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Abstract

This paper considers a motion planning problem that occurs in
tasks, such as spot welding, car painting, inspection, and measurement,
where the end-effector of a robotic arm must reach successive goal
placements given as inputs. The problem is to compute a near-optimal
path of the arm so that the end-effector visits each goal once. It com-
bines two notoriously hard sub-problems — the collision-free shortest-
path and the traveling-salesman problems. It is further complicated by
the fact that each goal placement of the end-effector may be achieved
by several configurations of the arm (distinct solutions of the arm’s
inverse kinematics). This leads to considering a set of goal configura-
tions of the robot that are partitioned into groups. The planner must
compute a robot path that visits one configuration in each group and
is near optimal over all configurations in every goal group and over
all group orderings. The algorithm described in this paper operates
under the assumption that finding a good tour in a graph with edges
of given costs takes much less time than computing good paths be-
tween all pairs of goal configurations from different groups. So, the
algorithm balances the time spent in computing paths between goal
configurations and the time spent in computing tours. Although the
algorithm still computes a quadratic number of such paths in the worst
case, experimental results show that it is much faster in practice.

1 Introduction

Consider a robotic arm whose end-effector must reach several goal place-
ments. These placements are defined in some workspace coordinate system,



but the sequence in which they should be reached is not given. The planning
problem studied in this paper is to compute a near-optimal robot path (a
loop) that visits each goal once. This problem occurs often in practice, e.g.,
in spot-welding, car-painting, inspection, and measurement tasks. For ex-
ample, Figure 1 shows a spot-welding workcell in an automotive body shop,
where each robot arm brings a welding tool to successive placements. At
each goal, the robot stops, while its end-effector performs some operation.
The time taken by this operation is independent of the goal ordering. The
aim of the planning problem is to minimize the total travel time spent in
moving the end-effector between goals.

Using the robot’s inverse kinematics (IK), we map each goal placement
of the end-effector to a finite set of goal configurations of the robot. We
call such a set a goal group. Figure 2 shows two configurations in a group
(where the end-effector placement is defined by the position of its tip). To
solve the above planning problem, we must compute a robot path that both
visits one configuration in each group and has near minimal length over
all configurations in every goal group and over all group orderings. This
problem is illustrated in Figure 3. While in practice the configurations in a
goal group often correspond to distinct IK solutions of the arm, this need
not be the case, and the methods presented in this paper do not depend on
how goal groups are obtained. So, we assume that the goal configurations
are an input to our multi-goal planning algorithm.

This paper expands both the theoretical and experimental results that
we previously introduced in [23]. In particular, in [23] we only considered
the case where goals are not partitioned into groups (i.e., all goal groups
are singletons). Here, we study the generalized multi-goal motion planning
problem where goals are partitioned into groups. While this extension is
critical for many applications, it is also much harder to solve than the original
problem. Our solution makes use of a recent approximation algorithm for
the group Steiner tree problem [5]. In this paper, we also present several
improvements that significantly speed up the planning methods presented
in [23].

The multi-goal motion planning problem combines two hard problems.
One is to compute a shortest collision-free robot path between two goal con-
figurations. This problem is at least as hard as finding a Euclidean shortest
path between two points among polyhedral obstacles in 3-D space, which is
NP-hard [4]. The other subproblem is a variant of the classical traveling-
salesman problem (TSP), which requires computing an optimal tour through
the vertices of a graph whose edges have known costs. Here, the vertices are
partitioned into groups and the tour must only contain one member from



Figure 1: A spot-welding workcell

Figure 2: Two goal configurations in a group



Figure 3: Two-dimensional generalized multi-goal motion planning problem

each group. This subproblem is at least as hard as finding the shortest tour
through points in the Euclidean plane, which is NP-complete [18]. However,
for both subproblems there exist reasonably efficient algorithms to compute
sub-optimal, but still satisfactory solutions.

In this paper, we use such algorithms to build the following two functions:

e PATH — Given two robot configurations, this function returns a sat-
isfactory collision-free path between them if they can be connected
without collision. It indicates that no path exists otherwise.

e TOUR — Given a collection of points partitioned into groups, with given
distances between all pairs of points in distinct groups, this function
returns a near optimal tour that traverses one point in each group.

Given these two functions, the naive algorithm to solve the generalized
multi-goal planning problem is simply to run PATH on all pairs of config-
urations from distinct goal groups — hence, a quadratic number of times —
before running TOUR once. We will show that the length of the multi-goal
path computed by this algorithm is within a factor 28 of the length of the
optimal tour that can be computed given the goal-to-goal paths generated
by the function PATH. If the goal configurations are non-partitioned (i.e.,
each group has size 1), then 8 = 1; otherwise = O(% x (logn)?te x logr)
for every fixed constant € > 0, where n is the total number of goal configura-
tions, and r + 1 is the number of goal groups. The extra factor 2 comes from



the fact that our function TOUR computes a tour by “doubling” a spanning
tree [7].

However, in many robotics problems, the number of goal groups typically
ranges between 5 and 50, while each group consists of few configurations
(usually less than 10). These numbers are considered small for available
TOUR algorithms. In contrast, robot paths must be computed in complex
configuration spaces, so that the running time of PATH is high relative to
that of TOUR. Hence, we wish to use PATH sparingly.

For a multi-goal problem of the size specified above, the naive algorithm
may evaluate PATH several thousand times, or more, which takes prohibitive
time. Instead, we propose a lazy algorithm that avoids calls to PATH by
delaying them until they are needed. It does this by initializing the distance
between every two configurations from distinct goal groups to an easily com-
puted lower bound. Then, it successively runs PATH on pairs of configura-
tions whose distances affect the length of the current best tour through the
goal groups. It terminates when a tour has been found that is guaranteed
to be within the factor 28 of the length of the optimal tour, where 3 is
defined as above. Hence, both the naive and lazy algorithms have the same
approximation factor. In the worst case, the lazy algorithm calls PATH a
quadratic number of times, but our experimental results (Section 6) show
that it is usually much faster than the naive algorithm. Moreover, the paths
computed by the two algorithms have similar lengths.

