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ABSTRACT
Prior-free auctions are robust auctions that assume no dis-
tribution over bidders’ valuations and provide worst-case
(input-by-input) approximation guarantees. In contrast to
previous work on this topic, we pursue good prior-free auc-
tions with non-identical bidders.

Prior-free auctions can approximate meaningful bench-
marks for non-identical bidders only when “sufficient quali-
tative information” about the bidder asymmetry is publicly
known. We consider digital goods auctions where there is a
total ordering of the bidders that is known to the seller,
where earlier bidders are in some sense thought to have
higher valuations. We use the framework of Hartline and
Roughgarden (STOC ’08) to define an appropriate revenue
benchmark: the maximum revenue that can be obtained
from a bid vector using prices that are nonincreasing in the
bidder ordering and bounded above by the second-highest
bid. This monotone-price benchmark is always as large
as the well-known fixed-price benchmark F (2), so design-
ing prior-free auctions with good approximation guarantees
is only harder. By design, an auction that approximates the
monotone-price benchmark satisfies a very strong guaran-
tee: it is, in particular, simultaneously near-optimal for es-
sentially every Bayesian environment in which bidders’ val-
uation distributions have nonincreasing monopoly prices, or
in which the distribution of each bidder stochastically domi-
nates that of the next. Of course, even if there is no distribu-
tion over bidders’ valuations, such an auction still provides
a quantifiable input-by-input performance guarantee.

In this paper, we design a simple prior-free auction for
digital goods with ordered bidders, the Random Price Re-
striction (RPR) auction. We prove that its expected rev-

enue on every bid profile b is Ω(M(2)(b)/ log∗ n), whereM(2)

denotes the monotone-price benchmark and log∗ n denotes

∗This work was partially supported from EU ERC research
grant PAAI (Practical Approximation Algorithms)
†Supported in part by NSF grant CCF-1016885, an ONR
PECASE Award, and an AFOSR MURI grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOCÕ12, May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

the number of times that the log2 operator can be applied
to n before the result drops below a fixed constant.

1. INTRODUCTION
Suppose you own a set of goods and want to make money

by selling them. What is the best way to do it? This ques-
tion is non-trivial even in digital goods auctions, where the
seller has an unlimited supply of identical goods (like mp3s),
and there are n bidders, each of whom wants only one good
and has a private valuation (i.e., maximum willingness-to-
pay) for it.

The question becomes easy if the seller has a prior product
distribution on bidders’ valuations. Since supply is unlim-
ited and valuations are independent, the seller can optimize
for each bidder separately. For a bidder i with valuation dis-
tribution Fi, the expected revenue is maximized by posting
a monopoly price — that is, making a “take-it-or-leave-it”
offer at a price in argmaxp[p · (1− Fi(p))].

What if good prior information is expensive or impossible
to acquire? What if a single auction is to be re-used sev-
eral times, in settings with different or not-yet-known bidder
valuations? Are there prior-free auctions that admit more
robust, “worst-case” revenue guarantees? Particularly ger-
mane to this paper, do such auctions exist when none of the
bidders are identical?

1.1 Revenue Benchmarks
Goldberg et al. [11, 12] were the first to pursue prior-free

auctions, and they proposed a competitive analysis frame-
work based on revenue benchmarks.1 The idea is to define a
real-valued function on inputs (i.e., bid vectors) that repre-
sents an upper bound on the maximum revenue achievable
by any “reasonable” auction on each input. They proposed
the fixed-price benchmark F (2) for digital goods auctions,
defined as the maximum revenue that can be obtained from
a given bid vector by offering every bidder a common posted
price that is at most the second-highest bid.

Comparing the revenue of an auction to F (2) initially
looks like an “apples vs. oranges” comparison — the auction
does not know bidders’ valuations but can employ arbitrary
prices, while the benchmark is privy to all the private infor-
mation but handicapped in the prices it can use. Neverthe-
less, Goldberg et al. [11] demonstrated the effectiveness of
the fixed-price benchmark for meaningful competitive anal-
ysis: no auction achieves more than a ≈ .42 fraction of F (2)

1Different approaches to the design and analysis of auctions
with non-Bayesian sellers were recently proposed by Azar et
al. [3], Chen and Micali [6], and Lopomo et al. [18].



for every bid vector, and there are interesting auctions that
obtain a constant fraction of this benchmark on every in-
put. Subsequent attempts to extend this competitive anal-
ysis framework beyond digital goods auctions are surveyed
by Hartline and Karlin [13].

