
1

Routers with Very Small Buffers
Mihaela Enachescu∗, Yashar Ganjali†, Ashish Goel‡, Nick McKeown†, and Tim Roughgarden∗

∗Department of Computer Science, Stanford University
{mihaela, tim}@cs.stanford.edu

†Department of Electrical Engineering, Stanford University
{yganjali, nickm}@stanford.edu

‡Dept of Management Science and Engineering, Stanford University
ashishg@stanford.edu

Abstract— Internet routers require buffers to hold pack-
ets during times of congestion. The buffers need to be
fast, and so ideally they should be small enough to use
fast memory technologies such as SRAM or all-optical
buffering. Unfortunately, a widely used rule-of-thumb says
we need a bandwidth-delay product of buffering at each
router so as not to lose link utilization. This can be
prohibitively large. In a recent paper, Appenzeller et al.
challenged this rule-of-thumb and showed that for a
backbone network, the buffer size can be divided by

√
N

without sacrificing throughput, where N is the number of
flows sharing the bottleneck. In this paper, we explore how
buffers in the backbone can be significantly reduced even
more, to as little as a few dozen packets, if we are willing
to sacrifice a small amount of link capacity. We argue that
if the TCP sources are not overly bursty, then fewer than
twenty packet buffers are sufficient for high throughput.
Specifically, we argue that O(log W ) buffers are sufficient,
where W is the window size of each flow. We support
our claim with analysis and a variety of simulations. The
change we need to make to TCP is minimal—each sender
just needs to pace packet injections from its window.
Moreover, there is some evidence that such small buffers
are sufficient even if we don’t modify the TCP sources
so long as the access network is much slower than the
backbone, which is true today and likely to remain true
in the future.

We conclude that buffers can be made small enough for
all-optical routers with small integrated optical buffers.

I. MOTIVATION AND INTRODUCTION

Until quite recently, Internet routers were widely be-
lieved to need large buffers. Commercial routers today

An earlier, shorter, incomplete, invited and unreviewed version of
this paper appeared in ACM CCR, July 2005. The editor encouraged
us to submit to Infocom so that a complete, reviewed version would
be available to the community.

This work was supported under DARPA/MTO DOD-N award
no. W911NF-04-0001/KK4118 (LASOR PROJECT) and the Buffer
Sizing Grant no. W911NF-05-1-0224. Ashish Goel’s work was also
supported by an NSF career grant and an Alfred P. Sloan faculty
fellowship, and the Tim Roughgarden’s work was also supported in
part by ONR grant N00014-04-1-0725.

have huge packet buffers, often storing millions of
packets, under the assumption that large buffers lead to
good statistical multiplexing and hence efficient use of
expensive long-haul links. A widely-used rule-of-thumb
states that, because of the dynamics of TCP’s congestion
control mechanism, a router needs a bandwidth-delay
product of buffering, B = RTT × C, in order to fully
utilize bottleneck links [5], [6], [16]. Here, C is the
capacity of the bottleneck link, B is the size of the
buffer in the bottleneck router, and RTT is the effective
round-trip propagation delay of a TCP flow through the
bottleneck link. Recently, Appenzeller et al. proposed
using the rule B = RTT × C/

√
N instead, where N is

the number of flows through the bottleneck link [3]. In
a backbone network today, N is often in the thousands
or the tens of thousands, and so the sizing rule B =
RTT× C/

√
N results in significantly fewer buffers.

In this paper, we explore if and how we could build
a network with much smaller buffers still—perhaps with
only a few dozen packet buffers in each router, and
perhaps at the expense of 100% link utilization. While
this is an interesting intellectual exercise in its own right,
there would be practical consequences if it were possible.

First, it could facilitate the building of all-optical
routers. With recent advances [8], [9], [13], it is now
possible to perform all-optical switching, opening the
door to routers with huge capacity and lower power than
electronic routers. Recent advances in technology make
possible optical FCFS packet buffers that can hold a few
dozen packets in an integrated opto-electronic chip [13].
Larger all-optical buffers remain infeasible, except with
unwieldy spools of optical fiber (that can only implement
delay lines, not true FCFS packet buffers). We are
interested in exploring the feasibility of an operational
all-optical network with just a few dozen optical packet
buffers in each router.

Second, if big electronic routers required only a few
dozen packet buffers, it could reduce their complexity,
making them easier to build and easier to scale. A typical



10Gb/s router linecard today contains about one million
packet buffers, using many external DRAM chips. The
board space the DRAMs occupy, the pins they require,
and the power they dissipate all limit the capacity of the
router [3]. If a few dozen packet buffers suffice, then
packet buffers could be incorporated inside the network
processor (or ASIC) in a small on-chip SRAM; in fact,
the buffers would only occupy a tiny portion of the chip.
Not only would external memories be removed, but it
would allow the use of fast on-chip SRAM, which scales
in speed much faster than DRAM.

Our main result is that minor modifications to TCP
would indeed allow us to reduce buffer-sizes to dozens of
packets with the expense of slightly reduced link utiliza-
tion. We obtain this result in a succession of steps. We
will start by adopting two strong assumptions: (1) That
we could modify the way packets are transmitted by TCP
senders, and (2) That the network is over-provisioned.
However, we will soon relax these assumptions.

We start by asking the following question: What if
we kept the AIMD (Additive Increase Multiplicative De-
crease) dynamics of TCP window control, but changed
the TCP transmission scheme to “space out” packet
transmissions from the TCP sender, thereby making
packet arrivals less bursty? We assume that each TCP
flow determines its window size using the standard TCP
AIMD scheme. However, if the current window size at
time t is W and the current round-trip estimate is RTT,
then we assume the TCP sender sends according to a
Poisson process of rate W/RTT at time t. This results
in the same average rate as sending W packets per RTT.
While this is a slightly unrealistic assumption (it can
result in the window size being violated and so might
alter TCP behavior in undesirable ways), this scenario
yields important clues about the feasibility of very small
buffers.