The rest of this paper is organized as follows. Section 2 relates our work
to previous work on multi-goal planning. Section 3 gives a precise state-
ment of the generalized multi-goal planning problem. Section 4 describes
and analyzes our planning algorithm. Section 5 presents in detail the im-
plemented function PATH. Section 6 analyzes the experimental performance
of the implemented planner on several examples.

2 Relation to Previous Work

The multi-goal motion planning problem was previously introduced in [8,
22, 24]. We review these works below and relate them to ours.

a) In [22] the multi-goal planning problem is considered in the context
of coordinate measuring machines (CMM). In this work, goals do not oc-
cur in groups (i.e., are non-partitioned). Each goal defines a position of
the CMM’s measuring probe. The proposed planner computes goal-to-goal
paths using a Probabilistic Road-Map (PRM) planner [17]. A roadmap is
pre-computed over the probe’s free space. Its vertices are all the goal con-



figurations, plus additional configurations successively sampled uniformly
at random over the entire configuration space, until all the goals are in the
same connected component of the roadmap. Next, a search algorithm ex-
tracts the shortest path in the roadmap between every two goals. This yields
a reduced, complete graph in which each vertex is a goal configuration and
each edge is labelled by the length of the shortest path extracted between
the two goals it connects. A TSP algorithm then computes a near-optimal
tour from this graph. Since the lengths labelling the edges satisfy the trian-
gle inequality, polynomial-time algorithms are available to compute a tour
within a constant ratio of the optimal tour [7, 19].

This planner is based on a set of coherent choices. The CMM problems
considered in [22] are formulated in a quasi-planar, hence low-dimensional,
configuration space (where a configuration is the position of the tip of the
measuring probe). In the two examples given in [22], the generated roadmaps
only contain 100 vertices (including the goals). Thus, pre-computing them
does not take much time. Moreover, once a roadmap is available, the search
of a shortest path between every two goals is very fast. This justifies that
all goal-to-goal paths are computed before a tour is extracted.

Our multi-goal planner is based on different assumptions. In many appli-
cations (like spot welding), the cost of pre-computing a roadmap would be
too high, especially if one uses a uniform sampling strategy, due to both the
dimensionality of the configuration space and the geometric complexity of
the obstacles and the robot. For this reason, the PATH function in our multi-
goal planner is based on the bi-directional tree-expansion PRM algorithm
introduced in [16] and refined in [21] (more details are given in Section 5).
This algorithm makes it possible to construct goal-to-goal paths one at a
time until the multi-goal planning problem is solved. As our experimental
results will show (Section 6), it is often the case that only a relatively small
number of goal-to-goal paths need to be computed before a good robot tour
is obtained. However, to avoid repeating work done at previous evaluations
of PATH, each new evaluation of PATH is expedited by re-using PRM ftrees
previously constructed.

b) The multi-goal planner described in [24] tries to avoid computing a
collision-free path between every pair of goals. But, unlike ours, it neither
uses lower bounds on path lengths, nor the information contained in in-
termediate tours computed by the TSP algorithm to guide the selection of
the pairs of goals between which paths are computed. Instead, this planner
loops on the following operations: select pairs of goals using a technique
like random or nearest-pair selection, compute a collision-free path between



each pair, run the TSP algorithm. Once the TSP algorithm has returned a
complete tour, the planner can stop at any time. If more computing time
is allocated, each new tour generated by the planner is at least as good as
the previous one. But, if the planner is stopped before all goal-to-goal paths
have been generated, then there is no formal guarantee on the goodness of
the last computed tour. Like ours, the planner in [24] takes goal groups as
inputs. A genetic algorithm generates optimized tours through the input
groups. Goal-to-goal paths are computed by performing a best-first search
on a regular grid in configuration space. This technique is inherently lim-
ited to searching low-dimensional configuration spaces, hence restricts the
range of problems that the planner can handle. The planner was tested on
pin-assembly and spot-welding examples comprising up to 22 goals.

c¢) The multi-goal planner in [8] is aimed at generating inspection tours,
for example finding cracks in large structures. The robot, which is modeled
as a point in a polygonal free space F', must go to successive goal positions
such that it can see every point in the boundary of F' from at least one of
these positions (goal groups are not considered). This problem is also known
as the “watchman-route” problem. Unlike in our multi-goal problem, the
goals are not given. Instead, in [8], they are computed using the approximate
randomized “art-gallery” algorithm given in [13]. Next, the visibility graph
of these goals and the vertices of F’s boundary are computed, as well as the
shortest path between every two goals [19]. An approximate TSP algorithm
then extracts a tour that is at most twice as long as the optimal tour. An
extension to 3-D workspace is discussed in [8].

d) Other variants of multi-goal robot planning problems, with no or few
collision-avoidance constraints, have been addressed using general optimiza-
tion techniques such as simulated annealing [6] and genetic algorithms [3].

3 Problem Formulation

3.1 Overview

Let C denote the configuration space of a robot, F' C C its collision-free
subset, and £ the measure that maps any given path 7 in C to its length
¢(t). Let go,d1,---, Gr be 7+ 1 input groups — called goal groups — of distinct
configurations in F, |;| denotes the size of §; and gy, its k*® element.

Any path in F joining two goals g;; and gj; from two distinct groups ¢
and j is called a goal-to-goal path. Any loop path in F starting and ending
at the same configuration in gy, and passing through one configuration in



each goal group, is called a multi-goal path. So, a multi-goal path 7 is
the concatenation of r + 1 goal-to-goal paths. The length of 7 is the sum
of the lengths (measured by £) of the goal-to-goal paths it contains. This
assumption is reasonable since in most applications the robot stops at each
goal; so, the goals divide the multi-goal path into “independent” pieces.