1.2 The Bayesian Thought Experiment
To extend the revenue benchmark approach to new ob-

jective functions and asymmetric outcome spaces, Hartline
and Roughgarden [14] advocated a general framework based
on a “Bayesian thought experiment”. Roughly, this frame-
work works as follows. The first step is to temporarily think
of bidders’ valuations as drawn i.i.d. from some valuation
distribution. The second step is to characterize the collec-
tion C of all optimal auctions that can arise — those with
maximum-possible expected objective function value with
respect to some valuation distribution. For example, for
revenue maximization in digital goods auctions, C is the set
of common posted prices (bidders are i.i.d. and hence have
a common monopoly price). Finally, given a bid vector b,
the benchmark is defined as the maximum objective func-
tion value obtained by an auction in C on the input b. In
digital goods auctions, this is the maximum revenue that
can be obtained by offering every bidder a common posted
price — modulo the restriction of being at most the second-
highest bid, the Bayesian thought experiment automatically
regenerates the F (2) benchmark. (For technical reasons, the
upper bound on prices still needs to be added to permit
interesting results [11].) More importantly, all benchmarks
generated by this framework are automatically well moti-
vated: if the performance of an auction is within a constant
factor of such a benchmark for every input, then in particu-
lar it is simultaneously near-optimal in every Bayesian i.i.d.
environment.2 In addition, if there is no distribution over
inputs, then the auction still provides a quantifiable input-
by-input guarantee.

Analogs elsewhere in theoretical computer science include
worst-case regret guarantees in online decision-making (e.g.,
if cost vectors are drawn i.i.d. from a distribution, then the
optimal action is time-invariant) and static optimality in
data structure design (e.g., if searches are i.i.d., then there
is some fixed optimal binary search tree). The framework
in [14] and some variants of it have been successfully used
to extend the reach of prior-free mechanism design to new
objective functions [14] and more complex environments [7,
15, 16].

1.3 Beyond I.I.D. Bidders
The primary goal of this paper is the following.

To design good prior-free auctions for benchmarks de-
rived from non-identical bidders.

Why is this non-trivial? Let’s apply the Bayesian thought
experiment to a digital goods auction, now assuming that
bidder i’s valuation is drawn (independently) from its own
distribution Fi. For fixed distributions F1, . . . , Fn, the opti-
mal auction offers each bidder its respective monopoly price.
Ranging over all choices of F1, . . . , Fn, we find that the col-

2This weaker goal of good prior-independent auctions —
where a distribution over inputs is assumed and used in the
analysis of a mechanism, but not in its design — is now
studied in its own right [8, 9].

lection C corresponds to the set of all posted price vectors.3

Thus, for every bid vector b, there is an auction Ab ∈ C
that uses the price vector b and hence obtains the full wel-
fare

Pn
i=1 bi as revenue. There is no digital goods auction

that always obtains a constant fraction of the optimal wel-
fare [11], so the Bayesian thought experiment with non-i.i.d.
bidders generates a benchmark that is far too strong for
meaningful competitive analysis.

The exercise above suggests the following principle for
prior-free auction design with non-identical bidders.

Prior-free auctions can approximate benchmarks de-
rived from non-identical bidders only if “sufficient qual-
itative information” about bidder asymmetry is publicly
known.

To give an easy example, suppose there is a publicly known
partition of the bidders into groups of otherwise indistin-
guishable bidders. We then require the Bayesian thought
experiment to conform to the public information, meaning
that the valuations of bidders in the same group are i.i.d.
draws from a distribution. Then, the optimal auctions C
are the price vectors that offer a common posted price to
each group of bidders. The induced prior-free benchmark is
the maximum revenue that can be obtained from the given
bid vector using such a price vector. This is essentially the
same benchmark proposed in work on attribute auctions [4,
5] that predates the benchmark framework in [14]. There
are prior-free digital goods auctions with expected revenue
at least a constant fraction of this benchmark when every
group has at least 2 bidders (by an easy reduction to the
standard setup) and when there is a constant number of
groups [4, 5].

