
Worst-Case Efficiency Analysis of Queueing
Disciplines?

Damon Mosk-Aoyama?? and Tim Roughgarden1? ? ?

Department of Computer Science, Stanford University, 353 Serra Mall, Stanford, CA
94305

1 Introduction

Consider n users vying for shares of a divisible good. Every user i wants as
much of the good as possible but has diminishing returns, meaning that its
utility Ui(xi) for xi ≥ 0 units of the good is a nonnegative, nondecreasing,
continuously differentiable concave function of xi. The good can be produced in
any amount, but producing X =

∑n
i=1 xi units of it incurs a cost C(X) for a

given nondecreasing and convex function C that satisfies C(0) = 0. Cost might
represent monetary cost, but other interesting interpretations are also possible.
For example, xi could represent the amount of traffic (measured in packets, say)
that user i injects into a queue in a given time window, and C(X) could denote
aggregate delay (X ·c(X), where c(X) is the average per-unit delay). An altruistic
designer who knows the utility functions of the users and who can dictate the
allocation x = (x1, . . . , xn) can easily choose the allocation that maximizes the
welfare W (x) =

∑n
i=1 Ui(xi)−C(X), where X =

∑n
i=1 xi, since this is a simple

convex optimization problem.
But what if users are autonomous and choose the quantities xi to maximize

their own objectives? The most natural way to proceed is equilibrium analysis,
where we model each user as maximizing its own payoff function and consider
equilibrium allocations — those from which no user can unilaterally change
its quantity to increase its payoff. We can then study the welfare achieved by
autonomous and self-optimizing users via the price of anarchy (POA) — the
worst (i.e., smallest) ratio between the welfare of an equilibrium (the outcome
of selfish behavior) and the maximum-possible welfare (the ideal for an altruis-
tic designer). The POA is a standard measure of inefficiency in game-theoretic
systems, with a value near 1 indicating that selfish behavior is essentially benign.

Defining user payoffs requires a fundamental modeling decision: how does the
joint cost C(X) of producing an allocation translate to negative incentives for
? The results in Section 3 of this work also appear in Chapter 5 of the first author’s

PhD thesis [4].
?? This work was done while the author was a PhD student at Stanford University,

and supported in part by the ONR Young Investigator Award of the second author.
Email: damonma@cs.stanford.edu.

? ? ? Supported in part by NSF CAREER Award CCF-0448664, an ONR Young Inves-
tigator Award, an AFOSR MURI grant, and an Alfred P. Sloan Fellowship. Email:
tim@cs.stanford.edu.



users? This choice is formalized by a cost-sharing method ξ : Rn
+ → Rn

+ , which
distributes the joint cost to the users:

∑
i ξi(x) = C(X) for every allocation x

with X =
∑

i xi. For example, a natural cost-sharing method is average-cost pric-
ing, defined by ξFIFO

i (x) = xi

X ·C(X); we also call this the “FIFO method.” In the
queue example above, average-cost pricing naturally arises from the FIFO (first-
in, first-out) queue service discipline with random packet arrivals. The other
cost-sharing method that has been extensively studied in the present context is
serial cost-sharing, which we define in Section 2 and also call the “Fair Share
method,” after Shenker [11]. Given a cost-sharing method ξ, we define the payoff
of user i in allocation x as Pi(x) = Ui(xi) − ξi(x); equilibria and the POA are
then defined as outlined above. (Thus, we assume utility functions are in the
same units as the cost function.)

From a design perspective, an obvious question is: which cost-sharing method
yields the best welfare guarantee (i.e., POA closest to 1)? This question, as
stated, is not well defined: the best cost-sharing method depends on the play-
ers’ utilities, and it is not reasonable to assume that these are known a priori
to the designer. We therefore study the worst-case POA of cost-sharing meth-
ods, with the “worst” quantifier ranging over all possible utility function pro-
files U1, . . . , Un for a fixed number of users and a fixed cost function. Our re-
search agenda is twofold: (1) For fundamental cost-sharing methods, precisely
determine the worst-case POA in as many settings as possible; and (2) Identify
the optimal cost-sharing method for a given environment — the one with the
maximum-possible worst-case POA.