The generalized multi-goal planning problem is to find the shortest multi-
goal path, or a good approximation of it.

3.2 Function PATH

We assume that the function PATH defined as follows is given. For any
two goals g;; and g;;, PATH(g;;,g;) returns a path in F' joining g;; and
gji, if these configurations are in the same component of F'. For general
robot arms, no efficient algorithm is available to compute a goal-to-goal path
guaranteed to be within some approximation factor of the shortest path. So,
by necessity, PATH is a heuristic algorithm. In our implementation, PATH
is a bi-directional tree-expansion PRM planner [21], augmented with an
optimization post-processing step. This planner is made deterministic by
resetting the seed of the pseudo-random source at each call to the value of
a given function of the two input goal configurations. (See Section 5 for
more detail.) Without loss of generality, we assume that the three paths
returned by PATH between any three goal configurations satisfy the triangle
inequality. This assumption can always be trivially enforced, if needed, by
replacing one path by the concatenation of the other two.

Note that if the goals are non-partitioned, then for a multi-goal path to
exist, all goal configurations must lie in the same connected component of
F'. So, a path must exist between every two goal configurations. If the goals
are partitioned, then there must exist a component of F' that contains at
least one member of each goal group. It is then possible for two goals from
two different groups to belong to two distinct components of F.

In the following, we let Loy stand for the length of the optimal multi-
goal path through go, g1, ..., §» when every goal-to-goal path is computed by
PATH.

3.3 Function TOUR

We define the goal graph to be the undirected graph G = (V, E), in which
the set of vertices is V' = U;g; and the set of edges, F/, contains one edge
connecting every pair of configurations from two distinct goal groups. When
all goal groups have size 1, i.e., |gi| =1 for all =0, 1,...,r, G is said to be



Algorithm TOUR(G,)
1. T < GSTREE(G.)
2. Return PREORDER-WALK(T)

Figure 4: TOUR algorithm

non-partitioned. A tour of G is any list @ = (gokgs Girkys - Gi, ky» GOko) SUCh
that < 41,...,4, > is a permutation of {1,...,7}.

A weighted goal graph G is identical to G, except that each edge {gi, g;i }
is now weighted by a positive real number ¢(gix, gj1), the edge’s cost. Then
the cost ¢(m) of a tour 7 of G is the sum of the costs of the edges traversed

by =, hence:
m=r+1

C(T{') = Z C(gim_1km—17gimkm)
m=1
where 79 = 4,41 = 0.

In particular, when the cost of every edge {gx,g;} in E is equal to
¢(PATH({gik, gji})), we denote the weighted goal graph by Gy. So, the cost
of the optimal tour of Gy is Lopi-

A group-spanning tree T is a tree contained in G such that T has exactly
r + 1 vertices, one from each goal group. In a weighted goal graph G, the
cost of T" is the sum of the costs of the edges contained in 7'. The function
TOUR defined in Figure 4 first computes a group-spanning tree 7'. Then it
computes a tour by performing a preorder walk of T', which recursively visits
every vertex in the tree, starting at the root, listing a vertex when it is first
encountered. Under the assumption that the edge costs satisfy the triangle
inequality, the cost of the computed tour is at most twice the cost of T' [7].

More precisely, when G is non-partitioned, 7" is simply a spanning tree of
G and GSTREE(G,) computes the minimum-cost spanning tree of G in time
O(r?) using the Prim’s algorithm [7]. In this case, TOUR is a classical TSP
algorithm, which has also been used in the multi-goal planners described
in [8, 22, 23]. Then TOUR(Gy) generates a multi-goal path of length Ly <
2 x Lopt- Indeed, the cost of the optimal spanning tree of Gy is not greater
than Loy, and Ly is at most twice the cost of the optimal spanning tree.

When G is partitioned, i.e., goal groups have sizes greater than 1, we are
facing the problem of computing the optimal group-spanning tree of G, a
particular case of the so-called group Steiner problem studied in circuit and
network design [5, 20]. This problem is provably hard, even to approximate
closely [14], but the polynomial-time algorithm given in [5] allows us to



compute a group-spanning tree of G, whose cost is at most 8 = O(% X
(log |V])?t€ x logr) times the minimum cost, for any fixed constant! ¢ > 0.
(A slightly better worst-case ratio is possible using linear programming [12],
but this approach would be too computationally expensive for our purposes.)
When G is partitioned, our function GSTREE uses this algorithm. Then
TOUR(Gy) computes a multi-goal path of length Ln < 28 X Lopt.

In the following, we let 8 = 1 if G is non-partitioned, and 8 = O(% X

(log |V|)2*¢ x logr) otherwise.

3.4 Objective

The naive multi-goal planning algorithm NAIVE-GMGP first computes Gy by
weighting every edge {gix, g} of G by £(PATH({gik,g;i})), then evaluates
TOUR(Gy) once. The resulting multi-goal path is the concatenation of the
goal-to-goal paths between every two successive goals in the tour returned
by TOUR(Gy). Its length is Ly < 28 x Lopt.

This algorithm evaluates PATH for all the edges in G. However, in most
robotics applications, the number r + 1 of goal groups is relatively small (a
few dozens at most). The size of each goal group is usually upper bounded
by a small constant. In contrast, the robot’s collision-free space F' has
high complexity. So, here, we are interested in instances of the multi-goal
planning problem where the running time of PATH is high relative to that
of TOUR and we wish to use PATH sparingly, even if this requires evaluating
TOUR (or just GSTREE) more often. But, simultaneously, we would like
the length of the generated multi-goal path to remain within a small factor
of Lopt- The lazy planning algorithm described in the following section
attempts to achieve this twofold objective.