We are also going to assume that the network is over-
provisioned—even if each flow is sending at its maxi-
mum window size, the network will not be congested.1

Under these assumptions, we show that a buffer size of
O(log Wmax) packets is sufficient to obtain close to peak
throughput, where Wmax is the maximum window size
in packets. Some elements of the proof are interesting

1This assumption is less restrictive than it might appear. Current
TCP implementations usually cap window sizes at 32 KB or 64
KB [10], and it is widely believed that there is no congestion in the
core of the Internet. All optical networks, in particular, are likely to
be significantly over-provisioned. Later we will relax this assumption,
too.

in their own right.2 The exact scenario is explained in
Section II and the proof itself is in Appendix I.

To get some feel for these numbers, consider the
scenario where 1000 flows share a link of capacity
10Gbps. Assume that each flow has an RTT of 100ms,
a maximum window size of 64KB, and a packet size of
1KB. The peak rate is roughly 5Gbps. The bandwidth-
delay product rule-of-thumb suggests a buffer size of
125MB, or around 125,000 packets. The RTT×C/

√
N

rule suggests a buffer size of around 3950 packets. Our
analysis suggests a buffer size of twelve packets plus
some small additive constant, which brings the buffer
size down to the realm where optical buffers can be built
in the near future.

We then systematically remove the two assumptions
we made above, using a combination of simulations
and analysis. We first tackle the assumption that TCP
sends packets in a locally Poisson fashion. Intuitively,
sending packets at fixed (rather than random) intervals
should give us the same benefit (or better) as sending
packets at a Poisson rate. Accordingly, we study the more
reasonable case where the TCP sending agent “paces”
its packets deterministically over an entire RTT. Paced
TCP has been studied before [2], and does not suffer
from the problem of overshooting the window size. We
perform an extensive simulation study of paced TCP with
small buffers. When the network is over-provisioned, the
performance of paced TCP closely mirrors our analytical
bound of O(log Wmax) for Poisson sources. This holds
for a wide range of capacities and number of flows, and
not just in the regime where one might expect the aggre-
gate arrival process at the router to resemble a Poisson
process [4]. These results are presented in Section III.
In Appendix II, we provide additional intuition for this
result: if many paced flows are superimposed after a
random jitter, then the packet drop probability is as small
as with Poisson traffic.

The next assumption we attempt to remove is that of
the network being over-provisioned. We consider a single
bottleneck link, and assume that if each flow were to
send at its maximum window size, then the link would
be severely congested. In our simulations (presented
in Section IV), Paced TCP results in high throughput
(around 70-80%) with the relatively small buffers (10-20)
predicted by the simple Poisson-transmissions analysis.
While we have not been able to extend our formal
analysis to the under-provisioned network case, some
analytical intuition can also be obtained: if we assume

2For example, we do not need to assume the TCP equation [12]
or aggregate Poisson arrivals [14]—hence we do not rely on the
simplifying assumptions about TCP dynamics and about a large
number of flows that are required for these two results.



that the TCP equation [12] holds and that the router
queue follows the M/M/1/B dynamics, then buffers of
size O(log Wmax) packets suffice to utilize a constant
fraction of the link capacity.

Our results are qualitatively different from the
bandwidth-delay rule-of-thumb or from the results of
Appenzeller et al. On the positive side, we have com-
pletely removed the dependence of the buffer size on the
bandwidth-delay product. To understand the importance
of this, consider the scaling where the RTT is held
fixed at τ , but the maximum window size Wmax, the
number of flows N , and the capacity C all go to ∞
such that C = NWmax/τ . This is a very reasonable
scaling since τ is limited by the speed of light, whereas
C, N , and Wmax are all expected to keep growing as
Internet traffic scales. Under this scaling, the sizing rule
of Appenzeller et al. suggests that the buffer size should
grow as

√
NWmax, whereas our results suggest that the

buffer size needs to grow only at the much more benign
rate of log Wmax. On the negative side, unlike the result
of Appenzeller et al. , our result is a trade-off result—to
obtain this large decrease in buffers, we have to sacrifice
some fixed fraction (say around 20%) of link capacity.
This is a good trade-off for an all-optical network where
bandwidth is plentiful and buffers are scarce. But for
electronic routers, this might possibly be a sub-optimal
trade-off.

We give evidence that our result is tight in the follow-
ing sense.

1) Under the scaling described above, buffers must
at least grow in proportion to log Wmax to obtain
a constant factor link utilization. In Section IV-A,
we present simulation evidence that constant sized
buffers are not adequate as the maximum window
size grows to infinity. We also perform a simple
calculation that shows the necessity of the log-
scaling assuming the TCP equation and M/M/1/B
queueing.

2) When we run simulations without using Paced
TCP, we can not obtain reasonable link utilizations
with log-sized buffers, even in the over-provisioned
case (Section III).

While TCP pacing is arguably a small price to pay for
drastic reduction in buffer sizes, it does require a change
to end-hosts. Fortunately, we suspect this may not be
necessary, as two effects naturally provide some pacing
in current networks. First, the access links are typically
much slower than the core links, and so traffic entering
the core from access links is automatically paced; we call
this phenomenon “link-pacing”. We present simulations
showing that with link-pacing we only need very small

buffers, because packets are spaced enough by the net-
work. Second, the ACK-clocking scheme of TCP paces
packets [2]. The full impact of these two phenomena
deserves further study.

Other interesting directions for further study include
the impact of packet sizes, the interaction of switch
scheduling algorithms and small buffers, the impact of
short flows, and the stability properties of TCP with
our log-scaling rule. (Significant progress in analyzing
stability was made recently by Raina and Wischik [14].)