Our Results. Solving problems (1) and (2) in their full generality appears in-
tractable, and our goal here is to provide precise answers for important spe-
cial cases. Our first main result is for quadratic cost functions (of the form
C(X) = aX2 + bX). For a class of cost-sharing methods that strictly generalizes
the FIFO and Fair Share methods, we give an exact formula for the worst-case
POA of every method in the class for every number n of users. We give a single
analysis that applies to all methods in the class. Our analysis identifies restricted
linear structure in the equilibrium conditions for such methods and uses it to
identify worst-case utility profiles. The precision of our analysis permits iden-
tification of the optimal method in this class for every number n of users. For
example, our analysis shows that, in the limit as n →∞, the Fair Share method
has the optimal worst-case POA among methods in the class.

General cost functions produce nonlinear equilibrium conditions and are
much more difficult to analyze. For the Fair Share method and the case of n = 2
users, however, we show how to determine the worst-case POA with respect to
general cost functions. This result is based on a novel and unexpected “reduc-
tion” to nonatomic selfish routing games.

Related Work. The work closest to ours is Moulin [5], who studies our exact
model. Moulin [5] proved our first result for quadratic cost functions in the
important special cases of the FIFO and Fair Share methods, using different
(somewhat ad hoc) computations for each case. Here, we give a single analysis



generalizing these two results of his, which also applies to a broader class of
cost-sharing methods. In our opinion, it is surprising that the seemingly very
different FIFO and Fair Share methods (see Section 2) can be simultaneously
analyzed with a common proof. Our result for general cost functions and two
players generalizes a different result in Moulin [5], who gave tight bounds in the
two-player case for monomial cost functions (for both the FIFO and Fair Share
methods). The connection to selfish routing games is new to this paper, and it
allows us to analyze general (non-monomial) cost functions. Moulin [5] also gave
a number of results for the incremental cost-sharing method, which generally
charges users more than the total production cost (i.e., is not “budget-balanced”)
and therefore falls outside our purview. In subsequent work, Moulin [6] used
budget-balanced cost-sharing methods with negative cost shares — subsidies,
which are not permitted in this paper — to obtain much stronger positive results.
For example, for every quadratic cost function and number of users, there is such
a cost-sharing method that only induces games with POA equal to 1 [6].

A number of different but related models have been studied before. Closest
to the present work is Johari and Tsitsiklis [2, 3], who studied a variant of our
model with inelastic supply — i.e., there is a fixed amount of the divisible good
but no production cost — and identified the allocation mechanism with the best
worst-case POA among those in a broad class. We mention also Shenker [11],
who studied the Fair Share method in a queueing context but without any quan-
titative efficiency guarantees; Moulin and Shenker [7], who compared the FIFO
and Fair Share methods from an axiomatic perspective; and Christodoulou et
al. [1], who were the first to study (in a different model) how to design protocols
to optimize the worst-case POA.

2 Fundamental Cost-Sharing Methods

The FIFO method was defined in Section 1. The Fair Share method is an alter-
native designed to insulate users that request smaller quantities from the large
requests. For example, with two players and quantities x1 ≤ x2, the method
assigns a cost share of C(2x1)/2 to the first player (its fair share, if we pretend
that the second player shares its size), and the balance C(x1 +x2)−C(2x1)/2 to
the second player. In general, all users split the cost that would ensue if all users
were the same size as the smallest one; and the remaining cost is recursively
allocated to the n− 1 largest users.

Precisely, using [n] to mean {1, 2, . . . , n}: for a vector x ∈ Rn, a permutation
π : [n] → [n] is an ordering of x if the vector z ∈ Rn such that zπ(i) = xi satisfies
z1 ≤ z2 ≤ · · · ≤ zn. The vector z is the ordered version of x. There are multiple
orderings of a vector x when it has some equal components, but all the orderings
give rise to the same ordered version z.

Definition 1 (The Fair Share Method [7, 11]). For any cost function C,
number of users n, and vector x ∈ Rn

+ , let π be an ordering of x with ordered
version z. For k ∈ [n], let sk =

∑k−1
`=1 z` + (n− k + 1)zk. Then the cost share of



user i ∈ [n] is

ξFS
i (x) =

C(sπ(i))
n− π(i) + 1

−
π(i)−1∑

k=1

C(sk)
(n− k + 1)(n− k)

.

