Ausubel and Milgrom 2006]. We focus here on
the first step. Every direct revelation mechanism, including the VCG mechanism,
solicits 2m numbers from each bidder. This is an exorbitant number: roughly a
thousand parameters when m = 10, roughly a million when m = 20.

4.2 Motivating Question

In this case study, we apply the approximately optimal mechanism design paradigm
to study the following question.

Does a near-optimal combinatorial auction require rich bidding spaces?

Thus, as in the previous case study, we seek conditions under which “simple auc-
tions” can “perform well.” This time, our design space of “simple auctions” consists
of mechanism formats in which the dimension of every player’s bid space is growing
polynomially with the number m of items (say m or m2), rather than exponentially
with m as in the VCG mechanism.

“Performing well” means, as usual, achieving objective function value (here, so-
cial welfare) close to that of a benchmark. We use the VCG benchmark, meaning the
welfare obtained by the best arbitrarily complex mechanism (the VCG mechanism),
which is simply the maximum-possible social welfare.

This case study contributes to the debate about whether or not package bidding
is an important feature of combinatorial auctions, a topic over which much blood
and ink has been spilled over the past twenty years. We can identify auctions
with no or limited packing bidding with low-dimensional mechanisms, and those
that support rich package bidding with high-dimensional mechanisms. With this
interpretation, our results make precise the intuition that flexible package bidding
is crucial when items are complements, but not otherwise.
ACM SIGecom Exchanges, Vol. 10, No. 2, May 2011
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4.3 A Simple Auction: Selling Items Separately

Our goal is to understand the power and limitations of the entire design space
of low-dimensional mechanisms. To make this goal more concrete, we begin by
examining a specific simple auction format.

The simplest way of selling multiple items is by selling each separately. Several
specific auction formats implement this general idea. We analyze one such format,
simultaneous first-price auctions [Bikhchandani 1999]. In this auction, each bidder
submits simultaneously one bid per item — only m bidding parameters, compared
with its 2m private parameters — and each item is sold in parallel using a first-price
auction.

When do we expect simultaneous first-price auctions to have reasonable welfare
at equilibrium? Not always. With general bidder valuations, and in particular when
items are complements, we might expect severe inefficiency due to the “exposure
problem” (e.g., [Milgrom 2004]). For example, consider a bidder in an auction for
wireless spectrum licenses that has large value for full coverage of California but
no value for partial coverage. When items are sold separately, such a bidder has no
vocabulary to articulate its preferences, and runs the risk of obtaining a subset of
items for which it has no value, at a significant price.

Even when there are no complementarities amongst the items, we expect inef-
ficiency when items are sold separately (e.g., [Krishna 2010]). The first reason is
“demand reduction,” where a bidder pursues fewer items than it truly wants, in
order to obtain them at a cheaper price. Second, if bidders’ valuations are drawn
independently from different valuation distributions, then even with a single item,
Bayes-Nash equilibria are not always fully efficient.

4.4 Valuation Classes

Our discussion so far suggests that simultaneous first-price auctions are unlikely to
work well with general valuations, and suffer from some degree of inefficiency even
with simple bidder valuations. To parameterize the performance of this auction
format, we introduce a hierarchy of bidder valuations (Figure 3); the literature also
considers more fine-grained hierarchies [Feldman et al. 2014; Lehmann et al. 2006].

The biggest set corresponds to general valuations, which can encode complemen-
tarities among items. The other three sets denote different notions of “complement-
free” valuations. In this survey, we focus on the most permissive of these, subadditive
valuations. Such a valuation vi is monotone (vi(T ) ⊆ vi(S) whenever T ⊆ S) and
satisfies vi(S ∪ T ) ≤ vi(S) + vi(T ) for every pair S, T of bundles. This class is sig-
nificantly larger than the well-studied classes of gross substitutes and submodular
valuations.8 In particular, subadditive valuations can have “hidden complements”
— meaning two items become complementary given that a third item has already
been acquired — while submodular valuations cannot [Lehmann et al. 2006].