4 Lazy Planning Algorithm

4.1 Algorithm

Our algorithm first creates a weighted goal graph G, in which the cost of
every edge {gk,gji} is set to the length of the shortest path joining g;
and gj; in C. Since the shortest path in C' may not be collision-free, this
length is a lower-bound approximation of £(PATH(g;x,g;1)). Usually, this
bound is very easy to calculate, since for many measures £ the shortest path
in C between two configurations is the straight line segment joining them.
Then, the algorithm iteratively modifies weights in G, by evaluating PATH

!Note that € is not an input of our algorithm.
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Algorithm LAZY-GMGP
1. Initialize G, to the weighted goal graph in which the cost of every edge
{9ik, gji} is set to the length of the shortest path in C' between

gix and gj
2. Repeat
a. T < GSTREE(G,)
b. k<« ¢(7T)

c. Repeat while ¢(T) < a x k
i. If all edges in T" are exact then return multi-goal path defined
by PREORDER-WALK(T')
ii. Pick a non-exact edge e = {gix, g} in T
ili. Modify G. by resetting the cost of e to £(PATH(g;x, g;1))

Figure 5: Lazy multi-goal planning algorithm

for edges picked in the group-spanning tree computed by GSTREE(G,) and
updating their costs accordingly. Once the cost of an edge {gix,g;i} has
been updated to £(PATH(g;x, gj1)), we say that this edge is ezact. This yields
the lazy algorithm LAZY-GMGP shown in Figure 5 and discussed below.

Step 1 initializes the weighted goal graph G.. Next, each iteration of
Step 2 first computes a group-spanning tree 7' of the current G, (the optimal
spanning tree if G, is non-partitioned, or a near optimal group-spanning tree
if the graph is partitioned). Throughout the rest of Step 2, ¢(T") denotes the
current cost of T'. Each iteration of Step 2.c leads to evaluating PATH for a
non-exact edge picked in 7" and updating the cost of this edge in G.. During
this iteration, the topology of T' remains fixed, but its cost ¢(T") varies, as
long as it remains within factor a of the initial cost recorded in x, where
a > 1 is an input number. If ¢(T') ever grows greater than a x x, then a
new iteration of Step 2 is performed which recomputes a new tree T' from
the current G.. Step 2 exits with a solution when all edges of T are exact.

In addition, whenever PATH fails to find a path at Step 2.c.iii, the corre-
sponding edge is removed from G (this is equivalent to resetting its cost to
infinity) and a new iteration of Step 2 is performed. If GSTREE fails to find
a group-spanning tree at Step 2.a, then LAZY-GMGP returns failure. Note
that if the goals are not partitioned, LAZY-GMGP returns failure at the first
failure of PATH. For simplicity, these cases are not shown in the algorithm
of Figure 5.

11



4.2 Analysis

Let Ln and Lg denote the lengths of the tours respectively computed by
NAIVE-GMGP and LAZY-GMGP for a given instance of the multi-goal planning
problem. We assume that, whenever these two algorithms evaluate PATH for
the same two goals g;; and gj;, each evaluation yields the same goal-to-goal
path. Recall from Subsection 3.3 that Ly < 28 X Loy, where Loy is the
length of the optimal tour in Gy. The following theorem relates L5 and
;COpt.

Theorem 1: The length Lg of the multi-goal path computed by LAZY-
GMGP satisfies:

;CG < 20[,8 X 'COpt-

Proof: Let Ty and T} denote the optimal (group-)spanning trees of
graphs Gy and G, respectively. Let T, be the tree returned by GSTREE(G,).
We have:

o(T7) < o(T7)

Cc

and:

So: ¢(Te) < B x c(TF).

Therefore, at Step 2.b, we have k < 8 x ¢(T}). Step 2.c computes goal-
to-goal paths for non-exact edges in 7', until either the cost of 7' grows larger
than « X &, or all edges in T" are exact. When this second condition turns
true, we have c¢(T) < a x K < aff x ¢(T}). Since the length L of the
multi-goal path determined by PREORDER-WALK(T') at Step 2.c.i is within
factor 2 of ¢(T"), we have Lo < 2af x c¢(T}). We also have ¢(T}) < Lopt,
hence Lo < 208 X Lopt. W

Note that when « is set to 1, the lengths of the paths respectively com-
puted by NAIVE-GMGP and LAZY-GMGP are within the same factor 28 of
Lopt- Note also that, in the case of non-partitioned goals (then, 8 = 1), the
upper bound 2a x Loy on Lg is tighter than the bound 2a x L established
in [23].

The tour returned by PREORDER-WALK(T') at Step 2.c.i may contain
edges of G, that are still non-exact. To transform the tour into a multi-goal
path, it is necessary to evaluate PATH on every such edges. The weighted
goal graph after this computation may still contain edges that are non-
exact, so that the triangle inequality may not be satisfied by every triplet
of vertices. But as long as the triangle inequality holds for the edges in T'

12



Figure 6: A worst-case example for LAZY-GMGP in a two-dimensional con-
figuration space C'. The free space F' is shown in white and each of the 4
cross-marks denotes a goal configuration. The dashed and plain lines depict
the shortest paths between the goals in C' and in F', respectively. The length
of the shortest path in C between any two goals is much smaller than the
length of the shortest path in F' between any two goals.

and its preorder walk, the tour returned by PREORDER-WALK(T') has cost
within a factor 2 of that of T

The experimental results of Section 6 will show that LAZY-GMGP is usu-
ally much faster than NAIVE-GMGP, but that the lengths of the paths re-
spectively computed by the two algorithms are comparable. As one would
expect, the running time of LAZY-GMGP also decreases as « gets larger, while
the lengths of the paths only increase slightly.