A simple way to interpolate between the FIFO and Fair Share methods is
via the following θ-combinations for θ ∈ [0, 1]:

ξi(x) = θξFS
i (x) + (1− θ)ξFIFO

i (x). (1)

The FIFO and Fair Share methods correspond to the values θ = 0 and θ = 1,
respectively. A θ-combination can be implemented in a system with one FIFO
queue and one Fair Share queue. Each arriving packet is placed into the Fair
Share queue with probability θ (and otherwise the FIFO queue). Departing pack-
ets are chosen from a queue with these same probabilities. We emphasize that
while θ-combinations are defined as a linear combination of the FIFO and Fair
Share methods, the equilibria and POA with respect to such methods are not
linear in θ — indeed, even for a quadratic cost function, the worst-case POA is
a fairly complex function of θ (Theorem 1).

3 Quadratic Cost Functions

This section considers quadratic cost functions. This assumption is restrictive,
but we will be rewarded with an exact characterization of the worst-case price
of anarchy for every θ-combination and number n of users. For simplicity, we
assume that C(X) = X2 throughout this section; scaling by a constant changes
nothing, and adding a linear term (with a nonnegative coefficient) only improves
the POA.

3.1 Equilibrium Properties

We now state some basic properties of equilibria with respect to a θ-combination
and the cost function C(X) = X2. The proofs of these preliminary results are not
trivial, but they are not the main point of this paper and we refer the interested
reader to [4, Chapter 5] for the technical details.

For a given θ-combination, with a quadratic cost function, there is a linear
relationship between an allocation vector x and the corresponding marginal costs
ξ′i(xi;x−i). (Here the derivative is w.r.t. xi and x−i denotes the other users’ quan-
tities — the vector x with the ith component removed.) For example, Figure 1
demonstrates this linear relationship in the special case of the FIFO and Fair
Share methods, when n = 4. The next proposition formalizes the relationship
for all of the cost-sharing methods that we study.



B0 =

2664
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

3775 B1 =

2664
8 0 0 0
2 6 0 0
2 2 4 0
2 2 2 2

3775

Fig. 1. The matrix B defined in Proposition 1 for the FIFO method (B0) and Fair Share
method (B1), when n = 4. Assuming that the users have been sorted in nondecreasing
order of xi, the columns correspond to the quantities xi, and the rows to the induced
marginal costs ξ′i(xi; x−i).

Proposition 1. For the cost function C(y) = y2, any number of users n, any
user i ∈ [n], and any θ ∈ [0, 1], let ξi denote the cost share of user i under the
θ-combination. Define an n× n matrix B by

Bk` =

2(1 + θ(n− k)), if k = `;
1 + θ, if k > `;
1− θ, if k < `

for any k, ` ∈ [n]. For any vector x ∈ Rn
+ , let π be any ordering of x, and let z

be the ordered version of x.

(a) The vector p ∈ Rn with pπ(i) = ξ′i(xi;x−i) for all i ∈ [n] is given by p = Bz.
(b) If zk1 < zk2 then pk1 < pk2 ; if zk1 ≤ zk2 then pk1 ≤ pk2 .

Part (a) of Proposition 1 asserts that the matrix B correctly maps allocations
to marginal costs. Part (b) asserts that marginal costs must be increasing in the
quantities xi. Proposition 1 will be useful in our POA analysis and also enables
us to establish existence and uniqueness of equilibria.

Proposition 2. For every θ-combination, quadratic cost function, and utility
function profile, the induced game has a unique equilibrium allocation vector.

Proposition 2 also holds for much more general convex cost functions. It can
be proved by modifying Rosen’s existence and uniqueness theorems for convex
games [8]. (Modifications are needed because the Fair Share method is not con-
tinuously differentiable at allocation vectors with two equal components.)

3.2 Tight Bounds on the POA

We now show how to determine the worst-case price of anarchy of every θ-
combination under a quadratic cost function, over all utility function profiles.
We first note that linear functions — of the form Ui(xi) = aixi for ai ≥ 0
— induce games with as large a POA as any other type of (nonnegative and
concave) utility function.



Lemma 1 (Linearization Lemma [2, 5]). For every θ-combination, num-
ber n of users, and convex cost function, the worst-case POA (over all utility
function profiles) is determined by linear utility function profiles.

The proof of Lemma 1 simply shows that linearizing utility functions at the equi-
librium point only worsens the POA, and then shifting the resulting nonnegative
affine functions to be linear again only worsens the POA.

