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Abstract

We define smooth games of incomplete information. We prove an “extension theorem” for
such games: price of anarchy bounds for pure Nash equilibria for all induced full-information
games extend automatically, without quantitative degradation, to all mixed-strategy Bayes-Nash
equilibria with respect to a product prior distribution over players’ preferences. We also note
that, for Bayes-Nash equilibria in games with correlated player preferences, there is no general
extension theorem for smooth games.

We give several applications of our definition and extension theorem. First, we show that
many games of incomplete information for which the price of anarchy has been studied are
smooth in our sense. Our extension theorem unifies much of the known work on the price of
anarchy in games of incomplete information. Second, we use our extension theorem to prove
new bounds on the price of anarchy of Bayes-Nash equilibria in routing games with incomplete
information.

1 Introduction

Every student of game theory learns early and often that equilibria are inefficient. Such inefficiency
is ubiquitous, and is present in many real-world situations and for many different reasons. For
example: Prisoner’s Dilemma-type scenarios; uninternalized negative externalities in the tragedy
of the commons and in games with congestion effects; uninternalized positive externalities with a
public good or with network effects; a failure to coordinate in team games; and so on.

Research over the past fifteen years has provided an encouraging counterpoint to this widespread
equilibrium inefficiency: in a number of interesting application domains, game-theoretic equilibria
provably approximate the optimal outcome. That is, the price of anarchy — the worst-case ratio
between the objective function value of an equilibrium and of an optimal outcome — is close to 1
in many interesting games.

The price of anarchy was first studied in network models (see [31, Chapters 17-21] for an
overview), but the list of applications studied now spans the gamut from health care [23] to basket-
ball [37]. Essentially all initial work on the price of anarchy studied full-information games, where
all players’ payoffs are common knowledge. Now that the study of equilibrium inefficiency has
grown in scope and considers strategically interesting auctions and mechanisms — we give several
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concrete examples in Section 2 — there is presently a well-motivated focus on the price of anarchy
in games of incomplete information [21], where players are uncertain about each others’ payoffs.
The goal of this paper is to develop a useful general theory for bounding the price of anarchy in
such games.

1.1 Executive Summary: Price of Anarchy Bounds for Bayes-Nash Equilibria
via Extension Theorems (i.e., Without the Pain)

Pure-strategy Nash equilibria — where each player deterministically picks a single action — are
often easy to reason about. Or at least, they are easier to analyze than their more general cousins
like mixed-strategy Nash equilibria (where players can randomize) and Bayes-Nash equilibria (where
players don’t even know with certainty what game they’re playing in).

For this reason, the price of anarchy of a game is often analyzed, at least initially, only for the
game’s pure-strategy Nash equilibria. But as much as he or she might want to, the conscientious
researcher cannot stop there. Performance guarantees for more general classes of equilibria are
crucial for several reasons: pure-strategy Nash equilibria do not always exist (like in “Matching
Pennies”); they can be intractable to compute, even when they are guaranteed to exist [14]; and
even when efficiently computable by a centralized algorithm, they can elude natural learning dy-
namics [38]. Finally, a fundamental assumption behind the Nash equilibrium concept is that all
players’ preferences are common knowledge, and this assumption is violated in most auction and
mechanism design contexts, where participants have private information.

Many researchers dutifully extended their (or their predecessors’) price of anarchy bounds be-
yond pure-strategy Nash equilibria to more general concepts. Early on, researchers emphasized
full-information equilibrium concepts that extend Nash equilibria (see [7, 8, 10, 19, 24, 27, 35, 42]
for a number of examples); as Section 2 discusses, recent work has focused on Bayes-Nash equilibria
in games of incomplete information.

Extending price of anarchy bounds beyond pure Nash equilibria is an extremely well motivated
activity, but it is also potentially dispiriting, for two reasons. The first is that the analysis generally
becomes more complex, with one or more unruly probability distributions obfuscating the core
argument. The second is that enlarging the set of permissible equilibria can only degrade the price
of anarchy, which is a worst-case measure. Thus the work can be difficult, and the news can only
be bad.

Can we obtain price of anarchy bounds for equilibrium concepts more general than pure-strategy
Nash equilibria without doing any additional work? Ideal would be an extension theorem that could
be used in the following “black-box” way (Figure 1): (1) prove a bound on the price of anarchy of
pure-strategy Nash equilibria of a game; (2) invoke the extension theorem to conclude immediately
that the exact same approximation bound applies to some more general equilibrium concept. Such
an extension theorem would dodge both potential problems with generalizing price of anarchy
bounds beyond pure Nash equilibria — no extra work, and no loss in the approximation guarantee.

Since there are plenty of games in which (say) the worst mixed-strategy Nash equilibrium
is worse than the worst pure-strategy Nash equilibrium (like “Chicken”), there is no universally
applicable extension theorem of the above type. The next-best thing would be an extension theorem
that applies under some conditions — perhaps on the game, or perhaps on the method of proof
used to bound the price of anarchy of pure Nash equilibria. If such an extension theorem existed,
it would reduce proving price of anarchy bounds for general equilibrium concepts to proving such
bounds in a prescribed way for pure-strategy Nash equilibria.
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Figure 1: How to use an extension theorem. The first step is to bound the price of anarchy for the
special case of pure Nash equilibria of full-information games (subject to conditions detailed in the
main text). The second step is to apply an extension theorem to obtain the same approximation
guarantee for mixed Bayes-Nash equilibria of incomplete-information games.

The first example of such an extension theorem was given in [35], for full-information games.1

The key concept in [35] is that of a smooth game. We give an intuitive explanation here and a formal
definition in Section 2.4. Conceptually, a full-information game is smooth if the objective function
value of every pure-strategy Nash equilibrium a can be bounded using the following minimal recipe:

1. Choose an optimal outcome a∗ of the game.

2. Invoke the Nash equilibrium hypothesis once per player, to derive that each player i’s payoff
in the Nash equilibrium a is at least as high as if it played a∗i instead. Do not use the Nash
equilibrium hypothesis again in the rest of the proof.

3. Use the inequalities of the previous step, possibly in conjunction with other properties of the
game’s payoffs, to prove that the objective function value of a is at least some fraction of that
of a∗.

Many interesting price of anarchy bounds follow from “smoothness proofs” of this type. The main
extension theorem in [35] states that every price of anarchy bound proved in this way — seemingly
only for pure Nash equilibria — automatically extends to every mixed-strategy Nash equilibrium,
correlated equilibrium [2], and coarse correlated equilibrium [20, 28] of the game.