However, for any given value of ¢, in the worst case, LAZY-GMGP evalu-
ates PATH for all the ©(|V'|?) edges of the goal graph. A worst-case instance
with non-partitioned goals can easily be constructed as follows. Let the
r+ 1 goal configurations gg, g1, ---, g» be very close to each other in C. More
precisely, let the length of the shortest path in C between any two of them
be less than some small . Assume that F' is made of “pipes” connecting the
goal configurations so that the length of the shortest path in F' between any
two of them is greater than some sufficiently large L (see Figure 6). Then,
each execution of Step 2.c (except the last one) evaluates PATH exactly once,
because the increment L — ¢ in the cost of the spanning tree T" causes ¢(T')
to become greater than « X k. Moreover, until all edges of G, are exact, the
minimal spanning tree at Step 2.a necessarily includes at least one non-exact
edge. Therefore, LAZY-GMGP will terminate only when all goal-to-goal paths
have been computed.

13



e )\« cost of e in G,
e Modify G. by resetting the cost of e to X' = £(PATH(gix, g;1))
o If (\' — X)/A > ~y then for every g, € V other than g and gj; do
- If edge {gji,gst} is exact and edge {gir,gst} is not exact, then reset the

cost of {gik,gst} to max{c(gix, gst),|c(gix, gj1) — c(gji> gst)|}-
- If edge {gik,gst} is exact and edge {gji,gst} is not exact, then reset the

cost of {lea gst} to maX{C(gjl,gst), |C(gikagjl) - C(gik, gst)|}'

Figure 7: Improvement of Step 2.c.iii of LAZY-GMGP

4.3 Improvements

Below we briefly discuss three possible improvements of the LAZY-GMGP
algorithm shown in Figure 5. Only the first two have been implemented.

a) In general, one may expect LAZY-GMGP to make fewer calls to PATH if
the edge costs of G, approximate the exact values more tightly. This leads
our planner to exploit the triangle inequality among goal-to-goal paths, as
follows. If the edges {gix,9;} and {g;i,9st} in G, are exact, but {gx,gs:}
is still non-exact, then c¢(gik,gs¢) should not be smaller than |c(gik,g;1) —
c(gji, 9st)|- So, we can replace Step 2.c.iii of LAZY-GMGP by the steps given
in Figure 7, where v > 0 is a real constant aimed at skipping the update
when PATH(g;x, gj1) is not longer, or only marginally longer than the lower-
bound cost weighting edge {gix, g1}

b) In order to avoid unnecessary iterations at Step 2.c of LAZY-GMGP, we
can try to pick, at Step 2.c.ii, the non-exact edge that is likely to yield the
maximum increase of the cost of T. A heuristic used in our implemented
planner is to pick the longest non-exact edge, since it is the most likely to
require a long detour around obstacles (see [21]).

c) Step 2.a of LAZY-GMGP re-computes a new group-spanning tree 7" at
each iteration. However, between two successive computations of T, it is
often the case that only a small number of edges of G, (at most r) have
changed cost. This suggests saving time by updating the tree computed at
the previous iteration. For non-partioned graphs, if & is the number of edges
in G, that have changed costs, then the optimal spanning tree of G, can be
updated in time O(k+/r) [9, 10]. We are not aware of a similar algorithm
for updating group-spanning trees.
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5 Implementation of PATH

For robot arms, no algorithm is available to efficiently compute a goal-to-
goal path guaranteed to be within a given factor of shortest paths. So, our
implementation of PATH uses a heuristic two-phase approach: first, compute
a collision-free path; next, optimize this path. This approach was introduced
in [2].

We use a bi-directional tree-expansion PRM planner (more precisely, the
SBL planner presented in [21]) to generate an initial collision-free path be-
tween two given goals g;; and g;;. This planner grows two trees of sampled
configurations, called milestones, that are rooted at g;; and g;;, respectively.
At every iteration, it picks a milestone m in one of the two trees and sam-
ples configurations at random in a neighborhood of m until one, m/, tests
collision-free. It installs m' as a child of m in its tree and creates a connec-
tion between m' and the closest milestone in the other tree, thus establishing
a path of milestones between g;;, and g;;. If all connections in a path of mile-
stones are collision-free, the planner returns the path (a polygonal line in
configuration space), otherwise it removes the colliding connection from the
trees and samples more milestones. The planner exits with failure if it has
not found a path after generating a given maximum number of milestones.
The planner has been shown, both theoretically and empirically, to have fast
convergence rate [16, 21]. Failure to find a path, when one exists, has not
been an issue in our experiments.

SBL samples configurations by using a pseudo-random source of num-
bers parameterized by a seed. For a given seed, such a source produces a
deterministic sequence of numbers that approximates the statistical prop-
erties of a random sequence. At each evaluation, our function PATH resets
the seed to the value of a function of the two input goal configurations. By
doing so, we guaraantee that an important assumption for Theorem 1 — that
if NAIVE-GMGP and LAZY-GMGP evaluate PATH for the same two goals, then
each evaluation yields the same goal-to-goal path — is satisfied.

The trees grown by the planner are not biased in any particular direction.
So, in both the naive and the lazy algorithms, rather than discarding the
two trees produced by a run of PATH, we store them. When PATH is invoked
again, if any of the two goals in the new pair of goals has already been
considered before, then the tree rooted at this goal is retrieved and re-used by
the planner, thus saving considerable amount of work. As more evaluations
of PATH are performed, each evaluation, on average, takes less time. This
implementation of PATH is reminiscent of the Probabilistic Roadmaps of
Trees (PRT) described in [1], except that in PATH all trees are rooted at
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Algorithm OPTIMIZE(T)

Repeat N times

1. Pick two configurations ¢ and ¢’ on 7 at random
2. T + SHORTEN(q,q',T)

Algorithm SHORTEN(q, ¢/, 7)
If the straight segment between g and ¢’ is collision-free
1. Then return the path obtained by replacing the sub-path of 7 between
g and ¢' by this segment
2. Else
2.1. Let ¢” be the midpoint on the sub-path of 7 between ¢ and ¢
2.2. T + SHORTEN(q,q",T)
2.3. Return SHORTEN(q"”, ¢', 7)

Figure 8: Path optimizer

goal configurations.