For the rest of this section, we assume that all utility functions are linear
with 0 < a1 ≤ a2 ≤ · · · ≤ an. For such a profile, an optimal solution allocates
only to the nth user. A simple calculation shows that the optimal amount to
give this user is an/2, leading to a welfare of an(an/2)− (an/2)2 = a2

n/4.
The next lemma studies the welfare of an equilibrium allocation x∗ and is

central to our analysis. It states that the requested quantities in x∗ are in the
same order as the ai values, determines a remarkable formula for the welfare of
the system under x∗, and develops a constraint that relates the x∗i values to an.

Lemma 2. For the cost function C(y) = y2, any number of users n, any θ ∈
[0, 1], and any a ∈ Rn

+ such that 0 < a1 ≤ a2 ≤ · · · ≤ an, let x∗ be the equilibrium
allocation under the θ-combination.

(a) The requested quantities in x∗ are in the order x∗1 ≤ x∗2 ≤ · · · ≤ x∗n.
(b) The welfare of the system under x∗ is

W (x∗) =
n∑

i=1

(2θ(n− i) + 1) (x∗i )
2
. (2)

(c) The components of x∗ satisfy the equation

(1 + θ)
n−1∑
i=1

x∗i + 2x∗n = an. (3)

Proof. Simple computations show that, for every i, the function ξi(y;x−i) is
convex and differentiable in y for every fixed x−i. It follows that an alloca-
tion vector x is an equilibrium, with each user i choosing an optimal quantity
given x−i, if and only if

x∗i > 0 ⇒ ai = ξ′i(x
∗
i ;x

∗
−i);

x∗i = 0 ⇒ ai ≤ ξ′i(0;x∗−i).
(4)

To prove (a), let x∗ be an equilibrium and suppose for contradiction that there
are two users i1 and i2 such that i1 < i2 and x∗i1 > x∗i2 . Because x∗i2 ≥ 0, we have
x∗i1 > 0, and so the equilibrium conditions in (4) imply that ai1 = ξ′i1(x

∗
i1

;x∗−i1
)

and ai2 ≤ ξ′i2(x
∗
i2

;x∗−i2
). Since ai1 ≤ ai2 , ξ′i1(x

∗
i1

;x∗−i1
) ≤ ξ′i2(x

∗
i2

;x∗−i2
). On

the other hand, since x∗i1 > x∗i2 , Proposition 1 implies that ξ′i1(x
∗
i1

;x∗−i1
) >

ξ′i2(x
∗
i2

;x∗−i2
), contradicting this inequality.



Given that x∗1 ≤ x∗2 ≤ · · · ≤ x∗n, we can apply Proposition 1 with the ordering
π of x∗ being the identity permutation to rewrite the equilibrium conditions in (4)
as

x∗i > 0 ⇒ ai =
n∑

j=1

Bijx
∗
j ;

x∗i = 0 ⇒ ai ≤
n∑

j=1

Bijx
∗
j ,

(5)

where B is the n× n matrix defined in Proposition 1. By definition, the welfare
of x∗ is

W (x∗) =
n∑

i=1

aix
∗
i −

(
n∑

i=1

x∗i

)2

. (6)

The equilibrium conditions in (5) imply that total utility at equilibrium can be
written as a quadratic form:

n∑
i=1

aix
∗
i =

n∑
i=1

x∗i

n∑
j=1

Bijx
∗
j = (x∗)T

Bx∗ = (x∗)T

(
1
2
(
B + BT

))
x∗.

Since a quadratic cost function can be similarly expressed as

C(x) =

(∑
i

xi

)2

= xT Ex,

where E is the all-ones n × n matrix, equilibrium welfare can be expressed as a
quadratic form:

W (x∗) = (x∗)T

(
1
2
(
B + BT

))
x∗ − (x∗)T

Ex∗

= (x∗)T

(
1
2
(
B + BT

)
− E

)
x∗. (7)

Let D denote the symmetric matrix 1
2 (B + BT )−E. By the definition of B,

the diagonal entries of D are Dii = Bii − 1 = 2θ(n − i) + 1 for all i ∈ [n]. For
any i, j ∈ [n] such that i 6= j, we have Dij = Dji = (1/2)(1 + θ + 1− θ)− 1 = 0.
Thus D is a diagonal matrix, and the equation involving the quadratic form
(x∗)T

Dx∗ in (7) simplifies to

W (x∗) =
n∑

i=1

Dii (x∗i )
2
,

which yields the expression in (2) upon substitution of the Dii values.
Finally, since an > 0, the equilibrium condition in (5) implies that x∗n > 0

with

an =
n∑

i=1

Bnix
∗
i .