This paper presents a general extension theorem for games of incomplete information, where
players’ private preferences are drawn independently from prior distributions that are common
knowledge. This extension theorem reduces, in a “black-box” fashion, the task of proving price
of anarchy bounds for mixed-strategy Bayes-Nash equilibria to that of proving such bounds in a
prescribed way for pure-strategy Nash equilibria in every induced game of full information (after
conditioning on all players’ preferences). With this extension theorem, one can prove equilibrium
guarantees for games of incomplete information without ever leaving the safe confines of full-
information games.

1See [9, 29, 36, 40] for subsequent refinements.

3



We conclude this section with an overview of the main points of this paper.2

1. We define smooth games of incomplete information. The definition is slightly stronger than
requiring that every induced full-information game is smooth.

2. We prove an extension theorem for smooth games of incomplete information: price of anarchy
bounds for pure Nash equilibria for all induced full-information games extend automatically
to all mixed-strategy Bayes-Nash equilibria with respect to a product prior distribution over
players’ preferences.

3. We show that many games of incomplete information for which the price of anarchy has been
studied are smooth in our sense. Thus our extension theorem unifies much of the known work
on the price of anarchy in games of incomplete information.

4. We use our extension theorem to prove new bounds on the price of anarchy of Bayes-Nash
equilibria in routing games with incomplete information.

5. We note that for Bayes-Nash equilibria in games with correlated player preferences, there is
no general extension theorem for smooth games.

1.2 Organization of Paper

Section 2 reviews games of incomplete information, smooth full-information games, and several
motivating examples in auctions and routing games. Section 3 defines smooth games of incomplete
information and proves our extension theorems. Section 4 recovers known results for auctions and
proves new results for routing games with incomplete information as special cases of our abstract
framework. Section 5 offers conclusions.

2 Preliminaries and Examples

Section 2.1 defines games of incomplete information, Bayes-Nash equilibria, and the price of anarchy.
This section can be skipped by the expert. Sections 2.2 and 2.3 describe in detail several games
of incomplete information from the domains of mechanism design and routing, respectively. These
concrete examples are useful to keep in mind throughout the abstract development in Section 3.
Section 2.4 reviews smooth games and extension theorems for full-information games; this section
provides context but can be skipped without much loss.

2.1 The Price of Anarchy in Games of Incomplete Information

In a game of incomplete information, there are n players. Player i has a type space Ti and an action
space Ai. We write T = T1 × · · · × Tn and A = A1 × · · · × An. We assume that the type vector
t is drawn from a distribution F that is common knowledge. The distribution F may or may not
be a product distribution — that is, players’ types may or may not be stochastically independent.
The payoff ui(ti; a) of player i is determined by its type and by the actions a chosen by all of the
players. For example, in a first-price auction, the actions (bids) determine whether or not a given
player wins, and the price if it does win; its value for winning is given by its type.

2Some of our results were also obtained, subsequently but independently, by Syrgkanis [39]. There are also results
in [39], developed further in [40], for some pay-as-bid mechanisms [22, 25] that are not considered here.

4



The point of the machinery above is to model situations where each player is uncertain about
what the other players want, and is therefore also uncertain about what they will do. For example,
suppose you are participating in a first-price auction. How should you bid? The answer depends on
your beliefs about what the others’ are bidding, which depends both on their types (i.e., valuations)
and also on their bidding strategies (i.e., the player’s bid given its valuation). When discussing
equilibria, we assume that each player knows the others’ bidding strategies, but is uncertain about
their types.

In more detail, a strategy σi for player i is a function from types Ti to probability distributions
over Ai, with the semantics “when my type is ti I will play the mixed strategy σi(ti)”. A strategy
is pure if, for each type ti, σi(ti) is a point mass on one action. A strategy profile σ is a Bayes-Nash
equilibrium if, for every player i, type ti ∈ Ti, and action a′i ∈ Ai,

Et−i∼F−i
(ti)

[
Ea∼σ(t)[ui(ti; a)]

]
≥ Et−i∼F−i

(ti)

[
Ea−i∼σ−i(t−i)

[
ui(ti; (a′i,a−i))

]]
, (1)

where F−i(ti) denotes the distribution induced by F on T−i after conditioning on ti. Inequality (1)
simply says that every (risk-neutral) player always plays a best response given all of the available
information to it — the facts that its type is ti, that other players’ types are consequently distributed
according to F−i(ti), and that the other players are using the strategies σ−i. If the distribution F
is a point mass, so that there is no uncertainty about players’ types, then the game is equivalent to
a full-information game, and Bayes-Nash equilibria are simply Nash equilibria. In this sense, fixing
a type vector t induces a full-information game.

Our motivating applications require a superficially more general model in which a player’s action
set Ai depends on its type ti. We say that such actions are feasible for ti. One canonical motivation
for making some actions infeasible in a type-dependent way is to disallow “bluffing strategies” in
second-price-type auctions. Another is in routing games, where the type-dependent origin and
destination of a player determines which paths it can use. Infeasible strategies can be modeled by
setting the player’s payoff ui(ti; a) to negative infinity whenever ai is infeasible for ti. We always
assume that a player has at least one feasible action, no matter what its type is.

We now define the price of anarchy of a game of incomplete information. Let W (t; a) denote a
non-negative objective function defined on the outcomes of the game (for each type profile), such
as the sum of players’ payoffs. Let OPT (t) denote a profile of actions feasible for t that optimizes
the objective function W (t; a) over all such profiles. The price of anarchy of the game is the worst-
case, over the Bayes-Nash equilibria σ of the game, of the expected objective function value of a
Bayes-Nash equilibrium and of an optimal outcome:

Et∼F

[
Ea∼σ(t)[W (t; a)]

]
Et∼F[W (t;OPT (t))]

. (2)

We are particularly interested in bounds on the price of anarchy that are independent of the
distribution F over types. To make this formal, by an (incomplete-information) game structure, we
mean all of the ingredients of a game of incomplete information, save for the distribution F. By
definition, the independent POA (iPOA) of a game structure is the worst-case POA of a game of
incomplete information induced by a product distribution F . The correlated POA (cPOA) is the
worst-case POA induced by an arbitrary distribution F . Obviously, the cPOA can only be worse
than the iPOA.

Product distributions include fixed type vectors as degenerate special cases, so the iPOA can
only be worse than the worst-case full-information POA corresponding to the game structure. Put
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another way, the best-case scenario for bounding the iPOA is to extend a POA bound that applies
to every induced full-information game.