Of course, significant additional work—including ex-
perimental verification, more detailed analysis, and larger
simulation studies—is required before we undertake a
drastic reduction in buffer sizes in the current Internet.

II. INTUITION: POISSON INJECTIONS AND AN

OVER-PROVISIONED NETWORK

The intuition behind our approach is quite simple.
Imagine for a moment that each flow is an independent
Poisson process. This is clearly an unrealistic (and incor-
rect) assumption, but it serves to illustrate the intuition.
Assume too that each router behaves like an M/M/1
queue. The drop-rate would be ρB , where ρ is the link
utilization and B is the buffer size. At 75% load and
with 20 packet buffers, the drop rate would be 0.3%,
independent of the RTT , number of flows, and link-rate.
This should be compared with a typical 10Gb/s router
line-card today that maintains 1,000,000 packet buffers,
and its buffer size is dictated by the RTT, number of
flows and link-rate. In essence, the cost of not having
Poisson arrivals is about five orders of magnitude more
buffering! An interesting question is: How “Poisson-like”
do the flows need to be in order to reap most of the
benefit of very small buffers?

To answer our question, assume N long-lived TCP
flows share a bottleneck link. Flow i has time-varying
window size Wi(t) and follows TCP’s AIMD dynamics.
In other words if the source receives an ACK at time
t, it will increase the window size by 1/Wi(t), and
if the flow detects a packet loss it will decrease the
congestion window by a factor of two. In any time
interval (t, t′] when the congestion window size is fixed,
the source will send packets as a Poisson process at rate
Wi(t)/RTT. Note that this is different from regular TCP,
which typically sends packets as a burst at the start of
the window.

We will assume that the window size is bounded by
Wmax. Implementations today typically have a bound
imposed by the operating system (Linux defaults to
Wmax = 64kbytes), or the window size is limited by
the speed of the access link. We’ll make the simplifying
assumption that the two-way propagation delay of each



flow is RTT. Having a different propagation delay for
each flow leads to the same results, but the analysis is
more complicated. The capacity C of the shared link is
assumed to be at least (1/ρ) ·NWmax/RTT where ρ is
some constant less than 1. Hence, the network is over-
provisioned by a factor of 1/ρ, i.e. the peak throughput is
ρC. The effective utilization, θ, is defined as the achieved
throughput divided by ρC.

In this scenario, the following theorem holds:
Theorem 1: To achieve an effective utilization of θ,

a buffer of size

B ≥ log1/ρ

(
W 2

max

2(1− θ)

)
(1)

suffices.
Proof: See Appendix I.

As an example of the consequences of this simple
model, if Wmax = 64 packets, ρ = 0.5, and we want an
effective utilization of 90%, we need a buffer size of 15
packets regardless of the link capacity. In other words,
the AIMD dynamics of TCP don’t necessarily force us
to use larger buffers, if the arrivals are well-behaved and
non-bursty. So what happens if we make the model more
realistic? In the next section we consider what happens
if instead of injecting packets according to a Poisson
process, each source uses Paced TCP in which packets
are spread uniformly throughout the window.

III. PACED TCP, OVER-PROVISIONED NETWORK

It should come as no surprise that we can use very
small buffers when arrivals are Poisson: arrivals to the
router are benign and non-bursty. Queues tend to build
up—and hence we need larger buffers—when large
bursts arrive, such as when a TCP source sends all of
its outstanding packets at the start of the congestion
window. But we can prevent this from happening if
we make the source spread the packets over the whole
window. Intuitively, this modification should prevent
bursts and hence remove the need for large buffers.
We now show that this is indeed the case. Throughout
this section, we assume that the bottleneck link is over-
provisioned in the same sense as in the previous section.
In the next section we remove this assumption.

First, suppose N flows, each with maximum window
size Wmax, share a bottleneck link. Then the following
is true.

Theorem 2: Assume that: (1) The buffer size at the
bottleneck link is at least cB log Wmax packets, where
cB > 0 is a sufficiently large constant; (2) The rate of
each flow is at least a cS log Wmax factor slower than
that of the bottleneck link, where cS is a sufficiently
large constant; and (3) Random jitter prevents a priori

synchronization of the flows. Then the packet loss prob-
ability during a single RTT is O(1/W 2

max).
Proof: See Appendix II.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size (packets)

Th
ro

ug
hp

ut

Paced TCP
TCP Reno

Fig. 1. Bottleneck link utilization for different buffer sizes (TCP
Reno vs. Paced TCP)

The packet loss probability in Theorem 2 is compara-
ble to that for Poisson traffic with the same buffer size.
The buffer size requirement for Theorem 2 (Assump-
tion (1)) is comparable to that in Theorem 1—a few
dozen packets for present-day window sizes, independent
of the link capacity, number of flows, and RTT. This
requirement appears to be necessary to achieve constant
throughput, even with Paced TCP (see Section IV-A).
The second assumption states that flows should be
“sufficiently non-bursty”. Note that some assumption
of this form is necessary, since if flows can send at
the same rate as the bottleneck link, then there is no
pacing of traffic whatsoever and our simulations indicate
that constant throughput is not achievable with log-sized
buffers. Precisely, Theorem 2 requires that all flows send
at a rate that is roughly a log Wmax factor slower than
that of the bottleneck link, and obtains a Poisson-like
throughput-buffer size trade-off under this requirement.
This slowdown factor is only a few dozen for present-
day window sizes, while access links are often orders of
magnitude slower than backbone links. This huge differ-
ence in access link and backbone link speeds also seems
likely to persist in the near future (especially with an all-
optical backbone). The final assumption of Theorem 2
simply ensures that the flows are not initialized in a
synchronized state.

To explore the validity of Theorem 2, we performed
simulations using the popular ns2 simulation tool [1].
We implemented Paced TCP by adding a new timer
to TCP Reno which regulates the injection time of
packets. This is a high granularity timer, since using
low granularity timers might generate bursts, which is



undesirable3. Each flow is generated at a source node,
goes through an individual access link, and then through
a shared link. The capacity and the propagation delay of
the shared and access links vary for different simulations.
We add a random jitter to the propagation delay of the
access links to model different RTTs in the network.

