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Abstract

We survey one area of the emerging field of algorithmic game theory: the use
of approximation measures to quantify the inefficiency of game-theoretic equilibria.
Potential functions, which enable the application of optimization theory to the study
of equilibria, have been a versatile and powerful tool in this area. We use potential
functions to bound the inefficiency of equilibria in three diverse, natural classes of
games: selfish routing networks, resource allocation games, and Shapley network design
games.

1 Introduction

The interface between theoretical computer science and microeconomics, often called algo-
rithmic game theory, has been an extremely active research area over the past few years.
Recent points of contact between the two fields are diverse and include, for example, in-
creased attention to computational complexity and approximation in combinatorial auc-
tions (e.g. [9]); a new focus on worst-case analysis in optimal auction design (e.g. [17]);
and a renewed emphasis on the computability and learnability of equilibrium concepts
(e.g. [14, 18, 26]). This survey touches on just one connection between theoretical computer
science and game theory: the use of approximation measures to quantify the inefficiency of
game-theoretic equilibria.

1.1 Quantifying the Inefficiency of Equilibria

Even in very simple settings, selfish behavior can lead to highly inefficient outcomes [11].
A canonical example of this phenomenon is provided by the “Prisoner’s Dilemma” [28], in
which strategic behavior by two captured and separated prisoners inexorably draws them
into the worst-possible outcome. We will see several concrete examples of the inefficiency of
selfish behavior in networks later in the survey.
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Must more recently, researchers have sought to quantify the inefficiency of selfish behavior.
Koutsoupias and Papadimitriou [23] proposed a framework to systematically study this issue.
The framework presupposes a strategic environment (a game), a definition for the outcome of
selfish behavior (an equilibrium concept), and a real-valued, nonnegative objective function
defined on the possible outcomes of the game. The price of anarchy [23, 26] is then defined
as the ratio between the objective function value of an equilibrium and that of an optimal
solution. (For the moment, we ignore the question of whether or not equilibria exist and are
unique.) If the price of anarchy of a game is 1, then its equilibria are fully efficient. More
generally, bounding the price of anarchy in a class of games provides a guarantee on the
worst-possible inefficiency of equilibria in these games.

The price of anarchy is directly inspired by other popular notions of approximation in
theoretical computer science [23]. One example is the approzimation ratio of a heuristic
for a (typically NP-hard) optimization problem, defined as the largest ratio between the
objective function value of the solution produced by the heuristic and that of an optimal
solution. While the approximation ratio measures the worst-case loss in solution quality
due to insufficient computational effort, the price of anarchy measures the worst-case loss
arising from insufficient ability (or willingness) to control and coordinate the actions of selfish
individuals. Much recent research on the price of anarchy is motivated by optimization
problems that naturally occur in the design and management of large networks (like the
Internet), in which users act selfishly, but implementing an optimal solution is not practical.

1.2 Potential Functions

The price of anarchy has been successfully analyzed in a diverse array of game-theoretic
models (see e.g. [32, 33] and the references therein). This survey discusses three of these
models, with the goal of illustrating a single mathematical tool for bounding the price of
anarchy: potential functions. The potential function technique is by no means the only one
known for bounding the inefficiency of equilibria, but (so far) it has been the most versatile
and powerful.

Potential functions enable the application of optimization theory to the study of equilib-
ria. More precisely, a potential function for a game is a real-valued function, defined on the
set, of possible outcomes of the game, such that the equilibria of the game are precisely the
local optima of the potential function. This idea was first used to analyze selfish behavior
in networks by Beckmann, McGuire, and Winsten [4], though similar ideas were used earlier
in other contexts.

When a game admits a potential function, there are typically consequences for the ex-
istence, uniqueness, and inefficiency of equilibria. For example, suppose a game admits a
potential function and either: (1) there are a finite number of distinct outcomes; or (2) the
set of outcomes is compact and the potential function is continuous. In either case, the
potential function achieves a global optimum, which is also a local optimum, and hence the
game has at least one equilibrium. This is a much more elementary approach to establishing
the existence of equilibria than traditional fixed-point proofs (e.g. [25]). Moreover, if the
potential function has a unique local optimum, then the game has a unique equilibrium.
Finally, if the potential function is “close to” the true objective function, then the equilibria



that are global optima of the potential function have nearly-optimal objective function value,
and are thus approximately efficient.

The power of the potential function approach might suggest that its applicability is
limited. Fortunately, many important and natural classes of games admit well-behaved
potential functions. To suggest what such functions look like, we briefly interpret some
classical results about electric networks in terms of potential functions. Consider electrical
current in a two-terminal network of resistors. By Kirchhoff’s equations and Ohm’s law, we
can interpret this current as an “equilibrium”, in the sense that it equalizes the voltage drop
along all paths in the network between the two terminals. (View current as a large population
of “selfish particles”, each seeking out a path with minimum voltage drop.) On the other
hand, Thomson’s principle states that electrical current also minimizes the dissipated energy
over all flow patterns that achieve the same total current. In other words, energy dissipation
serves as a potential function for current in an electrical network. For further details and
discussion, see Kelly [21] and Doyle and Snell [10].

1.3 Survey Overview

Each of the next three sections introduces a model of selfish behavior in networks, and uses
a potential function to bound the inefficiency of equilibria in the model. We focus on these
three examples because they are simple, natural, and diverse enough to illustrate different
aspects of potential function proof techniques. In order to emphasize the most important
concepts and provide a number of self-contained proofs, we often discuss only special cases
of more general models and results.

Section 2 discusses selfish routing networks, a model that generalizes the electrical net-
works of Subsection 1.2 and has been extensively studied by the transportation, networking,
and theoretical computer science communities. Section 3 analyzes the performance of a
well-studied distributed protocol for allocating resources to heterogeneous users. Section 4
bounds the inefficiency of equilibria in a model of selfish network design. Section 5 concludes.

2 Selfish Routing and the Price of Anarchy
2.1 The Model

In this section, we study the inefficiency of equilibria in the following model of noncoop-
erative network routing. A multicommodity flow network, or simply a network, is a finite
directed graph G = (V, E), with vertex set V and (directed) edge set F, together with a
set (s1,%1), .-, (Sk, 1) of source-sink vertex pairs. We also call such pairs commodities. We
denote the set of simple s;-t; paths by P;, and always assume that this set is non-empty
for each 7. We allow the graph G to contain parallel edges, and a vertex can participate in
multiple source-sink pairs.