By substituting the Bni values, we obtain the equation in (3). ut

Scaling a vector of coefficients a by λ increases both the optimal and equi-
librium welfares by a factor of λ2 (for the latter, this follows from the linear
equilibrium conditions and Lemma 2(b)). Since the POA is the ratio of these,
and since the optimal welfare depends only on an, we can restrict our search for
the worst-case utility function profile to the set A = {a ∈ Rn

+ | 0 < a1 ≤ a2 ≤
· · · ≤ an = 1} and focus on minimizing the equilibrium welfare Wa over a ∈ A.
Our second key lemma computes this minimum precisely.

Lemma 3. Fix the cost function C(y) = y2, any number of users n, and any
θ ∈ [0, 1]. Then infa∈A Wa = 1/4Γθ(n), where Wa is the welfare of the (unique)
equilibrium for the utility profile a, and

Γθ(n) = 1 +
(1 + θ)2

4

n−1∑
i=1

1
2θi + 1

. (8)

Proof. By Lemma 2, a lower bound on the minimum-possible equilibrium welfare
is provided by the value of the convex program

minimize
n∑

i=1

(2θ(n− i) + 1)x2
i

subject to (1 + θ)
n−1∑
i=1

xi + 2xn = 1.

(9)

We introduce a Lagrange multiplier λ for the constraint 1−(1+θ)
∑n−1

i=1 xi−
2xn = 0. Then the Karush-Kuhn-Tucker (KKT) optimality conditions for the
program in (9) are

2(2θ(n− i) + 1)xi − λ(1 + θ) = 0, ∀i ∈ [n− 1];
2xn − 2λ = 0.

Solving the KKT conditions for the xi values yields

xi =
(

1 + θ

2θ(n− i) + 1

)
λ

2
, ∀i ∈ [n− 1];

xn = λ.

Substituting these values into the equality constraint in (9), we obtain

1 = λ

(
(1 + θ)2

2

n−1∑
i=1

1
2θ(n− i) + 1

+ 2

)

= 2λ

(
(1 + θ)2

4

n−1∑
i=1

1
2θi + 1

+ 1

)
= 2λΓθ(n),



and thus λ = 1/2Γθ(n).
The value of the objective function in (9) for this vector x is

n−1∑
i=1

(2θ(n− i) + 1)
(

1 + θ

2θ(n− i) + 1

)2(
λ

2

)2

+ λ2 = λ2

(
(1 + θ)2

4

n−1∑
i=1

1
2θ(n− i) + 1

+ 1

)
= λ2Γθ(n)

=
1

4Γθ(n)
.

This quantity lower bounds the minimum-possible equilibrium welfare (for vec-
tors a ∈ A).

To obtain a matching upper bound, consider the vector x ∈ Rn
+ obtained

by solving the KKT conditions and imposing the equality constraint in (9). The
components of x are

xi =
(

1 + θ

2θ(n− i) + 1

)
1

4Γθ(n)
, ∀i ∈ [n− 1];

xn =
1

2Γθ(n)
,

and so 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn. Define a vector a as a = Bx, where B
is the matrix defined in the statement of Proposition 1 for the θ-combination.
Proposition 1 implies that a1 ≤ a2 ≤ · · · ≤ an. Moreover, because x satisfies the
equality constraint in (9), we have

an =
n−1∑
i=1

Bnixi + Bnnxn = (1 + θ)
n−1∑
i=1

xi + 2xn = 1.

Finally, the vector x satisfies the equilibrium conditions in (5), so it is the
equilibrium of the game with utility functions defined by a. Since the welfare of
x is Wa = 1/4Γθ(n), the proof is complete. ut

Recalling that the optimal welfare is 1/4 for every vector a ∈ A, we have our
main result for quadratic cost functions.

Theorem 1. For the cost function C(y) = y2, any number of users n, and any
θ ∈ [0, 1], the price of anarchy of the θ-combination is 1/Γθ(n).