1.4 Ordered Bidders and Stochastic Dominance
What about the general case when all bidders are distin-

guishable? We consider digital goods auctions when there
is a total ordering of the bidders that is known to the seller.
Without loss of generality, we assume that bidders are or-
dered 1, 2, . . . , n.4 Earlier bidders are in some sense expected
to have higher valuations. This information could be derived
from, for example, zip codes, eBay bidding histories, credit
history, previous transactions with the seller, and so on. We
emphasize that the known information is only qualitative,
and is not quantitative or distributional, as is standard in
Bayesian auction design.

To generate a prior-free benchmark, we consider Bayesian
thought experiments that conform to the known informa-
tion. As a first step, call the distributions F1, . . . , Fn or-
dered if the corresponding monopoly prices are nonincreas-
ing. For example, the Fi’s could be uniform distributions
on intervals [0, hi] with nonincreasing hi’s; exponential dis-
tributions with nondecreasing rates; Gaussian distributions
with nondecreasing means; and so on. Letting (F1, . . . , Fn)
range over all ordered distributions, the corresponding col-
lection C of optimal auctions is the set of monotone price
vectors p, where p1 ≥ · · · ≥ pn. We denote the induced rev-
enue benchmark by M(1), the maximum revenue that can
3This fact holds even if we restrict the Fi’s to be, say, uni-
form distributions with supports [0, hi] (and hence monopoly
prices hi/2).
4Ties between bidders can also be accommodated easily, ei-
ther with cosmetic changes to the auction and analysis in
this paper, or by handling groups of indistinguishable bid-
ders separately using known techniques.



be obtained from a given bid vector from a monotone price
vector. For example, for a bid vector b that is itself mono-
tone, with b1 ≥ · · · ≥ bn, setting p = b shows that M(1)(b)
is the full welfare

Pn
i=1 bi. If b1 ≤ · · · ≤ bn, however, then

the revenue-maximizing monotone price vector is simply a
constant price — equal to the bid bi that maximizes j · bj .
We emphasize that the benchmark M(1)(b) is defined for
all bid vectors b, including those that defy the semantics of
the bidder ordering. Similarly, auctions that strive to ap-
proximate such a benchmark on every input are allowed to
use arbitrary prices, not merely monotone ones.

By definition, an auction with revenue at least a con-
stant fraction of M(1) on every input is simultaneously near-
optimal in every Bayesian digital goods auction with inde-
pendent and ordered distributions. Being prior-free, such an
auction also has a well-defined worst-case performance guar-
antee even when no distribution over the inputs is assumed.

A similar simultaneous approximation result holds under
the standard notion of stochastic dominance. Recall that
a distribution Fi stochastically dominates another Fi+1 if
Fi(x) ≤ Fi+1(x) for every x ≥ 0. Dhangwotnotai and Hart-
line (personal communication, November 2011) observed that,
if Fi stochastically dominates Fi+1 for every i = 1, 2, . . . , n−
1, then there is a monotone price vector with expected rev-
enue at least 50% of that of an optimal price vector. It
follows that an auction with revenue at least a constant frac-
tion of M(1) on every input is simultaneously near-optimal
in every Bayesian digital goods auction in which the distri-
bution of each bidder stochastically dominates that of the
next.

1.5 The Monotone Price Benchmark
Given a digital goods environment with ordered bidders,

we define the monotone price benchmark M(2)(b) for ev-
ery bid vector b as the maximum revenue obtainable via a
monotone price vector in which every price is at most the
second-highest bid. As in the conventional model with in-
distinguishable bidders [11], the upper bound on prices is
necessary for the existence of prior-free auctions with non-
trivial approximation guarantees.5 Indeed, since a constant
price vector is monotone, M(2)(b) ≥ F (2)(b) for every b
and so designing auctions competitive with the monotone-
price benchmark is at least as difficult as with the fixed-
price benchmark. Simple arguments show that M(2)(b) can

exceed F (2)(b) by as much as a Θ(log n) factor. As far
as we know, all of the auctions previously designed to be
O(1)-competitive with F (2) are only Ω(log n)-competitive

with M(2).
The monotone-price benchmark was previously consid-

ered, with a completely different motivation, by Aggarwal
and Hartline [1]. In [1], which predates the benchmark

framework in [14], M(2) was one of three ad hoc bench-
marks proposed for “knapsack auctions”, where bidders have
a public size and feasible solutions correspond to subsets of
bidders with total size at most a publicly known budget. In
particular, Aggarwal and Hartline [1] gave a digital goods
auction that, for every bid vector b, has expected revenue