A flow in a network G is a nonnegative vector indexed by the set P = U¥_P;. For a flow
f and a path P € P;, we interpret fp as the amount of traffic of commodity ¢ that chooses
the path P to travel from s; to t;. We use r to denote a nonnegative vector of traffic rates,
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Figure 1: Pigou’s example (Example 2.2).

indexed by the commodities of G. A flow f is feasible for r if it routes all of the prescribed
traffic: for each 7 € {1,2,...,k}, Y pep. fr =i

We model the negative consequences of network congestion in the following simple way.
For a flow f in a network G' and an edge e of G, let f, = Y pcp..cp fp denote the total
amount of traffic employing edge e. Each edge e then has a nonnegative, continuous, and
nondecreasing cost function c., which describes the cost incurred by traffic using the edge e
as a function of f.. We call a triple of the form (G, r,c) a selfish routing network or simply
an wnstance.

Next we describe a notion of equilibrium in selfish routing networks—the expected out-
come of “selfish routing”. Define the cost of a path P with respect to a flow f as the sum
of the costs of the constituent edges: cp(f) = > .cpcCe(fe). Assuming that selfish traffic
attempts to minimize its incurred cost, we obtain the following definition of a Wardrop
equilibrium [38].

Definition 2.1 ([38]) Let f be a feasible flow for the instance (G,r,c). The flow f is a
Wardrop equilibrium if, for every commodity i € {1,2,...,k} and every pair P,P € P; of
s;-t; paths with fp > 0, cp(f) < cp(f)-

In Definition 2.1, we are implicitly assuming that every network user controls a negligible
portion of the overall traffic, so that the actions of an individual user have essentially no
effect on the network congestion. In the game theory literature, games with this property are
called nonatomic [35]. Atomic variants of selfish routing have also been extensively studied
(see e.g. [32]). We will study other types of atomic games in Sections 3 and 4.

Example 2.2 (Pigou’s example [27]) Consider the two-vertex, two-edge network shown
in Figure 1. There is one commodity and the traffic rate is 1. Note that the lower edge is
cheaper than the upper edge if and only if less than one unit of traffic uses it. There is thus
a unique Wardrop equilibrium, with all traffic routed on the lower edge. In this flow, all
traffic incurs one unit of cost.

Pigou’s example already illustrates that equilibria can be inefficient. More specifically,
note that routing half of the traffic on each of the two edges would produce a “better” flow:
all of the traffic would incur at most one unit of cost, while half of the traffic would incur
only 1/2 units of cost.



The inefficiency of the Wardrop equilibrium in Example 2.2 arises from what is often
called a congestion externality—a selfish network user accounts only for its own cost, and
not for the costs that its decision imposes on others. The “better” routing of traffic in
Example 2.2 is not a Wardrop equilibrium because a selfish network user routed on the
upper edge would switch to the lower edge, indifferent to the fact that this switch (slightly)
increases the cost incurred by a large portion of the population.

In Example 2.2, there is a unique Wardrop equilibrium. In Subsection 2.2 we will use
a potential function to prove the following theorem, which states that Wardrop equilibria
exist and are “essentially unique” in all selfish routing networks.

Theorem 2.3 ([4]) Let (G,r,c) be an instance.

(a) The instance (G,r,c) admits at least one Wardrop equilibrium.
(b) If f and f are Wardrop equilibria for (G,r,c), then co(f.) = ce(f.) for every edge e.

The Wardrop equilibrium in Example 2.2 is intuitively inefficient; we next quantify this
inefficiency. We define our objective function, the cost of a flow, as the sum of the path costs
incurred by traffic:

C(f) = cr(fifr =) celfo)fe (1)
PeP eck
The first equality in (1) is a definition; the second follows easily from the definitions. An
optimal flow for an instance (G, r, c) is feasible and minimizes the cost. Since cost functions
are continuous and the set of feasible flows is compact, every instance admits an optimal
flow. In Pigou’s example (Example 2.2), the Wardrop equilibrium has cost 1, while routing
half of the traffic on each edge yields an optimal flow with cost 3/4.

Definition 2.4 ([23, 26]) The price of anarchy p(G,r,c) of an instance (G,r,c) is

(/)
P Ga C)= S
o) =)
where f is a Wardrop equilibrium and f* is an optimal flow. The price of anarchy p(Z) of a
non-empty set Z of instances is supg ;. ez P(G, T, €)-

Definition 2.1 and Theorem 2.3(b) easily imply that all Wardrop equilibria have equal cost,
and thus the price of anarchy of an instance is well defined unless there is a flow with zero
cost. In this case, all Wardrop equilibria also have zero cost, and we define the price of
anarchy of the instance to be 1.

Example 2.5 (Nonlinear Pigou’s example [34]) The inefficiency of the Wardrop equi-
librium in Example 2.2 can be amplified with a seemingly minor modification to the network.
Suppose we replace the previously linear cost function ¢(z) = z on the lower edge with the
highly nonlinear one ¢(z) = z? for p large (Figure 2). As in Example 2.2, the cost of the
unique Wardrop equilibrium is 1. The optimal flow routes a small € fraction of the traffic
on the upper edge and has cost € + (1 — €)P*. Since this approaches 0 as € tends to 0 and
p tends to infinity, the price of anarchy of this selfish routing network grows without bound
as p grows large.
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Figure 2: A nonlinear variant of Pigou’s example (Example 2.5).

Example 2.5 demonstrates that the price of anarchy can be large in (very simple) networks
with nonlinear cost functions. In Subsection 2.2 we use a potential function to show the
converse: the price of anarchy is large only in networks with “highly nonlinear” cost functions.

2.2 A Potential Function for Wardrop Equilibria

We now show that Wardrop equilibria can be characterized as the minima of a potential
function, and use this characterization to prove both Theorem 2.3 and upper bounds on the
price of anarchy of selfish routing. To motivate this potential function, we first characterize
the optimal flows of an instance.