8Submodularity is the set-theoretic analog of “diminishing returns:” vi(S ∪{j})− vi(S) ≤ vi(T ∪
{j}) − vi(T ) whenever T ⊆ S and j /∈ S. The gross substitutes condition — which states that a

bidder’s demand for an item only increases as the prices of other items rise — is strictly stronger
and guarantees the existence of Walrasian equilibria [Kelso, Jr. and Crawford 1982; Gul and

Stacchetti 1999].
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complements”!
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Fig. 3. A hierarchy of valuation classes.

4.5 When Do Simultaneous First-Price Auctions Work Well?

Our intuition about the performance of simultaneous first-price auctions translates
nicely into rigorous statements. First, for general valuations, selling items sepa-
rately can be a disaster.

Theorem 4.1 [Hassidim et al. 2011]. With general bidder valuations, simul-
taneous first-price auctions can have mixed-strategy Nash equilibria with expected
welfare arbitrarily smaller than the VCG benchmark.

For example, equilibria of simultaneous first-price auctions need not obtain even 1%
of the maximum-possible welfare when there are complementarities between many
items.

On the positive side, even for the most permissive notion of complement-free
valuations — subadditive valuations — simultaneous first-price auctions suffer only
bounded welfare loss.

Theorem 4.2 [Feldman et al. 2013]. If every bidder’s valuation is drawn
independently from a distribution over subadditive valuations, then the expected wel-
fare obtained at every Bayes-Nash equilibrium of simultaneous first-price auctions
is at least 50% of the expected VCG benchmark value.

In Theorem 4.2, the valuation distributions of different bidders do not have to be
identical, just independent. The guarantee improves to roughly 63% for the special
case of submodular bidder valuations [Syrgkanis and Tardos 2013].

Taken together, Theorems 4.1 and 4.2 suggest that simultaneous first-price auc-
tions should work reasonably well if and only if there are no complementarities
among items.

4.6 Digression on Approximation Ratios

Before proceeding to our final set of technical results, we pause to emphasize how
worst-case approximation results like Theorems 4.1 and 4.2 should be interpreted.
ACM SIGecom Exchanges, Vol. 10, No. 2, May 2011
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Many researchers have a tendency to fixate unduly on and take too literally such
approximation guarantees.

Both of the primary motivations for applying the approximately optimal mech-
anism design paradigm strive for qualitative insights, not fine-grained performance
predictions (recall Section 2.4). The first goal is to identify mechanisms or mecha-
nism features that are potentially useful in practice. The auction formats implicitly
recommended by our case studies, such as selling items seperately with first-price
auctions provided bidders’ valuations are sufficiently simple, corroborate well with
folklore beliefs. The second goal of the approximation paradigm is to quantify the
cost of a side constraint like “simplicity” on the mechanism design space. In our
case studies, we are coarsely classifying such constraints as “tolerable” or “intol-
erable” according to whether or not imposing the constraint reduces the achiev-
able performance by a modest constant factor. This viewpoint leads to interesting
and sensible conclusions in both of our case studies: complexity is unavoidable
in near-optimal revenue-maximizing single-item auctions if and only if bidders are
heterogeneous, and complexity is unavoidable in near-optimal welfare-maximizing
auctions for selling multiple items if and only if there are complementarities among
the items.

To the reader who insists on interpreting approximation guarantees literally,
against our advice, we offer a few observations. First, in most applications of the
approximately optimal mechanism design framework, the benchmark is constructed
so that there is no mechanism in the design space that always achieves 100% of the
benchmark. When 100% is unachievable, the best-possible approximation is going
to be some number bounded below 100% — it cannot be arbitrarily close to 100%
when nothing is tending to infinity.9 Examples that demonstrate mechanism sub-
optimality are often “small” in some sense, which translates to impossibility results
for worst-case approximation guarantees better than relatively modest fractions
like 50% or, if you’re lucky, 75%. Finally, remember that the benchmark being
approximated — for example, the performance of a mechanism so complex as to be
unrealizable — is generally not an option on the table. The benchmark represents
a utopia that exists only in the analyst’s mind — like your favorite baseball team
winning 162 games, or receiving referee reports on your journal submission in less
than six months.