2.2 Motivating Examples from Mechanism Design

Mechanisms for allocating goods or resources furnish relevant and technically interesting examples
of games of incomplete information. We consider mechanisms that comprise an allocation rule x
and payment rule p, which map bid vectors to allocation vectors (i.e., who gets what) and payment
vectors (i.e., who pays what), respectively. The type of a player i is a valuation vi, which specifies
the player’s value for each allocation that it might receive. The action of a player is a bid bi.
The (quasi-linear) payoff of a player is determined by its type and the computed allocation and
payment: ui(vi; b) = vi(xi(b))−pi(b). Such a description of valuation spaces, feasible bid spaces, an
allocation rule, and a payment rule defines a game structure in the sense above — once a distribution
over types is specified, we have all of the ingredients of a game of incomplete information. The
most commonly studied objective in such settings is welfare-maximization, where the welfare of
an allocation is the sum of players’ values for what they were allocated. Thus, with the notation
above, a bid vector b yields an allocation with welfare

∑n
i=1 vi(xi(b)).

We next discuss three well-studied examples; the list is illustrative, not exhaustive. All concern
welfare-maximization mechanism design problems, but the specifics vary widely. In addition to
reinforcing the concepts and notation above, these examples serve as interesting and diverse special
cases of the general theory of POA bounds developed in Section 3.

Example 2.1 (The Generalized Second Price Auction) In the standard single-shot sponsored
search auction model, there are k slots with associated click-through rates α1 ≥ α2 ≥ · · · ≥ αk.
The private type of player i is its valuation vi per click. The feasible action (or bid) space for
player i with type vi is [0, vi].3

The payoff to player i when it is assigned slot j with a total payment of p is vi · αj − p.
In the Generalized Second Price (GSP) auction, the allocation rule x assigns the ith highest

bidder to the ith highest slot, for each i = 1, 2, . . . , k. The payment rule p charges the bidder in
the ith slot the (i+ 1)th highest bid b(i+1) per click, for an overall payment of αib(i+1).

The GSP auction was first proposed as a model of sponsored search auctions in [13, 41]. The POA
in the full-information and incomplete information versions of the GSP auction was first analyzed
in [32] and [26], respectively. Currently, the best lower bound known for the cPOA in this model
is 0.342 — that is, for every (joint) distribution of player valuations, the expected welfare of every
Bayes-Nash equilibrium of the GSP auction is at least 0.342 times the expected maximum-possible
welfare [9]. Better bounds are known for various full-information equilibrium concepts [9].

Example 2.2 (Simultaneous Second-Price Auctions) In a combinatorial auction, there are
m goods for sale. The private type of player i is a valuation function vi that specifies its value

3Some kind of restriction on bidding is necessary for non-trivial price of anarchy guarantees for mechanisms with
the “critical-bid” payment rules that we consider. Even in the simple Vickrey auction, there are Nash equilibria
with arbitrarily bad welfare. (Consider two bidders with known valuations 1 and 0, who bid 0 and 1, respectively.)
Many authors have, by necessity, made and discussed such “no overbidding” or “conservative bidding” assumptions;
see [12, 25, 32] for further details. More generally, such assumptions can be parameterized by the largest factor by
which bids can exceed valuations [5]; all of the price of anarchy guarantees we discuss degrade gracefully with this
parameter.

6



for each subset of the goods. With item bidding, the action space of each player is much smaller
than its type space, and is a subset of Rm

+ , with one bid per good. An action bi1, . . . , bim is feasible
for the type vi if the player does not overbid on any bundle of goods:

∑
j∈S bij ≤ vi(S) for every

bundle S of goods.
The standard allocation rule x with item bidding is to assign independently each good j to

the highest bidder argmaxi bij for it, breaking ties according to some fixed rule. In this paper, we
consider the second-price payment rule p that charges the winner of bundle S the price

∑
j∈S b(2)j ,

where b(2)j denotes the second-highest bid on good j.

Simultaneous second-price auctions were first studied in [12], where bidder valuation functions were
required to be submodular.4 They proved that the iPOA is precisely 1

2 . They did not consider
the cPOA, which was later shown to be inverse polynomial in m [5]. More general classes of
valuations [5, 15] and other payment rules [6, 22, 40] have also been considered.

Example 2.3 (Greedy Combinatorial Auctions) We again consider combinatorial auctions,
but with a full bid space. That is, a player i with valuation vi submits one bid bi(S) for each
subset S of the goods, subject only to the constraint that bi(S) ≤ vi(S) for every subset S of goods.

A greedy allocation rule works as follows. At each step it irrevocably allocates a bundle to
a single player, with each player considered exactly once. At each step, player-bundle pairs are
ranked according to a function that depends only on the player, the bundle, the player’s value for
that bundle, and the assignments made thus far. The highest-ranked pair (subject to feasibility)
determines the next player and the bundle assigned to it. The corresponding critical bid payment
rule charges each player the minimum bid at which it would continue to receive the same bundle
from the allocation rule.

Greedy combinatorial auctions were first considered in [25], where it was proved that if the greedy
allocation rule is a 1

c -approximation algorithm for the underlying welfare maximization problem,
then the iPOA is at least 1

c+1 , and that this bound is tight in general. The cPOA has not been
studied in this model.

2.3 Motivating Examples from Routing Games

Our theory is also relevant for games of incomplete information that arise naturally outside of
mechanism design. We give two examples related to (atomic) selfish routing games [34].5 Tra-
ditionally, a (weighted) selfish routing game is a game of full information. There are n players,
and each picks a path in a network G = (V,E). Specifically, each player i has a weight wi, an
origin oi ∈ V , a destination di ∈ V , and its actions Ai are the oi-di paths of G. In routing games, it
is convenient to use costs, which everyone wants to minimize, instead of payoffs. Each edge e ∈ E
has a cost function `e : R+ → R+ that specifies the per-unit-weight cost incurred by players on
the edge e, as a function of the total weight of the players that choose paths that include e. The
overall cost incurred by player i is then additive over the edges in its path ai: wi ·

∑
e∈ai

`e(fe),

4A set function f : 2U → R is submodular if for every S ⊆ T and j ∈ U \T, f(T ∪{j})− f(T ) ≤ f(S ∪{j})− f(S).
This is a set-theoretic notion of “diminishing returns”. The results in [12] are proved more generally for “XOS
valuations;” we discuss only submodular valuations to keep the exposition simple.