Optimal flows for an instance (G, r,c) minimize the cost (1) subject to linear flow fea-
sibility constraints. Assume for the moment that for every edge e, the function z - c.(z)
is convex. The cost (1) is then a convex (separable) function, and we can apply the
Karush-Kuhn-Tucker conditions (see e.g. [5]) to characterize its global minima. To state
this characterization cleanly, assume further that all cost functions are differentiable, and let
ci(z) = (z- ce(x)) = ce(x) + = - c,(z) denote the marginal cost function for the edge e. The

KKT conditions then give the following.

Proposition 2.6 ([4]) Let (G,r,c) be an instance such that, for every edge e, the function
x - ce(x) is conver and differentiable. Let ¢ denote the marginal cost function of the edge e.
Then f* is an optimal flow for (G,r,c) if and only if, for every commodity i € {1,2,...,k}
and every pair P, P € P; of s;-t; paths with fp > 0, ¢h(f) < cs(f)-

Comparing Definition 2.1 and Proposition 2.6, we discover that Wardrop equilibria and
optimal flows are essentially the same thing, just with different sets of cost functions.

Corollary 2.7 Let (G,r,c) be an instance such that, for every edge e, the function - co(x)
s convez and differentiable. Let ¢ denote the marginal cost function of the edge e. Then f*
is an optimal flow for (G,r,c) if and only if it is a Wardrop equilibrium for (G,r,c*).

To construct a potential function for Wardrop equilibria, we need to “invert” Corol-
lary 2.7: of what function do Wardrop equilibria arise as global minima? The answer
is simple: to recover Definition 2.1 as an optimality condition, we seek a function h.(z)



for each edge e—playing the previous role of z - c.(z)—such that hL(z) = c.(x). Setting
he(z) = [; ce(y)dy for each edge e thus yields the desired potential function.

Precisely, call
fe
®(f) :Z/ co(x)d (2)
eck 0

the potential function for an instance (G, r,c). Analogously to Corollary 2.7, the following
proposition holds.

Proposition 2.8 ([4]) Let (G,r,c) be an instance. A flow feasible for (G,r,c) is a Wardrop
equilibrium if and only if it is a global minimum of the corresponding potential function ®
given in (2).

Remark 2.9 Thomson’s principle for electrical networks (Subsection 1.2) can be viewed
as the special case of Proposition 2.8 for single-commodity flow networks with linear cost
functions (of the form c.(x) = a.x).

Theorem 2.3 now follows easily.

Proof of Theorem 2.3: (Sketch) Since cost functions are continuous and the set of feasible
flows is compact, part (a) of the theorem follows immediately from Proposition 2.8 and
Weierstrass’s Theorem. Since cost functions are nondecreasing, the potential function &
in (2) is convex; moreover, the set of feasible flows is convex. Part (b) of the theorem now
follows from routine convexity arguments. l

Much more recently, the potential function (2) has been used to upper bound the price
of anarchy of selfish routing. The intuition behind this connection is simple: if Wardrop
equilibria exactly optimize a potential function (2) that is a good approximation of the
objective function (1), then they should also be approximately optimal. Formally, we have
the following.

Theorem 2.10 ([34]) Let (G,r,c) be an instance, and suppose that z-c.(z) < - [ ce(y)dy
for alle € E and x > 0. Then the price of anarchy p(G,r,c) is at most 7.

Proof: Let f and f* be a Wardrop equilibrium and an optimal flow for (G, r, ¢), respectively.
Since cost functions are nondecreasing, the cost of a flow (1) is always at least its potential
function value (2). The hypothesis ensures that the cost of a flow is at most 7 times its
potential function value. The theorem follows by writing

C(f) Sv-0(f) <v-2(f7) <v-C(f),
with the second inequality following from Proposition 2.8. B

Theorem 2.10 implies that the price of anarchy of selfish routing is large only in networks
with “highly nonlinear” cost functions. For example, if ¢, is a polynomial function with
degree at most p and nonnegative coefficients, then z - c.(z) < (p + 1) [§ ce(y)dy for all
x > 0. Applying Theorem 2.10, we find that the price of anarchy in networks with cost
functions that are polynomials with nonnegative coefficients grows at most linearly with the
degree bound p.



Corollary 2.11 ([34]) If (G, r,c) is an instance with cost functions that polynomials with
nonnegative coefficients and degree at most p, then p(G,r,c) < p+ 1.

This upper bound is nearly matched by Example 2.5. (The upper and lower bounds differ
by roughly a In p multiplicative factor.) Qualitatively, Example 2.5 and Corollary 2.11 imply
that a large price of anarchy can be caused by highly nonlinear cost functions, but not by
complex network topologies or by a large number of commodities.

2.3 An Optimal Bound on the Price of Anarchy

We have established that the price of anarchy of selfish routing depends on the “degree of
nonlinearity” of the network cost functions. However, even in the simple case of polynomial
cost functions, there is gap between the lower bound on the price of anarchy provided by
Example 2.5 and the upper bound of Theorem 2.10. We conclude this section by showing
how a different analysis, which can be regarded as a more “global” application of potential
function ideas, provides a tight bound on the price of anarchy for essentially every set of
allowable cost functions.

We first formalize a natural lower bound on the price of anarchy based on “Pigou-like
examples”.

Definition 2.12 ([7, 31]) Let C be a nonempty set of cost functions. The Pigou bound
a(C) for C is
- c(r)

: 3)

o) =Sup S0P ) + (r — 2)er)

with the understanding that 0/0 = 1.

The point of the Pigou bound is that it lower bounds the price of anarchy in instances with
cost functions in C.

Proposition 2.13 Let C be a set of cost functions that contains all of the constant cost
functions. Then p(C) > «(C).

Proof: Fix a choice of ¢ € C and z,7 > 0. We can complete the proof by exhibiting a selfish
routing network with cost functions in C and price of anarchy at least ¢(r)r/[c(z)x + (r —
x)c(r)]. Since ¢ is nondecreasing, this expression is at least 1 if x > r; we can therefore
assume that z < r.