5An auction that always has revenue at least a constant
fraction of M(2) is still simultaneously near-optimal in every
Bayesian environment with ordered or stochastically domi-
nating distributions, with somewhat worse constant factors,
provided these distributions satisfy some mild extra condi-
tions.

at least 1
c
M(2)(b)−O(h log log log h), where c > 0 is a con-

stant and h is the ratio between the maximum and minimum
bids. Because of the additive loss term in this guarantee, it
is not directly comparable to ours. The technical approach
in [1] is to classify instances as one of two types, those in
which most of the optimal revenue comes from large groups
of bidders such that members of the same group are charged
roughly the same price, and those in which most of the opti-
mal revenue comes from a small number of bidders who are
charged a small number of different prices. Aggarwal and
Hartline [1] use general techniques [4, 5] to design an auction
(with some additive loss) for each of these cases, and then
choose one of the two auctions at random.

1.6 Our Results
Our main result is a prior-free digital goods auction with

ordered bidders that satisfies the following guarantee: there
is a constant c > 0 such that, for every input b, the auction’s
expected revenue is at least M(2)(b)/c log∗ n. Here log∗ n
denotes the number of times that the log2 operator can be
applied to n before the result drops below a constant (2,
say). Put differently, if n is roughly equal to a tower of t 2’s,
then log∗ n is roughly t.

Our auction, which we call the Random Price Restric-
tion (RPR) auction, is very simple. As is standard, the
auction randomly partitions the bidders into two groups. It
computes an optimal monotone price vector for the “train-
ing set” of bidders, subject to a randomly restricted set of
permissible prices. Finally, it applies the computed price
vector to the “test set” of bidders in the natural way. To ob-
tain an approximation guarantee of O(log∗ n), the random
price restriction (and the analysis) has to be executed with
some care.

1.7 Future Research
Our model and results suggest several concrete open ques-

tions, the solutions to which would advance the theory of
auctions with prior-free or prior-independent guarantees.
There is the obvious open question of whether or not our
approximation guarantee of O(log∗ n) can be improved to a
constant factor, presumably using a different auction. An-
other important next step is the study of limited-supply
auctions with unit-demand and ordered bidders. Prior-free
guarantees with limited supply are non-trivial even with in-
distinguishable bidders [7], and extending these results to
ordered bidders poses an intriguing challenge. Finally, it
would be interesting to pursue prior-independent guarantees
in the spirit of [8, 9] in Bayesian environments with ordered
or stochastically dominating distributions.

2. PRELIMINARIES
In a digital goods auction, there is one seller and n bidders.

There is an unlimited supply of identical goods. Each bidder
wants only one good, and has a private — i.e., unknown to
the seller — valuation vi. We study direct-revelation auc-
tions, in which the bidders report bids b to the seller, and
the seller then decides who wins a good and at what price.6

For a fixed (randomized) auction, we use Xi(b) and Pi(b)
to denote the winning probability and expected payment of

6For the questions we ask, the “Revelation Principle” (see,
e.g., Nisan [20]) ensures that there is no loss of generality by
considering only direct-revelation auctions.



bidder i when the bid profile is b. As in previous works on
prior-free auction design, we consider only auctions that are
individually rational — meaning Pi(b) ≤ vi ·Xi(b) for ev-
ery i and b — and truthful, meaning that for each bidder i
and fixed bids b−i by the other bidders, bidder i maximizes
its quasi-linear utility vi ·Xi(bi,b−i)−Pi(bi,b−i) by setting
bi = vi. Since we consider only truthful auctions, from now
on we use bids b and valuations v interchangeably.

Truthful and individually rational digital goods auctions
have a nice canonical form: for every bidder i there is a
(possibly randomized) function ti(v−i) that, given the val-
uations v−i of the other bidders, gives bidder i a “take-it-
or-leave-it offer” at the price ti(v−i). This means that bid-
der i is given a good if and only if vi ≥ ti(v−i), in which
case it is charged the price ti(v−i). It is clear that every
choice (t1, . . . , tn) of such functions defines a truthful, in-
dividually rational digital goods auction; conversely, every
such auction is equivalent to a choice of (t1, . . . , tn) [11]. A
special case of such an auction is a price vector p, in which
each ti is the constant function ti(v−i) = pi. As noted in
Section 1, in Bayesian settings with independent valuations,
price vectors maximize expected revenue over all truthful
and individually rational auctions.