Several optimizers can be used to improve a path generated by the PRM
planner. For instance, the variational optimization technique used in [2]
iteratively deforms a path to minimize the time that the robot will take to
execute the path. It takes the robot’s dynamic model and torque limits in
the joints into account. Our implementation of PATH uses a simpler (and
faster) optimizer described in Figure 8 [15]. This optimizer assumes that the
shortest path in configuration space between two arbitrary configurations is
the straight segment. The input path, 7, is a polygonal line in configuration
space. The optimizer repeatedly replaces sub-paths of 7 by collision-free
straight segments. Though the outcome is only locally optimal at best, it is
usually quite satisfactory.

6 Experimental Results

In this section we report on some of the experiments we have performed
using our implementations of both the NAIVE-GMGP and LAZY-GMGP algo-
rithms. All results given below have been obtained on a 1-GHz Pentium-IIT
computer with 1Gb of memory running Linux. All times are in seconds, with
a resolution of 0.01 (hence, a few times are reported to be 0.00). All perfor-
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mance data are averaged over 50 runs of each of the two planners, such that
in each pair of runs PATH computes the seed of the pseudo-random source
with a different function (see Section 5).

For PATH, we used the implementation of SBL available at:
http:/ /robotics.stanford.edu/~mitul/mpk. When goals are not partitioned,
a minimum-cost spanning tree is computed using the Prim’s algorithm [7].
Otherwise, a near-optimal group-spanning tree is computed using an imple-
mentation of the algorithm given in [5] (since the input to this algorithm
must be a tree, as suggested in [5], we use the algorithm proposed in [11] to
approximate a weighted goal graph with a tree). We further optimize the
output tree by replacing it with the optimal spanning tree of the subgraph
of G, reduced to the nodes in the tree. Our implementation of LAZY-GMGP
incorporates the two improvements described in Subsections 4.3 a) and b).

Throughout this section, we consider the three examples depicted in Fig-
ures 9, 10, and 11, in which there are 10, 31, and 50 goal groups, respectively.
All three examples use a six-degree-of-freedom arm. The arm in Example 1
is modeled by 3,791 triangles and the arms in Examples 2 and 3 by 2,502
triangles. The workspaces (obstacles) of Examples 1, 2, and 3 are modeled
by 74,681, 19,668, and 31,184 triangles, respectively. Each goal group cor-
responds to a given position of the end-effector’s tip. Since the arm has six
degrees of freedom, such a position yields an infinity of IK solutions form-
ing a continuous IK subset of C. To construct a goal group of size p, we
sample a large number of IK solutions at random and we cluster them into
p clusters, in order to select p very distinct configurations providing a good
coverage of the IK subset. A goal group of size 1 simply consists of one of
these configurations.

6.1 Non-partitioned case

Here, we compare the performances of LAZY-GMGP and NATVE-GMGP on the
three examples when each group has size 1.

Table 1 lists performance data with the parameter o set to the mini-
mum value of 1. The columns correspond to the three examples. The rows
successively indicate the total running time of a planner, the length of the
generated solution (using the £ = Lo metric in configuration space), the
number of evaluations of PATH, the number of evaluations of GSTREE, and
the times spent in those evaluations.

On all three examples, LAZY-GMGP is much faster than NAIVE-GMGP
— about ten to twenty times faster in Examples 2 and 3, respectively. Fig-
ure 12, which plots the running times of LAZY-GMGP and NAIVE-GMGP when
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(b)

Figure 9: (a) Example 1 (10 goal groups); (b) some goal configurations
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Figure 10: (a) Example 2 (31 goal groups); (b) some goal configurations
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Figure 11: Example 3 (50 goal groups); (b) some goal configurations
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NAIVE-GMGP LAZY-GMGP
Ex.1 Ex.2 Ex.3 Ex.1 Ex.2 Ex.3
Total-time 229.98 2509.60 5358.19 | 116.71 230.93 218.49
Total-length 12.79 27.34 39.79 12.79 27.34 39.79

#PATH 45 465 1225 26 57 75
#GSTREE 1 1 1 27 50 69
Time-PATH 229.98 2509.60 5358.19 | 116.71 230.25 216.45
Time-GSTREE 0.00 0.00 0.00 0.00 0.68 2.04

Table 1: Comparison of NAIVE-GMGP and LAZY-GMGP, when goal configu-
rations are non-partitioned and o =1 (all times are in seconds)

the number of goal configurations increases from 5 to 50 in Example 3, fur-
ther indicates that the speedup of LAZY-GMGP over NAIVE-GMGP increases
with the number of goals. Additional tests not shown here indicate that
the speedups achieved by LAZY-GMGP over NAIVE-GMGP are almost cut in
half when the improvements described in Subsection 4.3 a) and b) are not
included.

In each example, the two planners generate the same multi-goal path.
This is not surprising. Indeed, when G is non-partitioned and « is set to 1,
LAZY-GMGP terminates at Step 2.c.i with a spanning tree T' that is optimal
in both G, and Gy. So, if G¢ has a unique optimal spanning tree, then both
NAIVE-GMGP and LAZY-GMGP return the same multi-goal path. This is
because our implementation of PREORDER-WALK returns a unique preorder
walk for an input tree (by choosing the same root and the same ordering
on the nodes). It is easy to see that in almost all practical cases, Gy has a
unique optimal spanning tree. This is the case in our three examples.