Let G be a two-vertex, two-edge network as in Figure 1. Give the lower edge the cost
function ¢;(y) = ¢(y) and the upper edge the constant cost function cy(y) = ¢(r). By
assumption, both of these cost functions lie in C. Set the traffic rate to r. Routing all of
the traffic on the lower edge yields a Wardrop equilibrium with cost ¢(r)r. Routing z units
of traffic on the lower edge and r — z units of traffic on the upper edge gives a feasible
flow with cost [c¢(x)z + (r — x)c(r)]. The price of anarchy in this instance is thus at least
c(r)r/[e(x)z + (r — x)e(r)], as desired B

Proposition 2.13 holds more generally for every set C of cost functions that is inhomoge-
neous in the sense that ¢(0) > 0 for some ¢ € C [31].
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We next show that, even though the Pigou bound is based only on Pigou-like examples,
it is also an upper bound on the price of anarchy in general multicommodity flow networks.
The proof requires the following variational inequality characterization of Wardrop equilibria,
first noted by Smith [36].

Proposition 2.14 ([36]) A flow f feasible for (G,r,c) is a Wardrop equilibrium if and only

if
S clf)fe <3 clff

eck eckE

for every flow f* feasible for (G,r,c).

Proposition 2.14 can be derived as an optimality condition for minimizers of the potential
function (2), or can be proved directly using Definition 2.1.
We now show that the Pigou bound is tight.

Theorem 2.15 ([7, 31]) Let C be a set of cost functions and «(C) the Pigou bound for C.
If (G,r,c) is an instance with cost functions in C, then

p(G,r,c) < a(C).

Proof: Let f* and f be an optimal flow and a Wardrop equilibrium, respectively, for an
instance (G, r, c) with cost functions in the set C. The theorem follows by writing

C(f) = D clff:
> ()Zcefefe+z fo)ee(fe)
clf)
Z O{(C)’

where the first inequality follows from Definition 2.12 and the second from Proposition 2.14.
[ |

Different, more recent proofs of Theorem 2.15 can be found in [8, 37].

Proposition 2.13 and Theorem 2.15 establish the qualitative statement that, for essen-
tially every fixed restriction on the allowable network cost functions, the price of anar-
chy is maximized by Pigou-like examples. Determining the largest-possible price of anar-
chy in Pigou-like examples (i.e., the Pigou bound) is a tractable problem in many cases.
For example, it is precisely 4/3 when C is the affine functions [34], and more generally is
[1—p-(p+1)~®t/P]71 ~ p/Inp when C is the set of polynomials with degree at most p
and nonnegative coefficients [31]. In these cases, the maximum price of anarchy (among all
multicommodity flow networks) is achieved by the instances in Examples 2.2 and 2.5. For
further examples, see [7, 31].

For much more on topics related to the price of anarchy of selfish routing, including many
extensions and generalizations of the results described in this section, see [32, 33] and the
references therein.



3 Efficiency Loss in Resource Allocation Protocols

We next study the performance of a protocol for allocating resources to heterogeneous users.
While there are a number of conceptual differences between this model and the selfish routing
networks of Section 2, the inefficiency of equilibria in these models can be analyzed in a
similar way.

3.1 The Model

We consider a single divisible resource—the capacity of a single network link, say—to be
allocated to a finite number n > 1 of competing users. These users are heterogeneous in the
sense that different users can have different values for capacity. We model this by giving
each user ¢ a nonnegative real-valued utility function U; that expresses this user’s value for
a given amount of capacity. We assume that each U; is concave, strictly increasing, and
continuously differentiable. A resource allocation game is defined by the n utility functions
Ui, ..., U, and the link capacity C > 0.

An allocation for a resource allocation game is a nonnegative vector (z1,...,x,) with
Y i, i = C. We study the following protocol for allocating capacity. Each user ¢ submits a
nonnegative bid b; for capacity. The protocol allocates capacity in proportion to bids, with

bi
Z?:l bj

units of capacity allocated to user 7. The payoff QQ; to a user 7 is defined as its value for the
capacity it receives, minus the bid that it made (and presumably now has to pay):

C (4)

T; =

2 =1

Assume that if all users bid zero, then all users receive zero payoff.

An equilibrium is then a bid vector in which each user bids optimally, given the bids of the
other users. To state this precisely, we use the notation b_; = (b1, ba,...,0i—1,bit1,-..,bn)
to denote the bids of the users other than i, and sometimes write (b;,b_;) for a bid vector

(b -+, b)-

Qi(by, ..., by) = Ui(z;) — b; = U; (fizb : C) — b;.
J

Definition 3.1 A bid vector (by,...,b,) is an equilibrium of the resource allocation game
(U1, ...,Up, C) if for every user i € {1,2,...,n},
Qi(bi, b)) = sup Qi(i)i; b_i)- (5)
b; >0

One easily checks that in every equilibrium, at least two users submit strictly positive bids.

While equilibria are most naturally defined for bid vectors, we will be interested in
the quality of the corresponding allocations. An equilibrium allocation is an allocation
(x1,...,2,) induced by an equilibrium bid vector—i.e., there is an equilibrium (by,...,b,)
such that (4) holds for each user 7. We next give a characterization of equilibrium allocations
that will be crucial for designing a potential function for resource allocation games.
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First, a simple calculation shows that concavity of the utility function U; (in x;) implies
strict concavity of the payoff function @; (in b;) for every fixed vector b_; with at least one
strictly positive component. Similarly, the latter function is continuously differentiable for
each such fixed b_;. We can therefore characterize solutions to (5) via standard first-order
optimality conditions, which yields the following.

Proposition 3.2 ([16, 20]) Let (Ui,...,U,,C) be a resource allocation game and (b, ..., by,)
a bid vector with at least two strictly positive bids. Let B = 77 | b; denote the sum of the
bids. This bid vector is an equilibrium if and only if

b; b; B
A hia _ )< =
1(50) (1-5) <

for every user i € {1,2,...,n}, with equality holding whenever b; > 0.

Reformulating Proposition 3.2 in terms of allocations gives the following corollary (cf., Def-
inition 2.1).

Corollary 3.3 ([16, 20]) Let (Uy,...,U,,C) be a resource allocation game. An allocation
(1,...,2y) 18 an equilibrium if and only if for every pair i,j € {1,2,...,n} of users with
x; > 0,

Ulw) (1= 2) 2 Uy(ay) (1= 2).