The formula in Theorem 1 for the two special cases θ = 0 and θ = 1 was
established in Moulin [5] using two different proofs. Obviously, the formula in (8)
can be used to identify the optimal θ-combination for every number n of users.
When n = 2, the FIFO method is the best θ-combination (with worst-case
POA 4/5) while the Fair Share method is the worst (with worst-case POA 3/4).
When n = 3, the Fair Share method remains the worst (with worst-case POA
15/23). The FIFO method is slightly better, with worst-case POA 2/3. Taking
θ ≈ .262648 yields a superior θ-combination, with worst-case POA ≈ .687. For



n POA of FIFO POA of Fair Share Optimal θ Optimal POA

2 .8 .75 0 .8
3 ≈ .667 ≈ .652 ≈ .262648 ≈ .687
4 ≈ .571 ≈ .595 ≈ .375361 ≈ .623
5 .5 ≈ .559 ≈ .442921 ≈ .581
10 ≈ .308 ≈ .469 ≈ .588111 ≈ .481
20 ≈ .174 ≈ .403 ≈ .677465 ≈ .410
40 ≈ .093 ≈ .354 ≈ .737 ≈ .358

Table 1. Illustration of Theorem 1. Comparison, for different n, of the exact worst-case
POA of the FIFO method, the Fair Share method, and the optimal θ-combination.

all n ≥ 4, the Fair Share method outperforms the FIFO method but other θ-
combinations are still better (see Table 1). In the limit as n → ∞, for every
θ ∈ (0, 1], Γθ(n) scales as (1 + θ)2 lnn/(8θ). (For θ = 0, the FIFO method scales
as 4/(n + 3).) Since θ/(1 + θ)2 is increasing in the interval θ ∈ (0, 1], the Fair
Share method has the best asymptotic worst-case POA, which scales as 2/(lnn)
for large n.

4 General Cost Functions

This section considers general (non-quadratic) cost functions. Analyzing the case
of many players appears intractable, so we settle for a solution to two-player
games induced by the Fair Share method. We begin with a simple but useful
lemma, which holds even with many users.

Lemma 4. If all users have linear utility functions and the cost function is
strictly convex, then the total quantity allocated in the Fair Share equilibrium
equals that in the optimal allocation.

Proof. (Sketch.) Suppose user n has the largest utility function coefficient an.
One optimal solution allocates only to user n, and the optimal amount to allocate
is the unique point X at which an = C ′(X).

Consider an equilibrium under Fair Share. Analogous to condition (5) in
Lemma 2 and the bottom row of the matrix B1 in Figure 1, at equilibrium we
must have an = ξ′n(x∗n;x∗−n) = C ′(X). Thus the quantity allocated at x∗ (across
all users) equals that in the optimal solution (to user n only). ut

Our approach is to show an explicit connection, interesting in its own right,
between games with two users with linear utility functions and nonatomic selfish
routing games (e.g. [10]). Recall Pigou’s example, a basic selfish routing network:
X units of traffic, comprising a large number of infinitesimal autonomous users,
choose between two parallel links connecting one vertex to another. One link has
some per-unit cost function c(x1), and the other has constant per-unit cost c(X).
The first link is a dominant strategy, so in the only equilibrium all traffic takes it
and the aggregate cost is X · c(X). An optimal outcome, by definition, splits the



traffic x1 and x2 = X−x1 between the two links to minimize x1 ·c(x1)+x2 ·c(X).
Much is known about the ratio between the equilibrium and optimal costs in
Pigou’s example (and much more general selfish routing networks), as a function
of c. This ratio is called the Pigou bound for c and is denoted α(c). For example,
the Pigou bound for all affine functions is at most 4/3, with equality achieved
when c(x) = ax for some a > 0; and for per-unit cost functions c that are
polynomials with nonnegative coefficients and degree at most p, the largest Pigou
bound grows like ≈ p/ ln p [9].

The connection between Pigou’s example and the queueing games studied in
this paper is most vivid for the total user utility — so for our penultimate result,
we ignore the cost term in the welfare objective function.

Theorem 2. For every differentiable convex cost function C, the worst-case
fraction of the optimal total utility achieved by the Fair Share equilibrium allo-
cation with two players is exactly

1
2

(
1 +

1
α(C ′)

)
,

where α(C ′) is the Pigou bound for C ′.