5We could equally well consider the more general but abstract class of congestion games [33].
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where fe =
∑

j : e∈aj
wj . The price of anarchy in such (full-information) games is thoroughly under-

stood [1, 3, 4, 10, 11, 35]. For example, when every edge cost function is affine, the worst-case POA
is 2.5 with unit-weight players and (1 +

√
5)/2 ≈ 2.618 with arbitrary-weight players [3, 10, 11].

We propose two simple and new models to address potential uncertainty about players’ origin-
destination pairs and weights, respectively. There are also other ways of incorporating uncertainty
into selfish routing models [16, 17, 18, 30]. Our goal here is to provide a simple demonstration of
the relevance of our general framework to application domains beyond mechanism design.

Example 2.4 (Routing Games with Uncertain Origin-Destination Pairs) The game struc-
ture is as follows. There are n players, each with unit weight. The network G = (V,E) and edge
cost functions are publicly known. The private type of a player i is its origin-destination pair. The
feasible actions of a player are the unsplittable unit flows from its origin to its destination.

Example 2.5 (Routing Games with Unknown Weights) Here, there are n players, each with
a publicly known origin-destination pair. The network G = (V,E) and edge cost functions are also
known. The private type of a player i is its weight wi. The feasible actions of a player are the
unsplittable flows of wi units from its origin to its destination.

Neither the iPOA nor the cPOA have been considered previously in either model.

2.4 Smooth Full-Information Games

For the purposes of completeness and comparison, we review the definition and interpretation of
smooth full-information games from [35].

Definition 2.6 ([35]) A game (A,u) is (λ, µ)-smooth with respect to an outcome a∗ and a maxi-
mization objective W : A → R+ if

n∑
i=1

ui(a∗i ,a−i) ≥ λ ·W (a∗)− µ ·W (a)

for every outcome a.

There is an analogous definition for minimization objectives [35].6

Smooth games correspond to proofs in a prescribed format, outlined in Section 1.1, that bound
the price of anarchy of pure-strategy Nash equilibria. To see this, suppose that the objective
function W is payoff-dominating, meaning that it is always at least as large the sum of players’
payoffs. In auction contexts, W is generally the welfare of the outcome. In the common case where
the net payments from the buyers to the seller are non-negative, the welfare objective is payoff-
dominating. Then, if a game is (λ, µ)-smooth with respect to an outcome a∗, every pure-strategy
Nash equilibrium a has objective function value at least λ/(1 + µ) times that of a∗. Precisely,
apply payoff dominance, the Nash equilibrium assumption (once per player i, with the hypothetical
deviation a∗i ), and smoothness to derive

W (a) ≥
n∑
i=1

ui(a) ≥
n∑
i=1

ui(a∗i ,a−i) ≥ λ ·W (a∗)− µ ·W (a), (3)

6Very roughly, the condition in Definition 2.6 asserts that player payoffs following a “one-dimensional perturbation”
(i.e., in (a∗i ,a−i)) can be related to the initial outcome a and the “perturbation directions” a∗. This interpretation
is the motivation for the term “smooth.”
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and then rearrange terms. Many of the known price of anarchy bounds for classes of full-information
games are smoothness proofs in this sense.

The main extension theorem in [35] states that, for a payoff-dominating objective and a (λ, µ)-
smooth game, the approximation guarantee of λ/(1 + µ) extends automatically to the expected
objective function value of mixed-strategy Nash equilibria, correlated equilibria, and coarse corre-
lated equilibria.7

3 Smooth Games of Incomplete Information

This section defines smooth games of incomplete information and proves our main extension theo-
rem. This section is necessarily abstract; Section 4 instantiates these concepts for each of Exam-
ples 2.1–2.5.

3.1 The Definitions

There are two analogous definitions of smooth games of incomplete information, one for maxi-
mization objectives (like welfare in an auction) and one for minimization objectives (like the total
delay in a routing game). We emphasize that, in a game of incomplete information, the objective
function value depends on the actions taken and on players’ types. For example, the welfare of an
allocation in an auction depends on what the players’ valuations are. Thus, while Definition 2.6 is
parameterized by a single action a∗ (canonically, an optimal action profile), the definitions below
are parameterized by a choice function c∗ that chooses a feasible action profile for each type profile
(canonically, an action profile that is optimal for the given type profile).

We begin with the maximization version of smooth games.

Definition 3.1 (Smooth Games — Maximization Version) Let Γ = (T ,A,u) denote a game
structure and W : T ×A → R+ a maximization objective function. The structure Γ is (λ, µ)-smooth
with respect to the choice function c∗ : T → A if

n∑
i=1

ui(ti; (c∗i (t),a−i)) ≥ λ ·W (t; c∗(t))− µ ·W (s; a) (4)

for every type vector t, every type vector s, and every outcome a feasible for s.

Remark 3.2 (Discussion of Definition 3.1) As one would hope, Definition 3.1 specializes to
Definition 2.6 in the special case where each player has only one possible type (i.e., in a full-
information game). An alternative, more permissive definition would be to call a game of incom-
plete information (λ, µ)-smooth with respect to c∗ whenever every full-information game induced
by a type vector t is (λ, µ)-smooth (according to Definition 2.6) with respect to c∗(t). This alter-
native definition corresponds to requiring (4) only when s = t, rather than for all s. The more
stringent requirements of Definition 3.1 appear necessary for the most general extension theorem
(Theorem 3.5). We do not know any interesting examples that meet the weaker condition but fail
to satisfy Definition 3.1.

Does Definition 3.1 hold, for reasonable values of λ and µ, in any interesting classes of games?
Fortunately, as with Definition 2.6, the canonical method by which one bounds the price of anarchy

7Formal definitions of these equilibrium concepts are not needed in this paper.
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of pure-strategy Nash equilibria in every induced full-information game — by following an analogue
of the three-step approach outlined in Section 1.1 — typically verifies Definition 3.1. Section 4 gives
several concrete examples; Example 3.4 provides another.

Modifying Definition 3.1 for minimization objective functions is straightforward.

Definition 3.3 (Smooth Games — Minimization Version) Let Γ = (T ,A, `) denote a game
structure and L : T ×A → R+ a minimization objective function. The structure Γ is (λ, µ)-smooth
with respect to the choice function c∗ : T → A if

n∑
i=1

`i(ti; (c∗i (t),a−i)) ≤ λ · L(t; c∗(t)) + µ · L(s; a)

for every type vector t, every type vector s, and every outcome a feasible for s.

While examples are mostly relegated to Section 4, we pause here for a relatively simple one, to
increase the intuition for and plausible utility of the definitions above. The following argument is
from Lucier and Paes Leme [26], rephrased in our terminology.