Table 1 indicates clearly that on all three examples LAZY-GMGP obtains
the optimal spanning tree from a graph G, that still contains many non-exact
edges, hence without having run PATH on all pairs of goals. In particular, in
Example 3, it runs PATH on only 6% (on average) of the 1225 pairs of goal
configurations.

Note that NAIVE-GMGP actually pre-computes a multi-tree roadmap that
connects all pairs of goal configurations. We compared the cost of this pre-
computation with that of running our own implementation of the roadmap-
construction algorithm proposed in [22] (see Section 2 a). On each of the
three examples, NAIVE-GMGP pre-computes a roadmap 2 to 3 times faster
than this algorithm. But, of course, the main reason for implementing PATH
as a bidirectional tree-expansion PRM planner is to generate goal-to-goal
paths incrementally, one at a time, a capability that LAZY-GMGP exploits to
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Figure 12: Running times of NAIVE-GMGP and LAZY-GMGP as the number of
goal configurations grows from 5 to 50 in Example 3 (non-partitioned case)

avoid computing un-necessary goal-to-goal paths.

6.2 Partitioned case

Table 2 compares the performances of LAZY-GMGP and NAIVE-GMGP on
the three examples when each goal group consists of 5 configurations. In
Examples 1 and 2, the speedups achieved by LAZY-GMGP over NAIVE-GMGP
are even more impressive than in the non-partitioned case. In particular, in
Example 2, LAZY-GMGP is 100 times faster than NAIVE-GMGP. However, in
the third example, the speedup is more modest (about 2). This observation
will motivate the improved lazy algorithm presented in Section 6.3.

We note that, unlike in the non-partitioned case, the paths computed
by NAIVE-GMGP and LAZY-GMGP in each example are different, but have
comparable lengths. In Example 3, the paths computed by LAZY-GMGP are
even shorter (on average). There are two reasons for this. First, even though
edge costs in Gy are greater than or equal to those in G., GSTREE(G,) may be
luckier than GSTREE(G/) and compute a tree T, whose cost is less than that
of the tree T; computed by GSTREE(Gy). Secondly, even if ¢(T;) > ¢(Ty), it
is still possible that 7, leads to a shorter pre-order walk than 7}.

Since GSTREE is exact in the non-partitioned case, but only approximate
in the non-partitioned case, it is interesting to compare the lengths of the
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NAIVE-GMGP LAZY-GMGP
Ex.1 Ex.2 Ex.3 Ex.1 Ex.2 Ex.3
Total-time 5828.59  49238.58 87322.75 | 215.91 478.38 40036.51
Total-length 10.33 18.01 21.53 11.67 19.28 16.94
#PATH 1225 11935 31125 50 81 169
#GSTREE 1 1 1 51 75 159
Time-PATH 5828.48 49212.14 87103.98 | 208.27 223.46 346.77
Time-GSTREE 0.11 26.44 218.77 7.64 254.92  39689.74

Table 2: Comparison of NAIVE-GMGP with LAZY-GMGP when each goal
group contains 5 configurations and a = 1 (all times are in seconds)

Example 1 Example 2 Example 3
14 30, 50
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Figure 13: Lengths of paths returned by LAZY-GMGP for ten different sets
of non-partitioned goals for Examples 1, 2 and 3

multi-goal paths obtained with LAZY-GMGP in the partitioned case with the
lengths of paths also computed by LAZY-GMGP for non-partitioned problems
generated by picking one goal at random from each goal groups. In fact, the
three non-partitioned examples used to produce Table 1 were generated in
this way, and all three lengths reported in Table 2 by solving the partitioned
problem are significantly better. We conducted more experiments summa-
rized in the three bar graphs of Figure 13. Each graph reports the lengths
of the paths computed by LAZY-GMGP on 10 non-partitioned problems for
Example 1, 2, or 3. In each of these problems, every goal was picked at
random from the corresponding group of five goals used in the partitioned
problem. In most cases, the paths are significantly longer than the corre-
sponding paths computed by LAZY-GMGP on the partitioned problems.

6.3 Improved lazy algorithm

We noted above that in the partitioned case, the speedup achieved by LAZY-
GMGP over NAIVE-GMGP is much smaller in Example 3 than in the other
two examples. Table 2 reveals that, in Example 3, evaluating GSTREE takes
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2.c. dgstree < TIME(GSTREE)

2.d. 5path +— 0
2.e. Repeat while ¢(T) < a X Kk or dpgn < Ogstree
i. If all edges in T' are exact
ii. then if ¢(T) < a X k
iii. then return multi-goal path defined
by PREORDER-WALK(T')
iv. else exit loop 2.e
V. else
vi. Pick a non-exact edge e = {g;x, g} in T
vil. Modify G, by resetting the cost of e to £(PATH(g;, g;1))

viil.  Opath < Opatn+TIME(PATH)

Figure 14: Replacing Step 2.c of LAZY-GMGP by the above steps results in
LAZY-GMGP-2, an improved version of the lazy planner when the running
time of TOUR is greater than that of GSTREE

more than 99% of the total running time of LAZY-GMGP. In fact, because
the total number of goal configurations (250) is much larger than in the
other examples, the running time of GSTREE dominates that of PATH, which
violates the assumption on which the design of LAZY-GMGP is based.

This observation led us to create a variant of LAZY-GMGP — we call it
LAZY-GMGP-2 — in which we balance the total times spent evaluating GSTREE
and PATH. We obtain LAZY-GMGP-2 by replacing Step 2.c of LAZY-GMGP
with the steps shown in Figure 14. The function TIME(z), where z = PATH
or GSTREE, returns the time spent in the last evaluation of x. Thanks to
the test at Step 2.e.ii, Theorem 1 still holds for LAZY-GMGP-2. While LAZY-
GMGP assumes that finding a good tour in G with given edge costs is faster
than computing the exact cost of an edge in G by running PATH, LAZY-
GMGP-2 operates under the more relaxed assumption that finding a tour in
G is only faster than computing the exact costs of all the edges in G.