Proof. (Sketch.) We prove the theorem constructively, by exhibiting a worst-
possible example for the Fair Share equilibrium allocation. Fix a choice of X ≥ 0;
we later optimize adversarially over X. Give the second user the utility func-
tion U2(x2) = C ′(X) · x2. For any x1 ∈ [0, X/2], choosing the coefficient a1 =
C ′(2x1) ≤ C ′(X) for the first user’s utility function ensures that x∗1 = x1 at the
Fair Share equilibrium x∗. For a given choice of X and x1 ∈ [0, X/2], the total
user utility obtained by Fair Share is then x1 · C ′(2x1) + (X − x1) · C ′(X). By
a change of variable, this payoff is minimized at y∗/2, where y∗ is the optimal
amount of traffic to route on the non-constant link of Pigou’s example when
there are X units of traffic and the non-constant per-unit cost function c is C ′.
The resulting total user utility is

y∗

2
C ′(y∗) +

(
X − y∗

2

)
· C ′(X) =

1
2

(y∗C ′(y∗) + (X − y∗) · C ′(X)) +
1
2

(X · C ′(X))

≥ X · C ′(X)
(

1
2

+
1

2α(C ′)

)
,

where the inequality follows from the definition of the Pigou bound α(C ′) for C ′.
The parameter X can be chosen so that the inequality is arbitrarily close to an
equality. The total user utility obtained in the optimal solution is X ·C ′(X), and
the Fair Share equilibrium allocation obtains only a 1

2 (1 + 1/α(C ′)) fraction of
this. Reversing the steps in the argument above shows that no worse example is
possible. ut

To extend Theorem 2 to a bound on the POA for the welfare objective,
we need to re-introduce the cost terms (for both the optimal and equilibrium



allocations). This can be approached in a number of ways. Since we can assume
utility functions are linear (Lemma 1), Lemma 4 shows that both allocations
will suffer the same cost. A crude way to proceed is to define

γ(c) = sup
X≥0

∫X

0
c(x)dx

X · c(X)
; (10)

for example, if c(x) = xd, then γ(c) = 1/(d + 1). Theorem 2 then yields the
following corollary for the POA.

Corollary 1. For every differentiable convex cost function C, the worst-case
POA of Fair Share with two players is at least

1
1− γ(C ′)

·
(

1
2

(
1 +

1
α(C ′)

)
− γ(C ′)

)
,

where α(C ′) is the Pigou bound for C ′ and γ(C ′) is defined as in (10).

For example, for the marginal cost function C ′(x) = xd, plugging in the known
upper bound on the Pigou value [9] together with γ(C ′) = 1/(d+1) immediately
gives a lower bound of 1 − 1

2 (d + 1)−1/d, on the worst-case POA, recovering a
result of Moulin [5]. Other natural types of cost functions can be treated in a
similar way.

References

1. G. Christodoulou, E. Koutsoupias, and A. Nanavati. Coordination mechanisms. In
Proceedings of the 31st Annual International Colloquium on Automata, Languages,
and Programming (ICALP), volume 3142 of Lecture Notes in Computer Science,
pages 345–357, 2004.

2. R. Johari and J. N. Tsitsiklis. Efficiency loss in a network resource allocation game.
Mathematics of Operation Research, 29(3):407–435, August 2004.

3. R. Johari and J. N. Tsitsiklis. Efficiency of scalar-parameterized mechanisms.
Operations Research, 2009. To appear.

4. D. Mosk-Aoyama. Convergence to and Quality of Equilibria in Distributed Systems.
PhD thesis, Stanford University, 2008.

5. H. Moulin. The price of anarchy of serial, average and incremental cost sharing.
Economic Theory, 36(3):379–405, September 2008.

6. H. Moulin. An efficient and almost budget balanced cost sharing method. Games
and Economic Behavior, 2009. In press.

7. H. Moulin and S. J. Shenker. Serial cost sharing. Econometrica, 60(5):1009–1037,
September 1992.

8. J. B. Rosen. Existence and uniqueness of equilibrium points for concave n-person
games. Econometrica, 33(3):520–534, July 1965.

9. T. Roughgarden. The price of anarchy is independent of the network topology.
Journal of Computer and System Sciences, 67(2):341–364, 2003.

10. T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, 2005.
11. S. J. Shenker. Making greed work in networks: A game-theoretic analysis of switch

service disciplines. IEEE/ACM Transactions on Networking, 3(6):819–831, De-
cember 1995.