Example 3.4 (The GSP Auction Is a Smooth Game [26]) Recall the sponsored search auc-
tion model of Example 2.1, with k slots with known click-through rates α1 ≥ · · · ≥ αk. It is
convenient to think of there being n slots, with αi = 0 for i ∈ {k+ 1, . . . , n}. The natural objective
function is welfare maximization. Define the choice function c∗ by c∗i (v) = vi

2 for every i; observe
that bidders are ranked by valuation with the bid vector c∗(v).

We verify Definition 3.1 with respect to c∗ with the parameters λ = 1
2 and µ = 1. Fix a

type vector t, meaning a per-click valuation vi for each player i, and an outcome a, meaning a
bid bi ∈ [0, vi] for each player i. Since the auction is anonymous, we can rename the players so that
v1 ≥ · · · ≥ vn. Let κ(i) denote the name of the player with the ith highest bid in b. We claim that

ui(vi; (c∗i (v),a−i)) ≥ 1
2αivi − αibκ(i) (5)

for every player i. To see why, fix i and suppose that player i receives a slot j ≤ i in (c∗i (v),a−i).
Since click-through rates are nonincreasing and the player’s price per click is at most its bid c∗i (v) =
1
2vi, its utility is at least αj(vi−c∗i (v)) ≥ 1

2αivi. If player i is not assigned such a slot in (c∗i (v),a−i),
then bκ(i) ≥ c∗i (v) = 1

2vi and the right-hand side of (5) is non-positive, so inequality (5) holds.
Summing (5) over all players gives

n∑
i=1

ui(vi; (c∗i (v),a−i)) ≥ 1
2

n∑
i=1

αivi −
n∑
i=1

αibκ(i).

The left-hand side is the same as that in Definition 3.1. Because bids in c∗(v) are ordered by
valuation, the first summation

∑n
i=1 αivi on the right-hand side equals W (v; c∗(v)). The second

summation on the right-hand side is at most W (s; b) for every type profile s for which b is fea-
sible — that is, every valuation profile v′ with v′ ≥ b component-wise has welfare W (v′; b) =∑n

i=1 αiv
′
κ(i) ≥

∑n
i=1 αibκ(i) under the bid profile b. (Recall from Example 2.1 that overbidding

is infeasible in this model.) Since the type and action profiles were arbitrary, Definition 3.1 holds
with respect to c∗ with the constants λ = 1

2 and µ = 1.
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A key point in Example 3.4 is that the entire argument works only with a fixed type vector and
pure action profiles; no randomization over types or over strategies is considered. The argument is
in essence meant for the pure-strategy Nash equilibria of a full-information game, but it happens
to meet additional criteria that enable the application of an extension theorem.

3.2 The Extension Theorems

This section states and proves our main extension theorem. By an optimal choice function (for a
fixed objective function), we mean one that always chooses an action profile c∗(t) that is optimal
for the types t. Recall that an objective function W is payoff-dominating if it is at least the sum
of the players’ payoffs (like welfare in an auction). We now show that if a game structure is (λ, µ)-
smooth with respect to an optimal choice function, then the price of anarchy of (mixed-strategy)
Bayes-Nash equilibria is at least λ/(1 + µ) in every game of incomplete information induced by a
product distribution over players’ types.

Theorem 3.5 (Extension Theorem - Maximization Version) If a game structure Γ = (T ,A,u)
is (λ, µ)-smooth with respect to an optimal choice function for a payoff-dominating maximization
objective W , then the iPOA of Γ with respect to W is at least λ/(1 + µ).

Proof: Let Γ be (λ, µ)-smooth with respect to the optimal choice function c∗. Let F be a prod-
uct distribution on T . Let σ be a Bayes-Nash equilibrium in the induced game of incomplete
information. For every i and ti, σi(ti) is feasible for ti with probability 1.

Let σ̂i(ti) denote the following mixed-strategy deviation for player i when its type is ti: sample
s(i)
−i ∼ F−i and play the action c∗i (ti, s

(i)
−i).

8 Importantly, because F is a product distribution, when

sampling s(i)
−i it makes no difference whether or not we condition on i’s type ti — the conditional

distribution is simply the product of the (unconditional) marginals of F for the players other than i.
For the first phase of our derivation, we use the fact that W is payoff-dominating, linearity of

expectation, the fact that σ is a Bayes-Nash equilibrium, and the definition of the σ̂i’s to derive
the following lower bound on the expected objective function value of the equilibrium:

Et∼F

[
Ea∼σ(t)[W (t; a)]

]
≥ Et∼F

[
Ea∼σ(t)

[
n∑
i=1

ui(ti; a)

]]

=
n∑
i=1

Et∼F

[
Ea∼σ(t)[ui(ti; a)]

]
≥

n∑
i=1

Et∼F

[
Eâi∼σ̂i(ti),a∼σ(t)[ui(ti; (âi,a−i))]

]
=

n∑
i=1

Et∼F

[
E

s
(i)
−i∼F−i,a∼σ(t−i)

[
ui(ti; (c∗i (ti, s

(i)
−i),a−i))

]]
. (6)

The second phase of the derivation leans on the stochastic independence of players’ types.
Since the distributions of the s(i)

−i’s are projections of a common product distribution F, we can use

8The intuition behind the deviation σ̂ is as follows. Ideally, we would like to consider a deviation by i from its
equilibrium strategy to its strategy in an optimal solution. Unfortunately, the optimal solution is a function of the
other players’ types t−i, which are unknown to i. The closest player i can come to this ideal deviation on its own is
to simulate the random types of the other players and then play the corresponding hypothetically optimal action.
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linearity of expectation to write
n∑
i=1

Et∼F

[
E

s
(i)
−i∼F−i,a∼σ−i(t)

[
ui(ti; (c∗i (ti, s

(i)
−i),a−i))

]]
=

n∑
i=1

Et,s∼F

[
Ea∼σ(t)[ui(ti; (c∗i (ti, s−i),a−i))]

]
;

(7)
that is, we can sample s once “up front” and use its projections s−i, rather than having each player i
sample its own independent copy s(i)

−i.
Next, for each player i and type ti, the random variables t−i and s−i are independent and

identically distributed, so

Et,s∼F

[
Ea∼σ(t)[ui(ti; (c∗i (ti, s−i),a−i))]

]
= Et,s∼F

[
Ea∼σ(s)[ui(ti; (c∗i (ti, t−i),a−i))]

]
, (8)

where we are also using that ui(ti; (c∗i (ti, s−i),a−i)) is independent of ai.
The third and final phase of the derivation uses the smoothness assumption. After combin-

ing (6)–(8) with linearity of expectation, we use the fact that the game is (λ, µ)-smooth with
respect to c∗ to obtain