The revenue of an auction on the valuation profile v is
the sum of the payments collected from the winners. Let
v(2) denote the second-highest valuation of a profile v. The
fixed-price benchmark F (2) is defined, for each valuation pro-
file v, as the maximum revenue that can be obtained from
a constant price vector whose price is at most v(2):

F (2)(v) = max
p≤v(2)

0@ X
i : vi≥p

p

1A .

Now suppose there is a known ordering on the bidders, say
1, 2, . . . , n. The monotone-price benchmark M(2) is defined
analogously to F (2), except that non-constant monotone
price vectors are also permitted:

M(2)(v) = max
v(2)≥p1≥p2≥···≥pn

0@ X
i : vi≥pi

pi

1A . (1)

Clearly, M(2)(v) ≥ F (2)(v) for every input v.
We reiterate that the monotonicity and upper-bound con-

straints are enforced only in the computation of the bench-
mark M(2). Auctions, while obviously not privy to the pri-
vate valuations, can employ whatever prices they see fit.
This is natural for prior-free auctions and also necessary for
non-trivial results [10].

Finally, when we say that an auction is α-competitive with
or has approximation factor α for a benchmark, we mean
that the auction’s expected revenue is at least a 1/α fraction
of the benchmark for every input v.

3. A PRIOR-FREE O(log∗ n)-APPROXIMATE
DIGITAL GOODS AUCTION WITH OR-
DERED BIDDERS

3.1 The Random Price Restriction (RPR) Auc-
tion

We propose the Random Price Restriction (RPR)
auction, displayed in Figure 1. We next elaborate on the

Input: a valuation profile v for a totally ordered set N =
{1, 2, . . . , n} of bidders.

1. Choose a level L ∈ {0, 1, 2, . . . , log∗ n} uniformly at
random.

2. If L = 0, run a digital goods auction on v that is O(1)-

competitive with respect to the benchmark F (2), and
halt.

3. Choose a subset A ⊆ N uniformly at random, and
partition N into the two sets A and B.

4. Compute an optimal L-feasible price vector pA for A
(see details in the main text).

5. Extend pA to a price vector p on all of N by, for each
i ∈ B, setting pi equal to pA

j , where j = min{h > i :
h ∈ A}. If j is undefined, set pi = 0.

6. Sell items to bidders in B only, using prices p.

Figure 1: The auction Random Price Restriction
(RPR).

steps of the auction. In the second step, in the case where
L = 0, we run an arbitrary digital goods auction that is O(1)-

competitive with respect to the fixed-price benchmark F (2).
The best-known approximation factor is 3.12 [17]; there are
also very simple auctions with approximation factors 4 [11]
and 4.68 [2]. Intuitively, this step is meant to extract good
revenue from the set of bidders with valuations almost as
high as the second-highest valuation.

The third step of the algorithm randomly partitions the
bidders into a “training set”A and a“test set”B. Almost all
prior-free auctions have this structure, with the bidders in
the training set setting prices for those in the test set. For
simplicity, we sell (in the sixth step) only to bidders in the
test set B. An obvious optimization is to sell simultaneously
to bidders in A, using the bids of B; this would improve the
hidden constant in our approximation guarantee by a factor
of 2.

To explain the fourth step, let vA denote the valuations of
the bidders in the sample A. Let log(`) n denote the result
of applying the log2 operator ` times to n. A price vector
is `-feasible for A if it is monotone and if every price is a
power of two in the range»

M(2)(vA)

(log(`−1) n)3
,
3M(2)(vA)

(log(`) n)3

–
. (2)

(Here and throughout the paper, log(0) n is defined as n.)
The optimal such price vector is the one that maximizes
the revenue obtained from the bidders in A. Intuitively,
the optimal `-feasible price vector is meant to extract good
revenue from the set of bidders with valuations in the range
in (2).

The fifth step applies the prices computed in the fourth
step to bidders in the test set B in the natural way, with
each bidder inheriting the price computed for its “nearest
neighbor” in the training set A.

The RPR auction is truthful, as each bidder faces a take-
it-or-leave-it offer at a price (possibly +∞) that is inde-



pendent of its reported valuation. We also note that the
RPR auction can be implemented in polynomial time, as
both M(2)(vA) and pA can be computed efficiently using
dynamic programming.