In Figure 1 we compare the buffer size needed by TCP
Reno with Paced TCP. We plot the throughput of the
system as a function of the buffer size used in the router.
The capacity of the bottleneck link is 100Mb/s, there are
40 flows in the system, and the average RTT is 100ms. In
this experiment, the maximum congestion window size
is set to 32 packets, and the size of packets is 1,000
bytes, thus the maximum offered load is 100Mb/s with
40 flows. The simulation is run for 1,000 seconds, and
we start recording the data after 200 seconds.

As we can see, with 40 unmodified TCP (Reno)
flows, we need to buffer about 100 packets to achieve
a throughput above 80%. However, in the same setting,
Paced TCP achieves 80% throughput with just 10 packet
buffers.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Time

C
W

N
D

_

TCP−Reno
Paced TCP

Fig. 2. Congestion window size (TCP Reno vs. Paced TCP)

To understand the impact of pacing, we take a closer
look at the congestion window (CWND ) of TCP Reno
and Paced TCP in Figure 2. In this experiment, 500 flows
share a bottleneck link with a capacity of 1.5Gb/s; the
buffer size is 10 packets; and each flow is limited to a
maximum window size of 32 packets4 and the average
RTT is 100ms. We observe that TCP Reno rarely reaches
the maximum window size of 32 packets, whereas Paced
TCP has a larger congestion window at almost all times.
The bursty nature of TCP Reno makes the flows experi-
ence packet drops more frequently when the buffer size

3The implementation of Paced TCP that comes with ns2 is not
accurate and needs some modifications.

4Note that CWND can go beyond 32 packets in practice, and the
source can have up to min(32,CWND ) unacknowledged packets at
any point of time.

is small, while Paced TCP flows experience fewer drops,
and so CWND grows to larger values. Consequently,
Paced TCP sends with its maximum possible capacity
of 32 packets per RTT most of the time.

In Figure 1 we increased the system load as we
increased the number of flows since the capacity of the
shared link is kept fixed. It is interesting to see what
happens if we keep the system load constant (at 80% in
this case) while increasing the number of flows. This
is illustrated in Figure 3, for flows with a maximum
congestion window of 32 packets. As we increase the
number of flows from one to more than a thousand, we
also increase the bottleneck link capacity from 3.2Mb/s
to 3.4Gb/s to keep the peak load at about 80%. The
buffer size is still set to 10 packets. The graph shows
that regardless of the number of flows, throughput is
improved by Paced TCP. The throughput of Paced TCP
is around 70% (i.e., the effective utilization is more
than 85%) while the throughput of the TCP Reno is
around 20% (with an effective utilization of around 25%)
regardless of the number of flows in the system.

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of flows

Th
ro

ug
hp

ut

Paced TCP
TCP Reno
Limited Access

Fig. 3. Throughput of Paced TCP vs. TCP Reno; the capacity of
shared link is increased as we increase the number of flows.

We have shown that Paced TCP can gain a very high
throughput even with very small buffers. As we have
already noted, if the capacity of the access links is much
smaller than the core link, then packets entering the
core will automatically have spacing between them even
without modifying TCP. To verify this we repeat the
previous experiment except instead of using Paced TCP,
we limit the capacity of the access links to 5Mb/s. As
shown in Figure 3, the spacing resulting from limited
access link capacities has the same effect as using
Paced TCP as the two curves follow each other very
closely. In practice, the capacity of the access links is
usually several orders of magnitude smaller than the
capacity of the core links, which means even without



any modification to TCP, we can gain high throughput
with very small buffers.

It is important to note that this significant discrepancy
between the throughput of paced and regular TCP is ob-
served only with small buffers. If we use the bandwidth-
delay rule for sizing buffers, this discrepancy vanishes.

IV. PACED TCP, UNDER-PROVISIONED NETWORK

So far we have assumed that the network is over-
provisioned and we do not have congestion on the link
under study. Even though this is true for most links in
the core of the Internet, it is also interesting to relax
this assumption. We next study, via simulations, how
congestion affects link utilization.

We repeat an experiment similar to that depicted in
Figure 1 (this time with Paced TCP only). We increase
the number of flows to up to 200 so that the bottleneck
link becomes congested. The average RTT is 100ms, and
the maximum window size is 32 packets. Each packet
is 1000 bytes, which means each flow can contribute a
load of 32∗1000∗8/0.1 ' 2.5Mb/s. The capacity of the
core link is 100Mb/s, which mean if we have more than
40 flows, the core link will become congested. For 100
and 200 flows the bottleneck link is highly overloaded.

100 101 102 103
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size (packets)

Th
ro

ug
hp

ut

20 Flows
40 Flows
100 Flows
200 Flows

Fig. 4. Bottleneck link utilization vs. the buffer size. With only 40
flows the core link becomes saturated, but even if we increase the
number up to 200 flows, the throughput does not go below 80%.

Figure 4 shows the throughput of the bottleneck link
as a function of the buffer size for various number of
flows. We can see that as we increase the number of
flows from 20 to 40 (at which point the link starts to be
saturated) the throughput goes from around 50% to about
80-90%. As we increase the number of flows to 100 and
200, for small buffers (1-12 packets) the system through-
put slightly improves. For middle size buffers (15-100
packets), however, we see a degradation in throughput,
although the throughput never goes below 80%. This

minor degradation in performance is due to the partial
synchronization between congestion windows of flows,
which occurs for middle sized buffers. This phenomenon
has been explained by Raina and Wischik [14] in more
detail. We note that the throughput of the system remains
above 80% even when the buffer size is 10 packets.