Et∼F

[
Ea∼σ(t)[W (t; a)]

]
≥ Et,s∼F

[
Ea∼σ(s)

[
n∑
i=1

ui(ti; (c∗i (ti, t−i),a−i))

]]
≥ Et,s∼F

[
Ea∼σ(s)[λ ·W (t; c∗(t))− µ ·W (s; a)]

]
,

where in applying Definition 3.1 we use the fact that a ∼ σ(s) is feasible for s with probability 1.
To wrap things up, we note that the term

Et,s∼F

[
Ea∼σ(s)[W (t; c∗(t))]

]
= Et∼F[W (t; c∗(t))]

equals the expected optimal objective function value (since c∗ is an optimal choice function), and
the term

Et,s∼F

[
Ea∼σ(s)[W (s; a)]

]
= Es∼F

[
Ea∼σ(s)[W (s; a)]

]
equals the expected objective function value of the Bayes-Nash equilibrium σ (since t, s are iden-
tically distributed). Rearranging terms shows that the expected objective function value of σ is at
least a λ/(1 + µ) fraction of that of the maximum possible. Since F was an arbitrary product dis-
tribution and σ was an arbitrary Bayes-Nash equilibrium with respect to it, the proof is complete.
�

Remark 3.6 (Discussion of Theorem 3.5) The proof of Theorem 3.5 is somewhat messy, but
this is to be expected given the three probability distributions — over types, equilibrium strategies,
and deviation strategies — that have to be carefully managed. The proof also has some subtle steps
that use the independence of players’ types, but this is also to be expected, since the extension
theorem is generally false for the cPOA (see [5] and Example 4.6). Finally, the proof generalizes a
sequence of analogous arguments for specific games, beginning with the price of anarchy bound for
Bayes-Nash equilibria in simultaneous second-price auctions (Example 2.2) given in [12].

An analogous proof establishes an extension theorem for smooth games with respect to cost-
dominated minimization objectives.

Theorem 3.7 (Extension Theorem - Minimization Version) If a game structure Γ = (T ,A, `)
is (λ, µ)-smooth with respect to an optimal choice function for a cost-dominated minimization ob-
jective L, then the iPOA of Γ with respect to L is at most λ/(1− µ).
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4 Applications

This section shows that each of the game structures in Examples 2.1–2.5 is smooth with reasonable
constants λ and µ. The first three examples recover known results in diverse mechanism design
settings in a unified and modular way. The second two examples provide new price of anarchy
bounds for routing games with incomplete information.

4.1 The Generalized Second Price Auction

Recall the game structure defined by the Generalized Second Price auction for sponsored search
(Example 2.1). Types correspond to valuations-per-click and actions to bids-per-click. In Exam-
ple 3.4, we showed that this game structure is (1

2 , 1)-smooth with respect to the (payoff-dominating)
welfare objective function and the choice function c∗ defined by c∗i (v) = vi

2 for every i. Since bidders
are ranked by valuation under the bid profile c∗(v) and slot click-through rates are nonincreasing,
an easy exchange argument shows that c∗ is an optimal choice function. Applying Theorem 3.5
immediately implies the following.

Theorem 4.1 ([26]) For every Generalized Second Price auction setting and product distribution
over players’ valuations, the expected welfare of every (mixed-strategy) Bayes-Nash equilibrium is
at least 1

4 times the expected maximum welfare.

The lower bound of Theorem 4.1 was recently improved in [9] to 0.342 via more sophisticated
(smoothness) arguments.

4.2 An Extension Theorem for Separable Choice Functions and Correlated
Types

As noted by Lucier and Paes Leme [26], a much stronger version of Theorem 4.1 also holds. The
choice function c∗ used to prove Theorem 4.1 has the remarkable property that it is separable,
meaning that it can be written as (c∗1, . . . , c

∗
n), where c∗i is a function from Ti to Ai. Precisely, in

the proof of Theorem 4.1, c∗i (v) = 1
2vi, independent of v−i.

The following extension theorem shows that, whenever the hypotheses of Theorem 3.5 are
satisfied with a separable choice function, the conclusion holds even with correlated player types
(i.e., for the cPOA). This extension theorem is implicit in Lucier and Paes Leme [26] and explicit
in Caragiannis et al. [9]; we include the proof here for completeness.

Theorem 4.2 (Extension Theorem - Maximization Version) If a game structure Γ = (T ,A,u)
is (λ, µ)-smooth with respect to an optimal separable choice function for a payoff-dominating max-
imization objective W , then the cPOA of Γ with respect to W is at least λ/(1 + µ).

Proof: Let Γ be (λ, µ)-smooth with respect to the optimal separable choice function c∗ = (c∗1, . . . , c
∗
n),

where c∗i maps Ti to Ai. Taking s = t in Definition 3.1 implies that every full-information game
induced by a type vector t is (λ, µ)-smooth with respect to c∗(t) in the sense of Definition 3.1; see
also Remark 3.2. We only need this weaker version of smoothness in the following proof.
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Let F be an arbitrary distribution on T and σ a Bayes-Nash equilibrium in the induced game
of incomplete information. We have

Et∼F

[
Ea∼σ(t)[W (t; a)]

]
≥ Et∼F

[
Ea∼σ(t)

[
n∑
i=1

ui(ti; a)

]]

= Et∼F

[
n∑
i=1

Ea∼σ(t)[ui(ti; a)]

]

≥ Et∼F

[
n∑
i=1

Ea∼σ(t)[ui(ti; (c∗i (ti),a−i))]

]

= Et∼F

[
Ea∼σ(t)

[
n∑
i=1

ui(ti; (c∗i (ti),a−i))

]]
≥ Et∼F

[
Ea∼σ(t)[λ ·W (t; c∗(t))− µ ·W (t; a)]

]
= λ ·Et∼F[W (t; c∗(t))]− µ ·Et∼F

[
Ea∼σ(t)[W (t; a)]

]
,

where the first inequality follows from payoff dominance, the second from the fact that σ is a
Bayes-Nash equilibrium (using the well-defined hypothetical deviation c∗i (ti) for player i), and the
third from the fact that every induced full-information game is (λ, µ)-smooth respect to c∗(t).
All equalities follow from the linearity of expectation. Since c∗ is an optimal choice function,
rearranging terms shows that the expected objective function value of σ is at least a λ/(1 + µ)
fraction of that of the maximum possible, completing the proof. �

The optimal choice functions used in the remaining four examples are not separable, so Theo-
rem 4.2 does not apply to them.