Proof: The “only if” direction follows easily from Proposition 3.2 and equation (4). For
the “if” direction, suppose (x1,...,,) satisfies the stated condition. There is then a scalar
A > 0 such that U!(z;)[1 — (z;/C)] < A for all users 4, with equality holding whenever
x; > 0. Setting b; = Ax; for each 7 yields a bid vector that meets the equilibrium condition
in Proposition 3.2. B

Example 3.4 ([20]) Consider a resource allocation game in which the capacity C is 1, one
user has the utility function U;(z1) = 2x1, and the other n—1 users have the utility function
Ui(z;) = z;. Corollary 3.3 implies that in the unique equilibrium allocation, the first user
receives % + € units of capacity, while each of the other n — 1 users receive  units of capacity
(with €,0 — 0 as n — o0). In this allocation, U/ (z;)(1 — z;) is the same for each user i, and
is slightly less than 1. The corresponding equilibrium bid vector is roughly the same as the
equilibrium allocation vector.

In the next subsection, we use a potential function to show that every resource allocation
game has a unique equilibrium allocation.

We claim that the equilibrium allocation in Example 3.4 is suboptimal. As in the previous
section, we formalize this claim by introducing an objective function and studying the price
of anarchy. We define the efficiency of an allocation (z1,...,z,) of a resource allocation
game to be the sum of the users’ utilities:

E(xy,... xn) = ZUi(gg,-). (6)

11



An optimal allocation has the maximum-possible efficiency.

The price of anarchy of a resource allocation game is the ratio £(z)/&(z*), where z is
the equilibrium allocation and z* is an optimal allocation. Note that the price of anarchy of
such a game is at most 1. In Example 3.4, the optimal allocation gives all of the capacity
to the first user and has efficiency 2. The equilibrium allocation has efficiency approaching
3/2 as n — oo; the price of anarchy can therefore be arbitrarily close to 3/4 in this family
of examples.

Why does inefficiency arise in Example 3.47 First, note that if the first user is the only
one bidding a strictly positive amount (leading to the optimal allocation), then the bid vector
cannot be an equilibrium: the first user can bid a smaller positive amount and continue to
receive all of the capacity. A similar argument holds whenever the first user’s bid comprises
a sufficiently large fraction of the sum of the users’ bids: if the first user lowers its bid,
its allocation diminishes, but the price it pays per unit of bandwidth decreases by a large
enough amount to increase its overall payoff. This intuition is mathematically reflected in
Corollary 3.3 in the term U/(z;)(1 — z;)—the marginal benefit of increased capacity to a user
becomes increasing tempered as its allocation grows. Inefficiency thus arises in Example 3.4
because of “market power”—the fact that the actions of a single user have significant in-
fluence over the effective price of capacity. Indeed, resource allocation games were initially
studied by Kelly [22] under the assumption that no users have nontrivial market power. Un-
der this assumption, equilibria are fully efficient—i.e., the price of anarchy is always 1 [22].
See [19, §1.3-1.4] for further discussion.

Remark 3.5 Selfish routing networks and resource allocation games differ in a number of
ways. In the former, there is a continuum of selfish network users that each have a finite set
of strategies (paths); in the latter, there is a finite set of users, each with a continuum of
strategies (bids). In selfish routing, the objective is cost minimization; in resource allocation,
it is efficiency maximization. Finally, and perhaps most fundamentally, inefficiency appears
to arise for different reasons in the two models. Recall that in selfish routing networks,
inefficiency stems from congestion externalities (see the discussion following Example 2.2).
Example 3.4 shows that market power is the culprit behind inefficient equilibria in resource
allocation games. Despite all of these conceptual differences, the next two subsections show
that the inefficiency of equilibria can be quantified in the two models via remarkably similar
analyses.

3.2 A Potential Function for Equilibria

As in Subsection 2.2, our first step toward constructing a potential function for equilibrium
allocations is to characterize optimal allocations. Since efficiency (6) is a separable con-
cave function, a straightforward application of first-order optimality conditions yields the
following.

Proposition 3.6 Let (U, ...,U,, C) be a resource allocation game. An allocation (x1, ..., %y)

is optimal if and only if for every pair i,j € {1,2,...,n} of users with z; > 0, Ul(z;) >
Ul(z;).
i\Zj
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Given the near-identical characterizations of equilibrium and optimal allocations in Corol-
lary 3.3 and Proposition 3.6, respectively, we again ask: of what function does an equilibrium
allocation arise as the global maximum? To recover Corollary 3.3 as an optimality condition,
we seek a function H; for each user i such that H](x;) = U/ (z;)[1— (z;/C)] for all z; > 0. Set-
ting H;(z;) = Ui(x:)[1 — (2:/C)]+ [, Ui(y)dy]/C thus yields the desired potential function.
Precisely, for the resource allocation game (Uy, ..., U,, C), define

(I)RA(.Tl,...,ZCn) :ZUZ(CC,), (7)

where Ui(z;) = (1 - %) Ui(xs) + % (xl /OI Ui(y)dy) : (®)

A simple calculation shows that each function U; is strictly concave, increasing, and con-
tinuously differentiable. Regarding (ﬁl, ..Uy, () as a resource allocation game, applying
Proposition 2.6 to it, and appealing to Corollary 3.3 formalizes the fact that ®r4 is a po-
tential function.

Proposition 3.7 ([16, 20]) An allocation of the game (Uy,...,U,,C) is an equilibrium
allocation if and only if it is a global maximum of the corresponding potential function ®ry.

Existence and uniqueness of equilibrium allocations follow immediately.

Proposition 3.8 ([16, 20]) In every resource allocation game, there is a unique equilibrium
allocation.

Proof: Existence follows from Proposition 3.7 and the facts that the potential function (7) is
continuous and the set of all allocations is compact. Uniqueness follows from Proposition 3.7
and the fact that the potential function (7) is strictly concave. B

Proposition 3.7 also has consequences for the price of anarchy in resource allocation
games. To see why, note that the value of U;(z;) in (8) can be viewed as a weighted average
of two quantities—the “true utility” Uj(z;) and the “average utility” [[;" U;(y)dy]/;. Since
U; is increasing, the latter quantity can only underestimate the utility U;(z;), and hence
U;(z;) < Uy(x;) for all i and z; > 0. On the other hand, since U; is nonnegative and
concave, the average utility between 0 and z; is at least half of the utility U;(z;) at ;. Thus

A~

Ui(x;) > Usi(x;)/2 for all 4 and x; > 0. It follows that
E(x1,. - ymn) > Pralzr, . xn) > E(T1,- -, Tn)/2

for every allocation (z1,...,z,). Following the proof of Theorem 2.10 now gives a lower
bound of 1/2 on the price of anarchy in resource allocation games.