Figure 5(a) depicts the throughput of the bottleneck
link as a function of the number of flows when the access
link capacity is fixed to 5Mb/s and the buffer size is
10 packets. We change the offered load to the system
by adjusting the capacity of the bottleneck link relative
to the total capacity of the access links. To keep the
maximum offered load fixed at a given value, we increase
the capacity of the bottleneck link as the number of flows
is increased. As we can see in this graph, as we increase
the offered load beyond 100%, the overall throughput
increases. In other words, even when the network is
under-provisioned we expect reasonable throughput with
very small buffers.

In a related experiment we set the core link bandwidth
to 1Gb/s, and vary the capacity of the access links. The
maximum window size is very large (set to 10,000), the
buffer size is set to 10 packets, and the average RTT
is set to 100ms. Figure 5(b) shows the throughput of
the system as a function of the capacity of the access
links. We can see that at the beginning the throughput
increases (almost) linearly with access link capacity, until
the shared link becomes congested. For example, with
100 flows, this happens when the access link capacity
is below 8-9Mb/s. Note that the normalized throughput
is close to 100% when the offered load is less than the
capacity of the shared link since the core link is not the
bottleneck. As we increase the access link capacity, the
throughput gradually decreases. This is because we lose
the natural spacing between packets as the capacity of
access links is increased.

A. The necessity of logarithmic scaling of buffer-sizes

We have not been able to extend our proof of theo-
rem 1 to the case when the network is under-provisioned.
However, the TCP equation [12] gives interesting in-
sights if we assume that the router queue can be modeled
as an M/M/1/B system [15]. Consider the scaling (de-
scribed in the introduction) where the RTT is held fixed
at τ , but the maximum window size Wmax, the number
of flows N , and the capacity C all go to ∞. To capture
the fact that the network is under-provisioned, we will
assume that C = NWmax

2τ i.e. the link can only support
half the peak rate of each flow. Similarly, C = 2NWmax

τ
represents the under-provisioned case.

Let p be the drop probability, and ρ the link utilization.



0 200 400 600 800 1000 1200 1400 1600
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of flows

Th
ro

ug
hp

ut

Load = 60%
Load = 85%
Load = 95%
Load = 120%
Load = 200%

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Access link bandwidth (Mb/s)

Th
ro

ug
hp

ut

100 Flows
200 Flows

(a) (b)

Fig. 5. (a) Throughput as a function of number of flows for various values of the offered load to the system; (b) Throughput as a function
of access link capacity.

Clearly, ρ = RN/C, where R is the average throughput
of each flow. Then, the TCP equation states:

R =
1
τ

√
3
2p

+ o(1/
√

p) ' 1
τ

√
3
2p

. (2)

The M/M/1/B assumption yields [7]:

p = ρB 1− ρ

1− ρB

ρ

1 + ρ
' ρB+1. (3)

Equations 2, 3 immediately yield the following:
1) Assume C = NWmax

2τ . For every constant α < 1,
there exists another constant β such that setting
B = β log Wmax yields ρ > α. In other words, log-
arithmic buffer-sizes suffice for obtaining constant
link utilization even when the network is under-
provisioned.

2) Assume C = 2NWmax
τ . If B = o(log Wmax) then

ρ = o(1). In other words, if the buffer size grows
slower than log Wmax then the link utilization
drops to 0 even in the over-provisioned case.

Obtaining formal proofs of the above statements re-
mains an interesting open problem. Simulation evidence
supports these claims, as can be seen in Figure 6 which
describes the throughput for a constant vs. a logarithmic
sized buffer. For this simulation we are using Paced
TCP, N is held fixed at 10, Wmax varies from 10 to
1529, and C varies as follows. Initially, C is chosen
so that the peak load is constant and a little over 50%,
and this choice determines the initial value for the
ratio CRTT

NWmax
; then, since we fix N and RTT, C varies

proportionally to Wmax to keep the above ratio constant
as in our theoretical modeling. The buffer size is set to
5 packets when Wmax = 10. Thereafter, it increases in
proportion with log Wmax for the log-sized-buffer case,

0 500 1000 1500 2000 2500
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Link bandwidth (Mb/s)

U
til

iz
at

io
n

Constant buffer size
Logarithmic buffer size

Fig. 6. Constant vs. logarithmic buffers

and remains fixed at 5 for the constant buffer case. Here,
initially the throughput is around 50% for both buffer
sizing schemes. However, the throughput for the constant
sized buffer drops significantly as C and Wmax increase,
while for the logarithmic sized buffer the throughput
remains approximately the same, just as predicted by
our theoretical model.

V. CONCLUSIONS

The main conclusion, of course, is that our results
suggest packet buffers can be made much smaller; per-
haps as small as 10-20 packets, if we are prepared
to sacrifice some of the link capacity. It appears from
simulation - though we have not been able to prove
it - that the buffer size dictates directly how much
link capacity is lost, however congested the network
is. For example, a 40Gb/s link with 15 packet buffers
could be considered to operate like a 30Gb/s link. Of



course, this loss in link capacity could be eliminated by
making the router run faster than the link-rate. In a future
network with abundant link capacity, this could be a very
good trade-off: Use tiny buffers so that we can process
packets optically. In the past, it was reasonable to assume
that packet buffers were cheap, while long-haul links
were expensive and needed to be fully utilized. Today,
fast, large packet buffers are relatively painful to design
and deploy; whereas link capacity is plentiful and it is
common for links to operate well below capacity. This
is even more so in an all-optical network where packet
buffers are extremely costly and capacity is abundant.

The buffer size we propose depends on the maximum
window size. Today, default settings in operating systems
limit window size, but this limitation will probably go
away over time. However, even if the maximum window
size were to increase exponentially with time according
to some form of “Moore’s law”, the buffer size would
only need to increase linearly with time, which is a very
benign scaling given recent technology trends.

