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Abstract

We survey several unexpected connections between computational complexity and
fundamental economic questions that appear unrelated to computation.

1 Introduction

Computational complexity theory is a branch of theoretical computer science that studies the
amount of resources (time, space, communication, etc.) required to solve different compu-
tational problems (see e.g. [14].) Computational complexity has already had plenty to say
about economic equilibria. Some of the most celebrated results in algorithmic game the-
ory give strong evidence that there is no general efficient algorithm for computing various
types of equilibria, including mixed Nash equilibria in finite games and market equilibria in
markets with divisible goods and concave utility functions (see e.g. [7, 9, 6]).

Recent work has established several unexpected connections between computational com-
plexity and fundamental economic questions that seem to have little to do with computation
(as opposed to the explicitly computational questions mentioned above). These new connec-
tions suggest the possibility of a rich theory with many applications. We briefly describe a
few of these connections, with the hope of inspiring further work along similar lines.

2 Barriers for Simple Auctions

The goal of auction design is to develop auction formats that enjoy good properties when the
participants act in a self-interested manner (i.e., reach an “equilibrium”). One fundamental
and high-stakes example is the design of multi-item auctions for selling wireless spectrum
licenses, as used by the Federal Communications Commission (see e.g. [8]). Many practition-
ers in multi-item auction design abide by the following rule of thumb: simple auctions, such
as selling each item separately in parallel, can perform well if and only if there are not strong
synergies across items. An example of such a synergy would be between licenses for spectrum
in northern and southern California—a company looking to roll out a new statewide data
plan only wants one of the licenses if it can get both. (Or for a more prosaic example, think
of a left shoe and a right shoe.)

This 25-year-old rule of thumb has only been formalized over the past few years. Proving
that simple auctions can work well without item synergies boils down to proving “price of
anarchy (POA)” bounds, which state that all of the equilibria of a simple auction are almost
as good as an optimal outcome (e.g., in terms of the social welfare achieved). The theory
of “smooth games” developed in [16], and its subsequent extensions (e.g. [20]), turns out to
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be well suited to this goal. Many good POA bounds for different auction formats are now
known (see the survey paper [18]).

Proving the converse, that simple auctions cannot work well when there are item syner-
gies, seems more difficult. While a positive result only requires analyzing one simple auction
format, a negative result needs to rule out every possible simple auction format. Fortunately,
computational complexity theory has a rich toolbox for proving such impossibility results.
The main result in [15] uses lower bounds in communication complexity (see e.g. [12, 17]) to
formally prove the impossibility of good simple auctions when there are strong item synergies.

One of many intriguing open research directions is to prove impossibility results that
are stronger than those implied by the communication complexity connection established
in [15]. The POA lower bounds proved in [15] rely on two properties of equilibria: guaranteed
existence and efficient verifiability. Equilibria possess additional properties—can these be
exploited to prove stronger impossibility results? Specifically, every equilibrium implicitly
solves the best-response problem for every player. These single-agent problems are a second
source of potential impossibility, orthogonal to the difficulty posed by approximating the
underlying multi-agent optimization problem.

3 Barriers for Competitive Equilibria

One of the most basic notions in economics is that of a competitive equilibrium, which
comprises prices for items that equalize supply and demand. In a market with divisible
goods (milk, wheat, etc.), a competitive equilibrium exists under reasonable assumptions.
Many markets with indivisible goods (houses, wireless spectrum licenses, airport landing
slots, etc.), however, can fail to possess a competitive equilibrium. Recent work [19] uses
computational complexity to explain the rampant non-existence of such equilibria.

To be more concrete, fix a set of m (non-identical and indivisible) items and let V denote
a set of valuation functions (i.e., real-valued set functions with ground set {1, 2, . . . ,m}).
For example, V could be the set of additive valuations, unit-demand valuations, valuations
satisfying the gross substitutes condition [11], or general monotone valuations. One of the
main results in [19] proves a necessary condition for the guaranteed existence of a competitive
equilibrium, which compares the computational tractability of two different problems. The
welfare-maximization problem for V is: given valuations v1, . . . , vn ∈ V for n agents (described
either succinctly or through oracle access), compute the allocation (S1, . . . , Sn) of items to
agents that maximizes the social welfare

∑n
i=1 vi(Si). The utility-maximization problem for V

is: given a single valuation v ∈ V and item prices p1, . . . , pm, compute a utility-maximizing
bundle (i.e., a bundle in argmaxS v(S)−

∑
j∈S pj). The welfare-maximization problem (with

n agents) is generally only harder than the utility-maximization problem (with 1 agent). The
necessary condition in [19] for the guaranteed existence of a competitive equilibrium in every
market with valuations in V is that the welfare-maximization problem is no harder than
the utility-maximization problem. By “no harder,” we mean that given a subroutine that
solves the utility-maximization problem, it is possible to solve also the welfare-maximization
problem (with the number of invocations of the subroutine and the additional work performed
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bounded above by some polynomial function of n and m).
One of many open questions in this direction is to develop analogous impossibility results

for settings without prices or money, such as markets for matching (marriage, college ad-
missions, etc.) or kidney exchange. One possible plan for proving such impossibility results
is to derive a contradiction from statements of the following types: (i) Pareto optimality,
which states that no one can be made better off without making someone else worse off, is
computationally difficult to verify; (ii) a competitive equilibrium is computationally easy to
verify (assuming that the single-agent utility-maximization problem is tractable); (iii) “first
and second welfare theorems,” which provide a close correspondence between competitive
equilibria and Pareto-optimal outcomes.

4 Barriers for Tractable Characterizations

Border’s theorem is a fundamental result about probability distributions that has important
applications in auction design [2]. One way to phrase Border’s theorem is that it gives an
explicit description of the facets of a certain polytope, which is the projection of the space of
all single-item auctions onto their “interim allocation rules” with respect to a prior distribu-
tion over bidders’ valuations for an item. Border’s theorem is useful in auction design both
for understanding the structure of revenue-optimal auctions (as one varies the prior), and in
efficiently computing such an auction (given a description of the prior as input). General-
izations of Border’s theorem beyond the single-item auction setting have been hard to come
by (though see [1, 3, 5]), unless one resorts to approximation (as in [3, 4]). Recent work [10]
uses computational complexity theory to explain this state of affairs: under standard com-
plexity assumptions (that the “polynomial hierarchy” does not collapse), Border’s theorem
cannot be extended significantly beyond single-item auctions. The techniques introduced
in [10] do not appear specific to auction design, and show the promise of ruling out tractable
characterizations of many other mathematical objects. For example, in recent years there
has been tremendous progress in ruling out “extended linear programming formulations” for
various computational problems, including graph matching (see e.g. [13]). Can the tech-
niques introduced in [10] advance this research agenda further, under suitable complexity
assumptions?
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