Our definition of levels is designed to optimally make use
of two easy special cases. The first special case is when
the valuations are guaranteed to lie in a small range. This
case is easy since there are few relevant prices to compete
with. The second special case is when optimal prices are
much less than the optimal revenue, implying that there
are many winners at the optimal prices. This case is easy
because random sampling works extremely well when there
is a large number of winners. By defining levels so that the
range of prices in a level shrinks according to the maximum
price in the level, we are able to extract a large amount of
expected revenue from all levels simultaneously.

3.2 The Analysis
Our main result is a prior-free approximation guarantee

for the RPR auction.

Theorem 3.1 There is a constant c > 0 such that, for ev-
ery valuation profile v, the expected revenue of the RPR
auction is at least M(2)(v)/(c log∗ n).

Recall that log∗ n denotes the number of times that the log2

operator can be applied to n before the result drops below a
fixed constant. (The choice of the constant doesn’t matter,
in that it changes the definition only by an additive term.)

When convenient, we assume that the number n of bidders
is at least a sufficiently large constant — if not, the approx-
imation ratio of the RPR auction is trivially constant.

To make our analysis as modular and transparent as pos-
sible, we factor it into three parts. In particular, we exert
absolutely no effort to control the constant c of Theorem 3.1.
In the first part, we define a collection of events and analyze
their probabilities. The second part is more intricate, and
it shows that if certain events occur, then certain portions
of the monotone-price benchmark M(2)(v) can be charged
against analogous portions of the RPR auction’s revenue.
The third part stitches together our arguments into a proof
of Theorem 3.1.

3.2.1 Some Events and Their Probabilities
Fix a valuation profile v. LetM∗ denoteM(2)(v). Let vA

denote the profile induced by a (random) training set A. Let
EA denote the event that

M(2)(vA) ≥ 1

3
· M∗.

Lemma 3.2 For every valuation profile v, Pr[EA] ≥ 1
16

.

Proof. Let p achieve the maximum in (1) for v, with
revenue M∗. With probability 1/4, the bidders with the
highest and second-highest valuations lie in A. Given this
event, the conditional expected revenue from bidders in A
and B under the price vector p is at least M∗/2 and at
mostM∗/2, respectively. By Markov’s inequality, the condi-
tional expected revenue from bidders in A under p is at least
1
3
M∗ with probability at least 1

4
. Since the bidders with

highest and second-highest valuations lie in A, the projection
of p on the bidders in A is a feasible price vector in the de-
termination of the benchmark M(2)(vA); the optimal price

vector for A can only have higher revenue. Summarizing,
with probability at least 1

4
· 1

4
= 1

16
, M(2)(vA) ≥M∗/3.

With v still fixed, consider a choice of ` ∈ {1, 2, . . . , log∗ n}.
A level-` price is a power of 2 that lies in the range»

M∗

3(log(`−1) n)3
,

3M∗

(log(`) n)3

–
. (3)

A winning bidder i for a price p satisfies vi ≥ p. A level-`
triple (i, j, p) meets the following criteria:

(i) p is a level-` price

(ii) i < j

(iii) the number of winning bidders in {i, i+1, , . . . , j−1, j}
is at least

(log(`) n)2

432 log∗ n
, (4)

and these include bidders i and j.

Observe that the set of level-` triples depends only on v and
`, and not on the random choices of the RPR auction.

Lemma 3.3 For every profile v and ` ∈ {1, 2, . . . , log∗ n},
there are O((log(`−1) n)6 log(`) n) level-` triples.

Proof. Every level-` price p is at leastM∗/3(log(`−1) n)3;

by the definition of M∗, there are at most 3(log(`−1) n)3

winning bidders for such a price. Thus, there are at most
O((log(`−1) n)3) choices for each of i and j. Since every level-

` price is a power of 2 between M∗ and M∗/3(log(`−1) n)3,

there are O(log(`) n) choices for p.

Call a level-` triple (i, j, p) balanced if at least 1
3

of the
winning bidders in {i, i + 1, . . . , j − 1, j} for price p lie in A,
and similarly in B. Let E` denote the event that every level-`
triple is balanced.

Lemma 3.4 For every valuation profile v with n sufficiently
large, for every ` ∈ {1, 2, . . . , log∗ n}, Pr[E`] ≥ 31

32
.