Our results also assume that packets are sufficiently
spaced out to avoid heavy bursts from one flow. Again,
slow access links help make this happen. But if this
is not true - for example, when two supercomputers
communicate - the TCP senders can be modified to use
Paced TCP instead.

Our results lead to some other interesting observations.
First, it seems that TCP dynamics have very little effect
on buffer-sizing, and hence these results should apply
to a very broad class of traffic. This is surprising,
and counters the prevailing wisdom (and our own prior
assumption) that buffers should be made large because
of TCP’s sawtooth behavior.

ACKNOWLEDGEMENT

The authors would like to thank Neda Beheshti, Peter
Glynn, and Damon Mosk-Aoyama for helpful discus-
sions.

REFERENCES

[1] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.
[2] A. Aggarwal, S. Savage, and T. Anderson. Understanding

the performance of TCP pacing. In Proceedings of the IEEE
INFOCOM, pages 1157–1165, Tel-Aviv, Israel, March 2000.

[3] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router
buffers. In SIGCOMM ’04, pages 281–292, New York, NY,
USA, 2004. ACM Press.

[4] J. Cao, W. Cleveland, D. Lin, and D. Sun. Internet traffic tends
to poisson and independent as the load increases. Technical
report, Bell Labs, 2001.

[5] V. Jacobson. [e2e] re: Latest TCP measurements thoughts.
Posting to the end-to-end mailing list, March 7, 1988.

[6] V. Jacobson. Congestion avoidance and control. ACM Computer
Communications Review, pages 314–329, Aug. 1988.

[7] F. P. Kelly. Chapter 3: Queueing Networks, pages 57–94. Wiley,
Chichester, 1979.

[8] V. Lal, J. A. Summers, M. L. Masanovic, L. A. Coldren, and
D. J. Blumenthal. Novel compact inPbased monolithic widely-
tunable differential Mach-Zehnder interferometer wavelength
converter for 40Gbps operation. In Indium Phosphide and
Related Materials, Scotland, 2005.

[9] M. L. Masanovic, V. Lal, J. S. Barton, E. J. Skogen, J. A.
Summers, L. Rau, L. A. Coldren, and D. J. Blumenthal.
Widely-tunable monolithically-integrated all-optical wavelength
converters in InP. Journal of Lightwave Tehcnology, 23(3),
2005.

[10] Microsoft. TCP/IP and nbt configuration parameters for win-
dows xp. Microsoft Knowledge Base Article - 314053, Novem-
ber 4, 2003.

[11] R. Motwani and P. Raghavan. Randomized Algorithms. Cam-
bridge University Press, 1995.

[12] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling tcp
throughput: a simple model and its empirical validation. In
SIGCOMM ’98, pages 303–314, New York, NY, USA, 1998.
ACM Press.

[13] H. Park, E. F. Burmeister, S. Bjorlin, and J. E. Bowers. 40-gb/s
optical buffer design and simulations. In Numerical Simulation
of Optoelectronic Devices (NUSOD), 2004.

[14] G. Raina and D. Wischik. Buffer sizes for large mul-
tiplexers: Tcp queueing theory and instability analysis.
http://www.cs.ucl.ac.uk/staff/D.Wischik
/Talks/tcptheory.html.

[15] K. Ramanan and J. Cao. A poisson limit for buffer overflow
probabilities. In INFOCOM, 2002.

[16] C. Villamizar and C. Song. High performance TCP in
ANSNET. ACM Computer Communications Review, 24(5):45–
60, 1994.

APPENDIX I
PROOF OF THE MAIN THEOREM

C

1s 1d

2d

Nd

2s

sN

v w

Fig. 7. Topology

We will use the topology of Figure 7. The capacity
of the shared link (v, w), which is denoted by C, is
assumed to be at least (1/ρ) ·NWmax/RTT where ρ is
some constant less than 1. Hence, the network is over-
provisioned by a factor of 1/ρ, i.e. the peak throughput is
ρC. The effective utilization, θ, is defined as the achieved
throughput divided by ρC. We also assume that node v
is an output queued switch, and has a buffer size of B.

The flow going through the link (v, w) is the su-
perposition of the N long-lived TCP flows. Since the
packet injection rate of the i-th flow is Wi(t)/RTT, its
flow injection is dominated by a Poisson process of
rate Wmax/RTT. More specifically, we can consider a



virtual system in which flow i has an injection process
which is Poisson and of rate Wmax/RTT. We can couple
the packet injection processes in the real system and
this virtual system such that the packets injected by the
real system are a subset of the packets injected by the
virtual system. Therefore, the aggregate of the N flows
is dominated by a Poisson process of rate NWmax/RTT.

Now, let us consider the output queue at node v. We
assume this is a drop-tail queue, and prove the following
lemma.

Lemma 1: The number of packet drops in the real
system is less than or equal to the number of packet
drops in the virtual system.

Proof: At a given point of time t, let us denote the
residual amount of data (queue occupancy plus part of
the packet being served which has not left the system
yet) in the real system with QR(t) and the amount of
data residing in the virtual system with QV (t). We also
denote the accumulative number of packet drops for the
real system by DR(t) and the number of packet drops
for the virtual system by DV (t). We claim that for any
time t,

[QR(t)−QV (t)]+ ≤ (DV (t)−DR(t)). (4)

Clearly this is true when both queues are empty at the
beginning. Now we consider the following cases:

1) If we have no arrival and just time passes, the right
hand side does not change, while the left hand side
can only decrease or remain the same. This case
also includes when packets depart either system.

2) If we have arrivals or drops at both queues at the
same time, the inequality still holds.

3) If we have an arrival to the virtual system, and no
arrivals to the real system no matter if we have
a drop or not, the LHS doesn’t increase, and the
RHS might increase, which means the inequality
still holds.