Of course, like any general analysis framework, the approximation paradigm can
be abused and should be applied with good taste. In settings where the approxi-
mately optimal mechanism design paradigm does not give meaningful results, the
approach should be modified — by defining a different benchmark, changing the
notion of benchmark approximation, or using a completely different analysis frame-
work.

9In some cases it makes sense to speak of the asymptotic optimality of a mechanism, such as the

sample complexity results of Section 3 and in large markets (e.g., [Segal 2003; Swinkels 2001]).
Asymptotic results are clearly interesting, but are applicable to only a fraction of the problems

that we want to reason about.
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4.7 Negative Results

We now return to the question of when simple mechanisms, meaning mechanisms
with low-dimensional bid spaces, can achieve non-trivial welfare guarantees. Sec-
tion 4.5 considered the special case of simultaneous first-price auctions; here we
consider the full design space.

First, the poor performance of simultaneous first-price auctions with general
bidder valuations is not an artifact of the specific format: every simple mechanism is
vulnerable to arbitrarily large welfare loss when there are complementarities among
items. This impossibility result argues forcefully for a rich bidding language, such
as flexible package bidding, in such environments.

Theorem 4.3 [Roughgarden 2014]. With general bidder valuations, no fam-
ily of simple mechanisms guarantees equilibrium welfare at least a constant fraction
of the VCG benchmark.

In Theorem 4.3, the mechanism family is parameterized by the number of items m;
“simple” means that the number of dimensions in each bidder’s bid space is bounded
above by some polynomial function of m. The theorem states that for every such
family and constant c > 0, for all sufficiently large m, there is a valuation profile
and a full-information mixed Nash equilibrium of the mechanism with expected
welfare less than c times the maximum possible.10

We already know from Theorem 4.2 that, in contrast, simple auctions can have
non-trivial welfare guarantees with complement-free bidder valuations. Our final re-
sult states that no simple mechanism outperforms simultaneous first-price auctions
with these bidder valuations.

Theorem 4.4 [Roughgarden 2014]. With subadditive bidder valuations, no
family of simple mechanisms guarantees equilibrium welfare more than 50% of the
VCG benchmark.

5. CONCLUSIONS

5.1 Motivating Questions Revisited

To close the circle, we return to the motivating questions of our case studies
and review the answers provided by the approximately optimal mechanism design
paradigm. The first question was:

Does a near-optimal single-item auction require detailed distributional knowledge?

To answer this question, we took the design space to be auctions with limited knowl-
edge of the valuation distributions — in the form of s i.i.d. samples — and studied
the number of samples necessary and sufficient to achieve a (1−ε)-approximation of
the Myerson benchmark. We discovered that the amount of knowledge (i.e., sam-
ples) required scales linearly with the number of distinct valuation distributions
represented in the bidder population. Thus, detailed distributional knowledge is

10Technically, Theorem 4.3 proves this statement for an ε-approximate Nash equilibrium — mean-
ing every player mixes only over strategies with expected utility within ε of a best response —

where ε > 0 can be made arbitrarily small. The same comment applies to Theorem 4.4.
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required for near-optimal revenue maximization if and only if the bidders are het-
erogeneous.

The second motivating question was:

Does a near-optimal combinatorial auction require rich bidding spaces?