Theorem 3.9 ([20]) In every resource allocation game, the price of anarchy is at least 1/2.

13



3.3 An Optimal Bound on the Price of Anarchy

There is a gap between the lower bound of 1/2 on the price of anarchy given in Theorem 3.9
and the upper bound of 3/4 that is achieved (in the limit) in Example 3.4. As in Sub-
section 3.3, an optimal (lower) bound can be obtained by leveraging the potential function
characterization of equilibria (Proposition 3.7) in a less crude way. Our argument will again
be based on a “variational inequality”, which can be derived directly from Corollary 3.3 or
viewed as a first-order optimality condition for the potential function (7).

Proposition 3.10 Let (Uy, -, Un, C) be a resource allocation game. For each user i, define
the modified utility function U; as in (8). An allocation & is an equilibrium for (Uy,...,U,, C)
if and only if

n n
i=1 i=1
for every feasible allocation x.

Next is the analogue of the Pigou bound (Definition 2.12) for resource allocation games.
This definition is primarily motivated by the upper bound on the price of anarchy provided
by Example 3.4; we state it in a form that also permits easy application of Proposition 3.10
in the proof of Lemma 3.13 below.

Definition 3.11 Let U denote the set of real-valued, nonnegative, strictly increasing, con-
tinuously differentiable, and concave (utility) functions. Define the JT bound [ by
~ A, ~ % _ ~
B infinf inf JHFTUEE -2

UeU C>00<i,a*<C U(x*) ’

(9)

where U is defined as in (8), as a function of U and C.

In the rest of this section, we show that the JT bound is exactly the worst price of anarchy
occurring in resource allocation games, and explicitly compute the bound.

Lemma 3.12 For every € > 0, there is a resource allocation game with price of anarchy at
most B + €, where B is the JT bound.

Lemma 3.13 In every resource allocation game, the price of anarchy is at least the JT
bound f3.

Lemma 3.14 The JT bound § is ezxactly 3/4,

Lemmas 3.12-3.14 give an explicit optimal bound on the price of anarchy in resource
allocation games.

Theorem 3.15 ([20]) In every resource allocation game, the price of anarchy is at least 3 /4.
Moreover, this bound is tight.

14



We now prove Lemmas 3.12-3.14 in turn.

Proof of Lemma 3.12: Fix a choice of a utility function U, a capacity C' > 0, and values for
z,2* € [0,C]. We aim to exhibit a resource allocation game with price of anarchy (arbitrarily
close to)

U#) +U'(2)(z* — &)
U(z*) '

Recall from (8) that U'(2) = U'(2) - [1 — (&/C)]. A calculation shows that (10) is at least 1
if £ > x*, so we can assume that £ < z*. Since (10) is decreasing in C, we can assume that
C =z

Define a resource allocation game in which the capacity is C, the first user has the utility
function U (z;) = U(x1), and the other n — 1 users each have the linear utility function
Us(x;) = U'(%) - 2;. Giving all of the capacity to the first user is a feasible allocation
with efficiency U;(C) = U(z*). Arguing as in Example 3.4, the equilibrium allocation has
efficiency approaching U (&) + (C — ) - U'(2) = U(&) + U'(&)(z* — ) as the number n of
users tends to infinity. The price of anarchy in this family of instances thus tends to (at
most) the expression in (10) as n — oo, completing the proof. W

(10)

Proof of Lemma 3.13: Let (Uy, ..., U,, C) be a resource allocation game. Let 2* and % denote
optimal and equilibrium allocations, respectively. Define the modified utility function U; as
in (8). The lemma follows by writing

iUi(x:) < Z [% (V@) + Ul(an) (= —33«,.))}

i1
1 n

< 2D Uild),
Chen

where the first inequality follows from Definition 3.11 and the second from Proposition 3.10.
[ |

Proof of Lemma 3.14: Setting U to the identity function, 2 = 1/2, and C = z* = 1 shows
that the JT bound is at most 3/4. Now fix arbitrary choices of U, C, and Z, z* € [0,C]. We
need to show that (10) is at least 3/4. As in the proof of Lemma 3.12, we can assume that
T < 2* = C. We can then write

A

UE)+U'(3) (" —2) = U#)+ (1 - ﬁ) U'(2)(z"* — 1)

vV
=W/ /N
. |&’2>
—— N——
V) .
d
&,
p——
+
/7~
=
|
| &
——
d
5,

v



where the first equality follows from the definition of U in (8), the first and second inequalities
follow from the concavity and nonnegativity of U, and the final inequality follows from the
fact that the function y? —y+1 is uniquely minimized when y = 1/2. The proof is complete.
|

Remark 3.16 The original proof of Theorem 3.15 is fairly different than the one given
here. Specifically, Johari and Tsitsiklis [20] first show that the price of anarchy is minimized
in games in which all users have linear utility functions, and then explicitly determine a
worst-case example (the same as Example 3.4) by analyzing a linear program. We instead
presented the proof above to further highlight the connections between resource allocation
games and selfish routing networks.

Despite the numerous common features in our analyses of the price of anarchy in selfish
routing networks and in resource allocation games, the precise relationship between the two
models is not completely understood. In particular, we lack a unifying analysis of the price
of anarchy in the two models.

Open Question 1 Find a compelling generalization of selfish routing networks and resource
allocation games in which the price of anarchy can be analyzed in a uniform way. Ideally,
such a generalization would unify Theorems 2.15 and 3.15, and would also apply to several
of the more general classes of games described in [19, 32].

As with selfish routing networks, we have only scratched the surface of the literature on
the price of anarchy in resource allocation games. For much more on the subject, includ-
ing generalizations of these games to general networks, see Johari and Tsitsiklis [20] and
Johari [19].

4 The Price of Stability in Network Design Games

Our final class of games is a model of network design with selfish users. These games share
some features with selfish routing networks, but also differ in a few fundamental respects.