4) If we have an arrival to both of the queues and
the real system drops the packet but the virtual
system doesn’t, we consider two cases. If [QR(t)−
QV (t)]+ ≥ 1, then both sides go down by one unit.
Otherwise, since the real system drops the packet
but the virtual one doesn’t, we can conclude that
QR(t) > QV (t) (t is the time right before this last
arrival), which means [QR(t)−QV (t)]+ is strictly
greater than zero, and therefore DV (t) is greater
than DR(t). Now, after the arrival and the drop, the
LHS will become zero, while the RHS is greater
than or equal to zero.

In all cases the inequality holds. Now, since [QR(t)−
QV (t)]+ is greater than or equal to zero (by definition),

our inequality is translated to DV (t) ≥ DR(t).
So far we have shown that the number of packet drops

in the virtual system is more than the number of packet
drops in the real system. The next step is to bound the
number of drops in the virtual system. In this system the
arrival process is Poisson. If we assume that the packets
are all of the same size, the service time will be fixed.
Therefore, we have an M/D/1 queue with a service rate
of C, and arrival rate of ρC.

Lemma 2: The drop probability of the virtual system
is bounded above by ρB .

Proof: The queue occupancy distribution of an
M/D/1 FCFS queueing system is equal to that of an
M/D/1 LCFS-PR (last-come first-served with preemptive
resume) queue. This is because both queues have the
same arrival process, are work conserving, and have
the same service rate. Now, for any M/G/1 LCFS-PR
system the steady state queue occupancy distribution
is geometric with parameter ρ. Therefore, the drop
probability of the M/G/1 LCFS-PR system equals ρB ,
which is an upper bound on the drop probability of the
virtual system.

Note that this is not necessarily an upper bound on
the packet drop probability of the real system.

Now that we have an upper bound on the packet loss
probability of the virtual system, the next step is to find
a lower bound on the throughput of the real system.
Without loss of generality, we consider the dynamics of
one of the flows, say flow number one. For simplicity,
we assume that flow one is in congestion avoidance,
i.e., during each RTT the congestion window size is
incremented by one if there is no packet loss, and the
congestion window goes to zero if a packet loss is
detected by the source. Once the congestion window size
reaches its maximum value (i.e. Wmax) it will remain
fixed.

Time

C
on

ge
st

io
n 

W
in

do
w

Area loss
with overlap

Area loss
without overlap

Fig. 8. Dynamics of the congestion window.

Figure 8 depicts an example of the changes in conges-
tion window size. The area under the curve indicates the
total amount of data which has been sent by the flow. We
can see that by each packet loss some portion of this area
is lost, and the amount of loss is maximized when the
overlap between the lost regions is minimum. We omit a
formal proof. We are ignoring slow-start in this system.



It is not hard to see that considering slow-start can only
lead to better bounds (i.e. smaller buffers)—again, we
omit the formal proof.

Let us consider a long time interval of length ∆, and
let us denote the number of packets injected by the
sources in the virtual system during this interval with
Pv, and the number of packet drops in the virtual system
during this time interval with DV . Choose an arbitrarily
small ε > 0. As ∆ goes to ∞, we have:

Pr

[
Pv >

∆NWmax

RTT
(1 + ε)

]
= o(1); (5)

and,

Pr

[
Pv <

∆NWmax

RTT
(1− ε)

]
= o(1). (6)

Since the probability of each packet being dropped is
less than ρB , using Equation 5, we can bound the total
number of packet drops D as follows.

Pr

[
DV >

ρB∆NWmax

RTT
(1 + ε)

]
= o(1). (7)

Based on Lemma 1 the number of packet drops in
the virtual system is no less than the number of packet
drops in the real system (henceforth denoted by DR).
Therefore, we get the following.

Pr

[
DR >

ρB∆NWmax

RTT
(1 + ε)

]
= o(1). (8)

Now, if none of the flows in the real system encoun-
tered any losses during the time interval ∆, the amount
of data that could have been sent during this time, UT ,
can be bounded below as follows.

Pr

[
UT <

∆NWmax

RTT
(1− ε)

]
= o(1). (9)

We will lose some throughput as a result of packet
drops in the system. As we can see in Figure 8, the
maximum amount of loss occurs when the triangles cor-
responding to packet losses have the minimum overlap.
Therefore, we have

UL ≤
DRW 2

max

2
. (10)

In Equation 8 we have bounded the number of packet
losses in the real system with a high probability. Com-
bining this bound, with Equation 10 we get

Pr

[
UL >

ρB∆NW 3
max

2RTT
(1 + ε)

]
= o(1). (11)

Now, if we want to guarantee an effective utilization
throughput of θ, the following equation must hold.

UT − UL

ρC∆
≥ θ. (12)

Since ρC = NWmax/RTT, we need to satisfy

UL ≤ N∆Wmax(1− θ − ε)/RTT. (13)

Combining Equations 9, 11, and 13 if we want to have
a throughput of θ, we merely need to ensure

(1 + ε)ρB∆NW 3
max

2RTT
<

∆NWmax(1− θ − ε)
RTT

, (14)

which, in turn, is satisfied if the following holds:

ρB <
2(1− θ −O(ε))

W 2
max

. (15)

Since ε is arbitrarily small, it is sufficient for the buffer
size B to satisfy

B ≥ log1/ρ

(
W 2

max

2(1− θ)

)
, (16)

which is O(log Wmax) since we assumed that ρ, θ are
constants less than 1.

APPENDIX II
PACING ANALYSIS

In this Appendix we prove Theorem 2. We will
consider the following discrete-time model of the packet
arrivals at the bottlelink link during one RTT. There are a
total M = C ·RTT time slots, where C is the bandwidth
of the bottleneck link. We assume that N flows will each
send at most Wmax packets, and that there are at least
S time slots between consecutive packet arrivals of a
single flow. The parameter S can be interpreted as a
lower bound on the ratio of the bottleneck link speed to
the access link speed. Note S is the crucial parameter
in this section: when S is small traffic can be arbitrarily
bursty and we cannot expect good throughput with small
buffers (see also Section IV-A). We thus aim to prove
that small buffers permit large throughput provided S
is sufficiently large. Finally, we assume that the average
traffic intensity ρ = NWmax/M is bounded below 1.