Proof. Fix a level-` triple (i, j, p) and a sufficiently large
constant c. By definition (see (4)), the number of winning

bidders in {i, i+1, . . . , j−1, j} for price p is at least c log(`) n,
provided n is sufficiently large. We can choose c so that
standard Chernoff bounds (e.g., [19]) imply that the prob-

ability that (i, j, p) is not balanced is at most 2−7 log(`) n =

(log(`−1) n)−7. Combining this fact with Lemma 3.3 and a
Union Bound completes the proof.

3.2.2 The Main Argument
Fix a valuation profile v. As before, letM∗ denoteM(2)(v).

For ` ∈ {1, 2, . . . , log∗ n}, a level-` bidder i is one satisfying

vi ∈
h

M∗

(log(`−1) n)3
, M∗

(log(`) n)3

i
. (5)

Also, recall that a price vector is `-feasible for the training
set A if it is monotone and if every price is a power of two
in the range (2).

Lemma 3.5 Fix an optimal price vector for v, with revenue
M∗. For ` ∈ {1, 2, . . . , log∗ n}, let C∗

` denote the revenue
contributed by level-` bidders. For every ` ∈ {1, 2, . . . , log∗ n},
if EA holds, then there is an `-feasible price vector for the
full set N of bidders with revenue at least C∗

` /2.



Proof. Let p∗ be an optimal price vector for v and
fix ` ∈ {1, 2, . . . , log∗ n}. Let a and b denote the smallest and
largest, respectively, powers of 2 that lie in the range (2).
Derive q from p∗ as follows: if p∗i > b, set qi = b; if p∗i < a,
set qi = a; otherwise, set qi to be the largest power of 2 less
than or equal to p∗i . Since p∗ is monotone, so is q. Hence, q
is `-feasible.

Since EA holds, M(2)(vA) ∈ [ 1
3
M∗,M∗]. Comparing (2)

with (5), we see that every level-` bidder has valuation be-
tween a and b. Thus, q extracts at least half as much revenue
as p∗ from every such bidder. The lemma follows.

Lemma 3.6 Fix an optimal monotone price vector for v,
with revenue M∗. For ` ∈ {1, 2, . . . , log∗ n}, let C∗

` denote
the revenue contributed by level-` bidders, and suppose that

C∗
` ≥

M∗

2 log∗ n
. (6)

If EA and E` hold, then there is an `-feasible price vector for
the training set A of bidders with revenue at least C∗

` /12.

Proof. By Lemma 3.5, there is an `-feasible price vector
q for N that extracts revenue at least C∗

` /2 ≥M∗/4 log∗ n.
We claim that the projection qA of q onto the training set A
satisfies the conditions of the lemma. It certainly inherits
`-feasibility from q.

Going through the bidders of N from 1 to n, we greedily
partition them into minimal intervals of bidders that con-
tribute at least M∗/(24 log∗ n log(`) n) revenue under the
price vector q. (For simplicity, we ignore the final leftover
interval). First, since q is `-feasible, all of its prices are at

most 3M∗/(log(`) n)3, and hence every interval has at least

(log(`) n)2/(72 log∗ n) winning bidders. Second, ignoring for
simplicity the negligible discretization error, by minimality
there are at least 6 log(`) n intervals.

Call an interval constant if every winning bidder pays
the same price under q. Since q is `-feasible, prices are
monotone and are powers of 2 in the range in (2). It fol-

lows that prices change in q at most 3 log(`) n times. Since
there are at least 6 log(`) n intervals, at least half of them
are constant. Every price used by q lies in the range (2)
and hence, since EA holds by assumption, in the range (3).
Since E` holds by assumption and every interval has at least
(log(`) n)2/72 log∗ n winning bidders, A contains at least 1

3
of the winning bidders (under q) of every constant inter-
val. Since half of the intervals are constant and every inter-
val contributes (essentially) the same revenue under q, the
revenue from A under qA is at least 1

6
times that from N

under q.

Lemma 3.7 With the notation and assumptions of Lemma
3.6, and if also the auction RPR chooses L = `, then its
revenue is at least C∗

` /48.

Proof. Let qA denote the optimal `-feasible prices for A
computed by the RPR auction. By Lemma 3.6, the price
vector qA extracts revenue at least C∗

` /12 from A, which
by (6) is at least M∗/(24 log∗ n). Let q denote the extension
of qA to N defined in the fifth step of the RPR auction,
and qB the projection of q onto the test set B.