4.1 The Model

In this section we study Shapley network design games, first proposed by Anshelevich et
al. [1]. The game occurs in a directed graph G = (V, E), in which each edge e € E has a fixed
nonnegative cost c.. There is a finite set of & selfish players, and each player ¢ € {1,2,..., k}
is identified with a source-sink vertex pair (s;, ;). Let P; denote the set of simple s;-t; paths.

Each player 7 chooses a path P; € P; from its source to its destination. This creates a
network (V,U;P;), and we define the cost of this outcome as

c(Pr,....P)= ) ce (11)

We assume that this cost is shared among the players in the following way. First, if edge
e lies in f, of the chosen paths, then each player choosing such a path pays a proportional
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Figure 3: Multiple Nash equilibria in Shapley network design games (Example 4.2).

share m, = ¢/ fe of the cost. The overall cost ¢;(Py,..., FP) to player i is then the sum
D oee p, Te Of these proportional shares. Selfish players naturally attempt to minimize their
incurred cost.

We next define our notion of equilibria for Shapley network design games. In contrast
to selfish routing networks and resource allocation games, these network design games are
finite games—there is a finite set of players, each with a finite set of strategies. This is the
classical setting for Nash equilibria [25]. As in Definition 3.1, we use P_; to denote the vector
of strategies chosen by the players other than 1.

Definition 4.1 An outcome (P,...,P;) of a Shapley network design game is a (pure-
strategy) Nash equilibrium if for every player i,

¢i(P;, P-;) = min ¢;(F;, P;).
P, eP;
In a pure-strategy Nash equilibrium, every player chooses a single strategy. In a mizred-
strategy Nash equilibrium, a player can randomize over several strategies. We will not discuss

mixed-strategy Nash equilibria in this survey, though the price of anarchy of such equilibria
has been studied in different models (see e.g. [3, 23]).

Example 4.2 ([2]) Consider the network shown in Figure 3. There are k players, each with
the same source s and sink ¢. The edge costs are £ and 1 + ¢, where € > 0 is arbitrarily
small. In the minimum-cost outcome, all players choose the lower edge. This outcome is also
a Nash equilibrium. On the other hand, suppose all of the players choose the upper edge.
Each player ¢ then incurs cost 1, and if player ¢ deviates to the lower edge it pays the full
cost of 1 + €. This outcome is thus a second Nash equilibrium, and it has cost k.

Example 4.2 shows that Shapley network design games are more ill-behaved than selfish
routing networks and resource allocation games in a fundamental respect: there can be
multiple equilibria, and different equilibria can have very different objective function values.
(Cf., Theorem 2.3 and Proposition 3.8.) The definition of the price of anarchy is ambiguous in
games with multiple equilibria—we would like to quantify the inefficiency of an equilibrium,
but of which one?

The price of anarchy is historically defined as the ratio between the objective function
value of the worst equilibrium and that of an optimal solution [23, 26]. This definition is
natural from the perspective of worst-case analysis. In Example 4.2, the price of anarchy is
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(arbitrarily close to) k. It is also easy to show that the price of anarchy in every Shapley
network design game is at most k.

In this section, we instead focus on the ratio between the cost of the best Nash equilibrium
of a Shapley network design game and that of an optimal solution. This measure is called
the price of stability [1]. Our motivation is twofold. First, as Example 4.2 shows, the price
of anarchy is large and trivial to determine. Second, the price of stability has a reasonably
natural interpretation in network design games—if we envision the network as being designed
by a central authority for subsequent use by selfish players, then the best Nash equilibrium
is an obvious solution to propose. In this sense, the price of stability measures the necessary
degradation in solution quality caused by imposing the game-theoretic constraint of stability.
See [1, 2, 6, 7] for further discussion and examples of the price of stability.

The price of stability in Example 4.2 is 1. We conclude this subsection with an example
showing that this is not always the case.

Example 4.3 ([1]) Consider the network shown in Figure 4. There are k£ players, all with
the same sink ¢, and € > 0 is arbitrarily small. For each i € {1,2,...,k}, the edge (s;,t) has
cost 1/i. In the minimum-cost outcome, each player i chooses the path s; — v — ¢ and the
cost is 1 4+ €. This is not a Nash equilibrium, as player k£ can decrease its cost from (1+€)/k
to 1/k by switching to the direct path sy — ¢t. More generally, this direct path is a dominant
strategy for the kth player—it is the minimum-cost strategy, independent of the paths chosen
by the other players. It follows that in every Nash equilibrium, the kth player selects its
direct path. Arguing inductively about the players k—1,k—2,...,1, we find that the unique
Nash equilibrium is the outcome in which each player i chooses its direct path s; — ¢ to the
sink. The cost of this outcome is exactly the kth harmonic number Hy, = Y% (1/4), which
is roughly In k. The price of stability can therefore be (arbitrarily close to) Hj in Shapley
network design games.

4.2 A Potential Function for Nash Equilibria

In this subsection we use a potential function to prove the existence of pure-strategy Nash
equilibria and upper bound the price of stability in Shapley network design games. Recall
that for both selfish routing networks and resource allocation games, we designed poten-
tial functions using a characterization of optimal solutions as a guide (see Propositions 2.6
and 3.6). In Shapley network design games, computing an optimal solution is an NP-hard
network design problem [15], and we cannot expect to find an analogous characterization.

There are two ways that Shapley network design games differ from selfish routing networks
that prevent the characterization of optimal solutions (Proposition 2.6) from carrying over.
First, there are a finite number of players in the former model, and a continuum of players
in the latter model. Second, cost functions in selfish routing networks are nondecreasing,
whereas Shapley network design games effectively have cost functions that are decreasing in
the “congestion” —if x > 1 players use an edge e with fixed cost c., then the per-player cost
on that edge is c./x.

On the bright side, the potential function (2) for selfish routing networks is easily modified
to account for these two differences. First, note that this function ® remains well-defined for
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Figure 4: The price of stability in Shapley network design games can be at least Hy (Exam-
ple 4.3).

decreasing cost functions. Second, passing from an infinite player set to a finite one merely
involves changing the integrals in (2) to sums. This motivates the following proposal for a
potential function for a Shapley network design game:

Je
(I)ND(PI""’P’C):ZZ%’ (12)

eck i=1

where f. denotes the number of paths P; that include edge e. While equilibria in selfish
routing networks and resource allocation games can be characterized as the global optima
of their respective potential functions (2) and (7), we will see that the Nash equilibria
of a Shapley network design game are characterized as the local optima of the potential
function (12). This idea is originally due to Rosenthal [29, 30], who also considered the
broader context of “atomic congestion games”.