For the rest of this section, we adopt three assump-
tions.
(1) Buffers are sufficiently large: B ≥ cB log Wmax,

where cB > 0 is a sufficiently large positive
constant.

(2) The distance between consecutive packet arrivals of
a single flow is sufficiently large: S ≥ cS log Wmax,



where cS > 0 is a sufficiently large positive con-
stant.

(3) Random jitter prevents a priori synchronization of
the flows: flow start times are picked independently
and uniformly at random from the M time slots.

As discussed in Section III, the first two assumptions
are often reasonable and are mathematically necessary
for our results. The validity of the third assumption is
less clear, especially in the presence of packet drops,
which could increase the degree of synchronization
among flows. Our simulations in Section IV indicate,
however, that our analytical bounds remain valid for
long-lived flows that experience packet drops.

Our proof of Theorem 2 will focus on a particular
(but arbitrary) packet. If the packet arrives during time
slot t, then the probability that it is dropped is at most
the probability that for some interval I of l contiguous
time slots ending in time slot t, there were at least l +
B other packet arrivals. If this event occurs, we will
say that the interval I is overpopulated. We will bound
the probability of overpopulation, as a function of the
interval length l, via the following sequence of lemmas.
We first state the lemmas, then show how they imply
Theorem 2, and finally prove each of the lemmas in turn.

The first lemma upper bounds the overpopulation
probability for small intervals (of length at most
log Wmax).

Lemma 3: In the notation above, if l ≤ log Wmax,
then the probability that the interval I is overpopulated
is at most e−cB , where c > 0 is a positive constant that
depends only on cB .

The second lemma considers intervals of intermediate
size.

Lemma 4: In the notation above, if log Wmax ≤
l ≤ SWmax, then the probability that the interval I is
overpopulated is at most e−cS , where c > 0 is a positive
constant that depends only on cS .

Finally, we upper bound the probability of overpopu-
lation in large intervals.

Lemma 5: In the notation above, if l ≥ SWmax, then
the probability that the interval I is overpopulated is at
most e−cl/Wmax , where c > 0 is a positive constant that
depends only on cS .

We now show how Lemmas 3–5 imply Theorem 2.
Proof of Theorem 2: We consider an arbitrary packet
arriving in time slot t, and take the Union Bound
over the overpopulation probabilities of all intervals
that conclude with time slot t. First, by Lemma 3,
the total overpopulation probability for small intervals
(length l at most log Wmax) is O(e−B log Wmax), which
is O(1/W 2

max) provided cB (in Assumption (1)) is
sufficiently large. Next, Lemma 4 implies that the to-

tal overpopulation probability of intervals with length
l in [log Wmax, SWmax] is at most SWmaxe

−Ω(S),
which is O(1/W 2

max) provided cS (in Assumption (2))
is sufficiently large. Finally, Lemma 5 implies that
the total overpopulation probability of large intervals
(l ≥ SWmax) is at most

∫∞
SWmax

e−Ω(x/Wmax)dx. Chang-
ing variables (z = x/Wmax), this quantity equals
Wmax

∫∞
S e−zdz, which is O(1/W 2

max) provided cS is
sufficiently large. Taking the Union Bound over the
three types of intervals, we obtain an upper bound of
O(1/W 2

max) for the total overpopulation probability, and
hence for the probability that the packet is dropped. This
completes the proof.
Proof of Lemma 3: If the length l of interval I is
at most log Wmax, then each flow contributes at most
1 packet to I (assuming that cS ≥ 1). This occurs
with probability at most Wmaxl/M . Let Xi denote the
corresponding indicator random variable for flow i, and
define X =

∑
Xi. Note that EX ≤ ρl ≤ ρ log Wmax.

We use the following Chernoff bound (see e.g. [11]) for
a sum of indicator random variables with expectation
µ: Pr[X ≥ (1 + δ)µ] < [eδ/(1 + δ)(1+δ)]µ. Assuming
that cB is sufficiently large (in Assumption (1)), setting
(1 + δ)µ = B gives Pr[X ≥ l + B] ≤ Pr[X ≥ B] ≤
e−Θ(B).
Proof of Lemma 4: Suppose (k − 1)S ≤ l ≤ kS for
some k ∈ {1, 2, ...,Wmax}. Then each flow contributes at
most k packets to I . Assume for simplicity that each flow
contributes either 0 or k packets to I , with the latter event
occurring with probability WmaxS/M (so that E[kX] ≈
ρl). (Here Xi is the indicator for the latter event, so
the total number of arrivals in I is at most kX , where
X =

∑
i Xi.) A more accurate analysis that permits each

flow to contribute any number of packets between 0 and
k to I (with appropriate probabilities) can also be made,
but the results are nearly identical to those given here.

We use the same Chernoff bound as in the proof of
Lemma 3. We are interested in the probability Pr[X ≥
(l+B)/k], which we will upper bound by Pr[X ≥ l/k].
Since µ = Θ(ρl/k), the Chernoff bound gives Pr[X ≥
l/k] ≤ exp{−Θ(l/k)} = e−Θ(S) for fixed ρ < 1.

Proof of Lemma 5: The proof is similar to the previous
one. Suppose that l ≥ WmaxS and assume that each flow
i contributes either 0 or Wmax packets to I , the latter
event occurring with probability l/M . (So E[WmaxX] =
ρl.) The same Chernoff bound argument as in the proof
of Lemma 4 gives Pr[WmaxX ≥ l + B] ≤ e−Θ(l/Wmax)

for fixed ρ < 1.