4.3 Simultaneous Second-Price Auctions

Recall the setting of Example 2.2, where there are m goods, types correspond to submodular
valuation functions, and actions correspond to bid vectors (with one bid per good). Feasible bid
vectors are those that don’t overbid on any bundle. Each good is allocated independently, to the
highest bidder for it, at a price equal to the second-highest bid for the good.

We isolate a few key inequalities in [12] and show how they imply that this game structure
is (1,1)-smooth for an optimal choice function and the welfare objective function. The choice
function c∗ is defined as follows. For a given type vector t — a submodular valuation function vi
for each player i — let (S∗1 , . . . , S

∗
n) denote an allocation maximizing the welfare

∑n
i=1 vi(Si) over

all feasible allocations (S1, . . . , Sn). Now consider a player i. Assume by relabeling that S∗i contains
the goods 1, 2, . . . , d for some d. Set b∗ij = vi({1, 2, . . . , j})− vi({1, 2, . . . , j − 1}) for j = 1, 2, . . . , d
and b∗ij = 0 for j > d. Since vi is submodular, this bid is feasible for vi: vi(T ) ≥

∑
j∈T b

∗
ij for every

bundle T . We define c∗i (t) to be this bid vector b∗i . It is easy to see that c∗ is an optimal choice
function: for every type vector t, every player i bids a positive amount on the goods it receives in
the optimal allocation for t, and all other players bid zero on these goods.

Now we prove smoothness. Fix a type vector t (i.e., submodular valuations v). Fix an action
vector a — a bid bij by each player i for each good j. Suppose player i bids on the goods S∗i in c∗i (t)
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and wins the goods T ⊆ S∗i . Using the definition of c∗i (t) and a second-price auction, we have

ui(vi; (c∗i (t),a−i)) = vi(T )−
∑
j∈T

max
k 6=i

bkj

≥
∑
j∈T

b∗ij −
∑
j∈T

max
k 6=i

bkj

≥
∑
j∈S∗i

b∗ij −
∑
j∈S∗i

max
k 6=i

bkj

= vi(S∗i )−
∑
j∈S∗i

max
k 6=i

bkj

≥ vi(S∗i )−
∑
j∈S∗i

max
k

bkj .

Summing over the players and using the fact that the S∗i ’s are a partition of the goods, we have

n∑
i=1

ui(vi; (c∗i (t),a−i)) ≥
n∑
i=1

vi(S∗i )−
m∑
j=1

max
k

bkj .

The left-hand side agrees with that in Definition 3.1. The first term on the right-hand side is, by
definition of the S∗i ’s, the optimal welfare W (t; c∗(t)) for t. For the final term, let (S1, . . . , Sm)
denote the allocation induced by the bid vector b, and use the fact that highest bidders win to
rewrite the term as

∑n
i=1

∑
j∈Si

bij . By the definition of feasible bids, this quantity is at most the
welfare

∑n
i=1 v

′
i(Si) for every type vector s (i.e., valuations v′) for which the bids b are feasible.

Since the game structure is (1,1)-smooth with respect to the optimal choice function c∗, Theo-
rem 3.5 immediately gives the following.

Theorem 4.3 ([12]) With simultaneous second-price auctions, for every product distribution over
players’ submodular valuations, the expected welfare of every (mixed-strategy) Bayes-Nash equilib-
rium is at least 1

2 times the expected maximum welfare.

4.4 Greedy Combinatorial Auctions

The greedy combinatorial auctions of Example 2.3 can be treated similarly to simultaneous second-
price auctions. A few key observations and inequalities in [25] show that an auction derived from a
greedy 1

c -approximation algorithm is (1, c)-smooth with respect to a natural optimal choice function.
Theorem 3.5 immediately gives the following.

Theorem 4.4 ([25]) For every combinatorial auction with a 1
c -approximate greedy allocation rule

and a critical bid payment rule, and every product distribution over players’ valuations, the expected
welfare of every (mixed-strategy) Bayes-Nash equilibrium is at least 1

c+1 times the expected maximum
welfare.

4.5 Routing Games with Uncertain Origin-Destination Pairs

We now turn to a different class of examples: routing games. The results in this section and the
next are new.

15



We first recall the game structure introduced in Example 2.4. There is a fixed network G =
(V,E), and each edge e ∈ E has a cost function `e. To keep the discussion simple, we first
assume that every cost function is affine (and nonnegative and nondecreasing). Every player has
a unit amount of traffic that it has to route on a single path. The private type ti of a player i
is its origin-destination pair (oi, di); its feasible strategies are the oi-di paths in G. The standard
objective function is to minimize the sum of the players’ costs. There is an obvious optimal choice
function c∗: given types t, let a∗ be the action profile that minimizes the sum of the players’ costs
over all feasible routings (given their oi-di pairs), and set c∗i (t) = a∗i .

9

We now prove smoothness. One interesting difference between this proof and the previous
three is that we argue edge-by-edge, rather than player-by-player. Fix a type vector t — that
is, an (oi, di) pair for each player i. The choice function c∗(t) corresponds to paths P ∗1 , . . . , P

∗
n ,

where P ∗i is an oi-di path in G. Fix an action vector a — a set of n paths P1, . . . , Pn in G with
origins o′1, . . . , o

′
n and d′1, . . . , d

′
n. We emphasize that there need not be any relationship between

the oi-di pairs (which correspond to the types t) and the o′i-d
′
i pairs (which correspond to some

other types s). In contrast to the preceding auction settings, there is a unique set of types s for
which the actions a are feasible.

For an edge e, define f∗e and fe as the number of paths from each set that include e: f∗e =
|{i ∈ {1, 2, . . . , n} : e ∈ P ∗i }| and fe = |{i ∈ {1, 2, . . . , n} : e ∈ Pi}|. Since cost functions are
nondecreasing, we can write

n∑
i=1

`i(ti; (P ∗i , P−i)) ≤
∑
e∈E

f∗e · `e(fe + 1). (9)

Next we use the elementary fact that y(z+ 1) ≤ 5
3y

2 + 1
3z

2 for all nonnegative integers y, z [11,
Lemma 1]. Expanding the affine cost functions ce, applying this inequality to each edge e (with
y = f∗e and z = fe), and rearranging we obtain

n∑
i=1

`i(ti; (P ∗i , P−i)) ≤
5
3

∑
e∈E

`e(f∗e )f∗e +
1
3

∑
e∈E

`e(fe)fe. (10)

The two sums on the right-hand side of (10) are precisely the objective function values of c∗(t)
and of a — in the latter case, for the unique types s for which a is feasible. Since t and a were
arbitrary, this proves that the game structure is (5

3 ,
1
3)-smooth with respect to the optimal choice

function c∗. Applying Theorem 3.7 immediately yields the following theorem.