Here, we defined the design space to be families of mechanisms for which the number
of parameters in a bidder’s bid space grows polynomially with the number m of
items. We adopted the VCG benchmark, which equals the maximum-possible social
welfare. We discovered that high-dimensional bid spaces are fundamental to non-
trivial welfare guarantees when there are complementarities among items, but not
otherwise. We also learned that, in some cases, selling items separately with first-
price auctions achieves the best-possible worst-case approximation guarantee of any
family of simple mechanisms.

5.2 Further Discussion

We showed how the approximately optimal mechanism design paradigm yields ba-
sic insights about two fundamental problems. Moreover, it is not clear how to
glean these insights without resorting to an analysis framework that incorporates
approximation. Our first case study fundamentally involved suboptimality — the
less knowledge the seller has, the less revenue it can obtain. Similarly, inefficiency
was an unavoidable aspect of our second case study, since simple mechanisms are
suboptimal even in very simple settings (e.g., due to demand reduction or bidder
asymmetry). An approximation framework is the obvious way to reason about and
compare different degrees of suboptimality.

An alternative idea, given a design space and an objective function, is to simply
identify the mechanism in the design space with the “best” objective function value.
The fundamental issue here is how to meaningfully compare two different mecha-
nisms, which will generally have incomparable performance. For example, for two
different single-item auctions that depend on the valuation distributions F1, . . . , Fn

only through s samples (Section 3), typically either one can have higher expected
revenue than the other, depending on the choice of F1, . . . , Fn. Similarly, for two
different combinatorial auctions with low-dimensional bid spaces, one generally has
higher welfare for some valuation profiles, and the other for other valuation pro-
files. The traditional approach in mechanism design to resolving such trade-offs is
to impose a prior on the unknown information and maximize expected performance
with respect to the prior. But this approach would return us to the very bind we
intended to escape, of uninformatively complex optimal mechanisms that require
detailed distributional knowledge.

Are our insights surprising? The presented results both confirm some existing
intuitions — which we view as important sanity checks for the theory — and go
beyond them. For example, in single-item auctions, the result that modest data
is sufficient for near-optimal revenue-maximization with homogeneous bidders is
natural given that the optimal auction depends only on the valuation distribution’s
monopoly price. While revenue-maximization with heterogeneous bidders can only
be a more complex problem, it is not clear a priori how such complexity scales with
bidder heterogeneity, or even how “complexity” should be defined. The fact that
the sample complexity scales linearly with the number of distinct valuation distri-
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butions is a satisfying and non-obvious formalization of the idea that “heterogeneity
matters.”

For the case study of selling multiple items, the high-level take-aways of our
analysis are in line with prevailing intuition — simple auctions enjoy reasonable
performance when there are no complementarities among items, but not otherwise.
One pleasant surprise of the analysis, which deserves further investigation, is that
the positive results for simple auctions hold even for the most general notion of
“complement-free valuations,” well beyond the more well-studied special cases of
gross substitutes and submodular valuations.

5.3 Open Questions

This survey presented two recent applications of the approximately optimal mech-
anism design paradigm. There have been dozens of other applications over the past
fifteen years (Section 2.6), and there is still much to do.

For example, the sample-complexity formalism of Section 3 shows promise of
deepening our understanding of Bayesian-optimal mechanism design. Proving that
modest distributional knowledge suffices for near-optimal mechanism performance
is an important step in arguing the practical relevance of a theoretically optimal
design. Upper bounds on the number of samples needed (Section 3.4) generally
suggest interesting methods of incorporating data, such as past bidding data, into
designs. Thus far, only the simple settings of single-item auctions (Section 3) and
single-bidder multi-item mechanisms [Dughmi et al. 2014] have been studied from
this perspective.

For welfare-maximization with multiple items, results like those in Section 4 give
preliminary insights into which auction designs might work well, as a function of
bidders’ preferences. An important direction for future work is to draw sharper
distinctions between different plausibly useful formats. For example, there is am-
ple empirical evidence that ascending auctions for multiple items perform better
than their sealed-bid counterparts. Can this observation be made formal using the
approximately optimal mechanism design paradigm?
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