Analogously to the proof of Lemma 3.6, we greedily parti-
tion the bidders of A into minimal intervals that contribute
at leastM∗/(144 log∗ n log(`) n) revenue under the price vec-

tor qA. There are at least 6 log(`) n intervals, each with at

least (log(`) n)2/(432 log∗ n) winning bidders. Since qA is
`-feasible, at least half of these intervals are constant, in the
sense that all bidders are offered a common price by qA.

Consider a constant interval I of A, with common price qI .
Since EA holds by assumption and qA is `-feasible, the com-
mon price qI in an interval I of A lies in the range (3). Let
i, j be the first and last winning bidders (of A) in I and con-
sider the interval {i, i + 1, . . . , j − 1, j} of N . Then (i, j, qI)
is a level-` triple. Since E` holds by assumption, the test
set B contains at least half as many bidders h ∈ I with
vh ≥ qI as does A. By its definition, q offers every bidder in
{i, i+1, . . . , j−i, j} the price qI . Thus q extracts at least half
as much revenue from the bidders in B∩{i, i+1, . . . , j−i, j}
as in A∩{i, i+1, . . . , j−i, j}. Since half of the intervals of A
are constant and every interval of A contributes (essentially)
the same amount of revenue, the revenue from B under qB

is at least 1
4

times that from A under qA.

3.2.3 Putting It All Together
The gist of the final argument is: for the most impor-

tant levels `, the auction RPR extracts revenue Ω(C∗
` ) when

L = `. Since each value of ` is chosen with probability
≈ 1/ log∗ n, the approximation guarantee of O(log∗ n) fol-
lows.

Proof of Theorem 3.1: Fix a valuation profile v and an op-
timal price vector p∗ achieving revenue M∗ := M(2)(v).
For ` ∈ {1, 2, . . . , log∗ n}, recall that a level-` bidder has
valuation in the range (5), and let C∗

` denote the revenue
contributed by such bidders to M∗ under p∗. Let C∗

0 and
C∗
⊥ denote the contributions of bidders with valuations more

than M∗/(loglog∗ n n)3 and less than M∗/n3, respectively.
Define S = {` ∈ {0, 1, 2, . . . , log∗ n} : C∗

` ≥ M∗/2 log∗ n}
as the set of levels that contribute significant revenue. By
averaging and the fact that C∗⊥ ≤M∗/n2,X

`∈S

C∗
` ≥

M∗

3
.

Let R denote the revenue of the RPR auction on the pro-
file v. Conditioning on the choice of L and using that rev-
enue is always nonnegative, we have

EA,`[R] ≥
X
`∈S

EA[R |L = `] ·Pr[L = `]

=
1

log∗ n + 1

X
`∈S

EA[R |L = `] .

Thus, to complete the proof, we only need to show that
E[R |L = `] = Ω(C∗

` ) for every ` ∈ S.
For non-zero ` ∈ S, since the random choices of A and `

are independent, and since the events EA and E` depend on
the choice of A only, we can write

EA[R |L = `] = EA[R |L = ` ∧ EA ∧ E`] ·Pr[EA ∧ E`] .

Combining Lemmas 3.2 and 3.4 with a Union Bound,
Pr[EA ∧ E`] ≥ 1

32
. Since ` ∈ S, Lemma 3.7 implies that

EA[R |L = ` ∧ EA ∧ E`] ≥ C∗
` /48, and hence E[R |L = `] =

Ω(C∗
` ).

Finally, recall that when L = 0, the RPR auction runs an
auction that is O(1)-competitive with respect to the bench-

mark F (2). Thus, to prove that E[R |L = 0] = Ω(C∗
0 ), we

only need to show that F (2)(v) = Ω(C∗
0 ). Let N0 denote the

bidders with valuation more than M∗/(loglog∗ n n)3, which



is Ω(M∗) by the definition of the log∗ function. If there
is only one bidder i in N0, then offering all bidders the
price p∗i proves that F (2)(v) ≥ C∗

0 = p∗i . (Since p∗ de-

termines M(2)(v), p∗i is at most the second-highest valu-
ation of v and is a legitimate option for the fixed-price
benchmark F (2)(v).) If N0 contains at least two bidders
with q = Ω(M∗) being the second-highest valuation in N0,

then offering all bidders the price q shows that F (2)(v) ≥
2q = Ω(M∗) = Ω(C∗

0 ), which completes the proof.
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