Theorem 4.5 For every unweighted selfish routing game with affine cost functions and product
distribution over players’ origin-destination pairs, the expected cost of every (mixed-strategy) Bayes-
Nash equilibrium is at most 5

2 times the expected minimum cost.

The bound of 5
2 is tight, even for pure Nash equilibria in the full-information model [3, 11].

Analogues of Theorem 4.5 hold for all classes of cost functions, with the approximation bound
degrading with the “nonlinearity” of the cost functions in a well-understood way. Precisely, previous
works [1, 35] identify, for every set L of cost functions, the coefficients λ and µ (above, 5

3 and 1
3) that

minimize the price of anarchy upper bound λ/(1 − µ) subject to the smoothness constraint (10).
9Routing games are in this sense simpler than the auction models studied earlier in the paper: rather than bidding

to coax indirectly a desired allocation from a mechanisms, a player can choose directly the desired path.
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These works also show matching lower bounds for every set L, which even apply to pure Nash
equilibria.

Example 4.6 (cPOA Lower Bound) The upper bound of 5/2 on the iPOA in Theorem 4.5 does
not hold more generally for the cPOA. Consider the following game structure. For an arbitrarily
large perfect square n, there are n players. There is a set S of n +

√
n edges that each have the

cost function c(x) = x. For each subset A ⊆ S of size
√
n+ 1, there is an origin oA with zero-cost

edges to the tails of the edges in A, and a destination dA with zero-cost edges from the heads of
the edges in A. For each player, the possible types correspond to these sets A. As discussed above,
this game structure is (5

3 ,
1
3)-smooth in the sense of Definition 3.3.

We describe the (correlated) distribution F over types via a sampling algorithm. The first step
chooses a random subset B ⊆ S of size

√
n. The second step chooses a random bijection f from

the players to S \ B. The type of player i is defined as the origin-destination pair oAi-dAi , where
Ai = B ∪ {f(i)}.

With probability 1 over the random choice of types, there is an outcome of the routing game
in which players use disjoint paths (with player i using edge f(i)) and incur total cost n. By
symmetry, the strategy profile in which every player always randomizes uniformly over its

√
n+ 1

paths is a Bayes-Nash equilibrium. The expected cost of the path chosen by a player is ≈
√
n, and

the expected total cost in this Bayes-Nash equilibrium is ≈ n3/2.

4.6 Routing Games with Unknown Weights

Routing games with uncertain weights (Example 2.5) can be treated in a similar way. Here, the
induced full-information games are weighted selfish routing games. Weighted routing games are
harder to analyze than their unweighted counterparts, but recent work has determined the worst-
case price of anarchy for all classes of cost functions that satisfy mild closure conditions [1, 4]. The
analogues of inequalities (9) and (10) are

n∑
i=1

`i(ti; (P ∗i , P−i)) ≤
∑
e∈E

f∗e · `e(fe + f∗e ) ≤ λ
∑
e∈E

`e(f∗e )f∗e + µ
∑
e∈E

`e(fe)fe, (11)

where fe and f∗e denote the total weight of players that pick a path that contains e in an arbitrary
outcome and an optimal outcome, respectively. Previous works [1, 4] identified, for every set of cost
functions that satisfies mild conditions, the coefficients λ and µ that minimize λ/(1 − µ) subject
to (11). There are matching lower bounds, even for pure Nash equilibria. Since these upper bound
proofs show more generally that routing games with type-dependent player weights are (λ, µ)-
smooth in the sense of Definition 3.3, Theorem 3.7 extends these upper bounds to all Bayes-Nash
equilibria with respect to a product prior distribution over players’ weights. For example, we have
the following.

Theorem 4.7 For every selfish routing game with affine cost functions and product distribution
over players’ weights, the expected cost of every (mixed-strategy) Bayes-Nash equilibrium is at most
1+
√

5
2 ≈ 2.618 times the expected minimum cost.

The constant in Theorem 4.7 is slightly bigger than that in Theorem 4.5 because the price of
anarchy in weighted routing games is larger than in unweighted games.
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Finally, the bound in Theorem 4.7 continues to apply in the more general model in which
players’ weights and origin-destination pairs are both uncertain. The weight and origin-destination
pair of a given player can be correlated, as long as the types of different players are independent.

5 Conclusions

This paper proposed a notion of smooth games of incomplete information and proved extension
theorems for such games. This theory reduces the goal of proving approximation guarantees for
mixed-strategy Bayes-Nash equilibria with respect to an arbitrary product prior distribution to
the simpler task of proving such guarantees for pure-strategy Nash equilibria of full-information
games. Several previous works on the price of anarchy of Bayes-Nash equilibria are, in hindsight,
specific instantiations of this general approach. Ideally, researchers can focus their creativity on
understanding the pure-strategy Nash equilibria of interesting new full-information models, relying
on extension theorems to perform the dirty work needed for more general results.

There are also opportunities to tailor the theory developed here to important problem domains.
For example, Syrgkanis [39] proves that in domains where (i) the set Ai of feasible actions is in-
dependent of the player’s type ti; and (ii) the objective function W (; ) equals the sum of players’
payoffs (instead of only being payoff-dominating), there is an extension theorem for mixed-strategy
Bayes-Nash equilibria assuming only that every induced full-information game is smooth (cf., Re-
mark 3.2).

Motivated by mechanism design problems with quasi-linear player utilities, including some not
discussed in Section 2.2, Syrgkanis and Tardos [40] propose several modifications of our smoothness
definition and extension theorems. The simplest one replaces the term W (s; a) on the right-hand
side of (4) with the revenue of the auction when the actions (i.e., bids) are a. This definition
and a corresponding extension theorem lead to good iPOA bounds for certain pay-as-bid mecha-
nisms [22, 25] without any no overbidding restrictions, and to composition theorems that extend
smoothness guarantees for a single mechanism to a collection of mechanisms running simultaneously
or sequentially.

Finally, Feldman et al. [15] recently extended the iPOA bound of 1
2 for simultaneous second-

price auctions (Example 2.2) to the setting of subadditive bidder valuations, by departing from the
smoothness paradigm and reasoning directly about mixed-strategy Bayes-Nash equilibria. It would
be interesting to understand better the power and limitations of their approach.
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