Table 3 reports the results obtained with LAZY-GMGP-2 on the three
examples. As expected, LAZY-GMGP-2 is much faster than LAZY-GMGP in
the third example, and marginally faster than LAZY-GMGP on the other two
examples. Hence, it is always much faster than NAIVE-GMGP. In all the
three examples, the lengths of the paths computed by LAZY-GMGP-2 are
similar to those computed by LAZY-GMGP.

LAZY-GMGP-2 has an interesting additional property over LAZY-GMGP.
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LAZY-GMGP-2
Ex.1 Ex.2 Ex.3
Total-time 214.69 419.95 9621.64
Total-length 11.61 19.41 17.22
#PATH 50 86 198
#GSTREE 51 37 32
Time-PATH 207.17 242.98 427.94
Time-GSTREE 7.52 176.97  9193.70

Table 3: Results obtained with lazy-mgp-2 when each goal group contains
5 configurations and o = 1 (all times are in seconds)

In a worst-case example, like the one shown in Figure 6, GSTREE is called
O(r?) times. If the number r + 1 of goal groups grows very large, then
each run of GSTREE may get much more costly than a run of PATH, so that
LAZY-GMGP may become much slower than NAIVE-GMGP. Instead, in such
an example, LAZY-GMGP-2 spends about the same total time evaluating
GSTREE and PATH. Hence, in the worst case, LAZY-GMGP-2 can only be at
most twice slower than NAIVE-GMGP. However, such a case is very unlikely
in practice, and in all the examples on which we have experimented our
planners, NAIVE-GMGP is significantly slower than both LAZY-GMGP and
LAZY-GMGP-2.

6.4 Influence of parameter o

Here, we measure the impact of the parameter o on the performance of
LAZY-GMGP. The three plots in Figure 15 correspond to the three exam-
ples of Figures 9, 10, and 11, with non-partitioned goals. Each plot shows
three curves that respectively represent the total running time of LAZY-
GMGP (solid), the length of the computed multi-goal path (dashed), and the
number of evaluations of PATH (dotted) when « grows from 1 to 3. Again,
each value is averaged over 50 independent runs.

These plots indicate that the number of calls to PATH and consequently
the running time of LAZY-GMGP first decrease sharply when « increases,
but then level out. In fact, when the value of o gets greater than a certain
threshold ag, Step 2 of LAZY-GMGP returns a solution at the first cycle.
Then, the average running time of LAZY-GMGP stops improving. The value
o depends on how well the lengths of the straight line segments joining all
pairs of goals approximate the lengths of the collision-free paths computed
by PATH. The tighter the approximations, the lower the threshold. In our

25



Example 1

120, T T
—5- Running time
—0- Path length
-0 Callsto PATH
100 1
80
60
40
200 L T ° 1
B T riodie Sl B
- - - - - Y. &
“““ O @
0 . .
1 15 2 25
Example 2
250 T T
-8~ Running time
0~ Path length
- O Calls to PATH
200 b
1501 b
-
100 l
sof e 1
o.
PSR O i Qi o T T T
0 . .
1 15 2 25
Example 3
220 T T
-8~ Running time
0~ Path length
200 - O Calls to PATH
1801
1601
140
120 1
100 1
80 1
60 . i
Qi [ IO - RN - ORIy - SIRNIOY
P o - - R - - 4
20 : .
1 15 2 25

Figure 15: Running time of LAZY-GMGP, length of solution, and number of
calls to PATH on Examples 1, 2, and 3 when « grows from 1 to 3
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examples, ag ranges between 1.2 and 2.3.

7 Conclusion

This paper describes a new multi-goal motion planning algorithm for a robot
arm whose task requires visiting multiple goal configurations. This algo-
rithm generates a near-optimal tour through these configurations. It oper-
ates under the assumption that finding a tour in a goal graph with edges
of given cost is much faster than finding the exact cost of all the edges in
the graph. The algorithm can handle both the case where the goals are
non-partitioned (then each goal must be visited once) and the case where
the goals are partitioned into groups (then each group must be visited once).
The partitioned case typically occurs when each goal is specified by the place-
ment of the robot’s end-effector and the robot’s IK gives several solutions.
It is much harder than the non-partitioned case. Our solution makes use of
a recent approximation algorithm for the group Steiner tree problem [5].
Our lazy algorithm tries to compute as few goal-to-goal paths as possible.
For this purpose, it uses the minimum spanning tree of a weighted goal graph
(non-partitioned case) or a near-minimum group-spanning tree (partitioned
case) to decide which goal-to-goal paths to compute. It returns a solution
guaranteed to be within the same approximation factor of the optimal path
as the solution returned by the naive algorithm that first computes all goal-
to-goal paths. Experiments show that in general the lazy algorithm is much
faster than the naive algorithm, while producing paths of similar lengths.
There are several directions in which this work could be extended in the
future. In some applications, a partial ordering is imposed on the input
goals. How to efficiently incorporate this ordering into the multi-goal plan-
ner? When the robot kinematics is redundant, there may be infinitely many
IK solutions. In our experiments, we pre-sampled the continuous IK space.
Could a multi-goal planner deal directly with continuous goal groups? When
goals are partitioned, for a tour to exist, it is only necessary that one com-
ponent of F' contains at least one goal from each group. So, many pairs of
goals may not belong to the same component, making it more difficult to set
a “good” time limit for PATH. Too small, and PATH may fail to find critical
goal-to-goal paths. Too large, and PATH may waste time trying to connect
pairs of goals lying in different components of F'. This issue did not arise in
our experiments because in each example F' had a single component. But
it deserves more attention in the future. Finally, it would be interesting to
investigate the multi-goal problem for multi-robot systems, when each goal
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may be reached by several robots.
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