The next lemma, which is crucial for the rest of this section, states that the potential
function “tracks” the change in cost experienced by a deviating player.

Lemma 4.4 ([1, 30]) Let (G, c) denote a Shapley network design game with k players and
®np the corresponding potential function (12). Let i € {1,2,...,k} be a player, and let
(P, P_;) and (P, P_;) denote two outcomes that differ only in the strategy chosen by the ith
player. Then

ci(P, P_;) — ci(Py, P_j) = ®np(P;, P_i) — ®np(P;, Poy). (13)

Proof: Let f. denote the number of players that choose a path containing the edge e in the
outcome (P;, P_;). Then both sides of (13) are equal to

Ce Ce
2 fe+1l 2 fe

eeﬁi \Pl ech; \ﬁl
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In the game theory literature, equation (13) is often taken as the definition of a potential
function in the context of finite games. See Monderer and Shapley [24] for a fairly general
treatment of potential functions for finite games.

While simple, Lemma 4.4 has a number of non-trivial consequences. First, Nash equilib-
ria of a Shapley network design game are the local minima of the corresponding potential
function. Formally, two outcomes of a Shapley network design game are neighbors if they
differ in at most one component, and an outcome is a local minimum of ®yp if it has no
neighbor with strictly smaller potential function value.

Corollary 4.5 ([1, 30]) An outcome of a Shapley network design game is a Nash equilib-
rium if and only if it is a local minimum of the corresponding potential function ®yp.

Proof: Immediate from the definitions and Lemma 4.4. B

Since every Shapley network design game has a finite number of outcomes, its corre-
sponding potential function has a global (and hence local) minimum.

Corollary 4.6 ([1, 30]) In every Shapley network design game, there is at least one (pure-
strategy) Nash equilibrium.

We note in passing that several related classes of network games do not always have pure-
strategy Nash equilibria [2, 6, 13, 30].

A stronger version of Corollary 4.6 also holds. In a finite game, better-response dynam-
ics refers to the following process: start with an arbitrary initial outcome; if the current
outcome is not a Nash equilibrium, pick an arbitrary player that can decrease its cost by
switching strategies, update its strategy to an arbitrary superior one, and repeat. Better-
response dynamics terminate if and only if a Nash equilibrium is reached. Even in extremely
simple two-player games, better-response dynamics need not terminate (e.g., in “rock-paper-
scissors”). On the other hand, the potential function (12) ensures that such dynamics always
converge in Shapley network design games.

Corollary 4.7 ([1, 30]) In every Shapley network design game, better-response dynamics
always converges to a Nash equilibrium in a finite number of iterations.

Proof: By Lemma 4.4, every iteration of better-response dynamics strictly decreases the
value of the potential function ®yp. Better-response dynamics therefore cannot visit an
outcome more than once and eventually terminates, necessarily at a Nash equilibrium. H

Corollary 4.7 does not address the number of iterations required to reach a Nash equi-
librium; see [1, 12] for further study of this issue.

Finally, the potential function (12) has direct consequences for the price of stability in
Shapley network design games. Comparing the definitions of cost (11) and potential function
value (12) of such a game, we have

C(Pl,...,Pk)S(I)ND(Pl,...,Pk)SHk'C(Pl,...,Pk) (14)
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for every outcome (P, ..., P). As a result, a global minimum of the potential function ®p
of a Shapley network design game is both a Nash equilibrium (by Corollary 4.6) and has
cost at most H;, times that of optimal (by the argument in the proof of Theorem 2.10). This
gives the following theorem

Theorem 4.8 ([1]) In every k-player Shapley network design game, the price of stability is
at most Hy,.

A similar argument shows that the bound of H; in Theorem 4.8 applies to every Nash
equilibrium reachable from an optimal solution via better-response dynamics. The bound
also carries over to numerous extensions of Shapley network design games; see [1] for details.

Example 4.3 shows that the bound in Theorem 4.8 is tight for every £ > 1. Thus, unlike
for selfish routing networks and resource allocation games, a direct application of a potential
function argument yields an optimal upper bound on the inefficiency of equilibria.

The upper bound in Theorem 4.8 is not optimal for some important special cases of
Shapley network design games, however. For example, suppose we insist that the underlying
network G is undirected. There is no known analogue of Example 4.3 for undirected Shapley
network design games—the best lower bound known on the price of stability in such games
is 2. On the other hand, it is not clear how to significantly improve the Hj; bound in
Theorem 4.8 for undirected networks.

Open Question 2 Determine the largest-possible price of stability in undirected Shapley
network design games.

5 Conclusion

This survey has discussed three natural types of games: selfish routing networks, resource
allocation games, and Shapley network design games. These classes of games differ from each
other, both conceptually and technically, in a number of ways. Despite this, the worst-case
inefficiency of selfish behavior is fairly well understood in all of these models, and in each
case can be determined using a potential function characterization of equilibria.

While the entire field of algorithmic game theory is still in a relatively nascent stage, sev-
eral broad research agendas are emerging. For the problem of quantifying the inefficiency of
noncooperative equilibria, a central research issue is to understand characteristics of games
that guarantee approximately optimal equilibria, and to develop flexible mathematical tech-
niques for proving such guarantees. While many research accomplishments from the past
few years have improved our understanding of these intertwined goals, there is clearly much
left to be done. Perhaps the current state of the art in bounding the inefficiency of equi-
libria can be compared to the field of approximation algorithms circa twenty-five years ago,
when the most fundamental problems and the most powerful algorithmic techniques (such
as linear programming) were only beginning to crystallize. Motivated by this analogy, we
conclude with the following question: will potential functions be as ubiquitous in bounds
on the inefficiency of equilibria as linear programming is in bounds on the performance of
approximation algorithms?
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Open Question 3 We have seen that a potential function characterization of equilibria
leads a bound on the inefficiency of equilibria. Under what conditions and to what extent
does a converse hold? When does a bound on the inefficiency of the equilibria of a game
imply the existence of some form of a potential function for the game?
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