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1 Introduction

We study a model of “selfish routing” first studied in
a theoretical computer science context by Roughgarden
and Tardos [3]. In this model, we are given a directed
network in which each edge possesses a continuous, non-
decreasing latency function that describes the common
delay experienced by all traffic on the edge as a function
of the edge congestion. We assume that each network
user acts selfishly and routes itself from its source to its
desired destination to minimize the latency experienced,
given the network congestion due to the other users. As
in most earlier works, we assume that the traffic com-
prises a large population of users, so that the actions
of a single individual have negligible effect on network
congestion.

There are many senses in which a “selfish” assign-
ment of traffic to paths—a Nash equilibrium—is ineffi-
cient. For example, it is well known that selfish rout-
ing does not minimize the average or maximum latency
experienced by traffic. Previous papers [2, 3] have pre-
cisely quantified how much the average latency of traf-
fic at Nash equilibrium can exceed that of an optimal
routing—the “price of anarchy” with respect to the av-
erage latency.

Less is known about the price of anarchy of selfish
routing relative to the mazimum latency incurred by
network traffic, though some bounds on this quantity
for single-commodity networks are implicit in previous
work [1, 2, 3]. Corollaries of these papers include nearly
tight constant bounds on the price of anarchy w.r.t.
restricted classes of allowable latency functions (such
as bounded-degree polynomials), and a lower bound
of |n/2] for networks with n vertices and arbitrary
continuous, nondecreasing latency functions. Weitz [4]
was the first to explicitly consider the price of anarchy
of selfish routing relative to the maximum latency,
and he proved that the price of anarchy is at least
approximately n/2 in multicommodity networks with
linear latency functions.
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In this note, we prove that for single-commodity
networks with n vertices and arbitrary continuous,
nondecreasing latency functions, the price of anarchy is
precisely n — 1. We thus give both the first finite upper
bound, and a new, optimal lower bound. The finite
upper bound stands in contrast to the price of anarchy
relative to the average latency, which is unbounded even
for two-node two-link networks [3]. We also give two
conjectures (but no results) on the price of anarchy for
multicommodity networks.

2 Preliminaries

The Model. We consider a directed network
G = (V, E) with vertex set V, edge set E, and source-
destination pairs {si,t1},...,{sk,tx}. We denote the
set of s;-t; paths by P;, assume that each such set is
nonempty, and define P = U;P;. A flow is a function
f:P = R*; for a fixed flow f we define the load
fe = 2 p..cp fp. With respect to a finite and positive
traffic rate vector r, a flow f is said to be feasible if
Y pep, fp = ri for all i € {1,2,...,k}. Each edge
e € E is given a load-dependent latency that we denote
by £.(-). We assume that each £, is a nonnegative,
continuous, and nondecreasing function. The latency
of a path P with respect to a flow f is then the sum
of the latencies of the edges in the path, denoted by
Cp(f) = Yecple(fe). We call the triple (G,r,£) an

instance.

Flows at Nash Equilibrium. A flow f feasible for
(G,r,0) is said to be at Nash equilibrium (or is a Nash
flow) if for every ¢ and every two s;-t; paths Py, Py € P;
with fp, > 0, €p,(f) < €p,(f). Briefly, a Nash flow
routes flow on shortest paths, relative to the induced
edge latencies. Also, it is well known that Nash flows
always exist, and that we can assume that Nash flows
are unique and are directed acyclic in single-commodity
networks (see [1, 3]).

Finally, for a flow f, by M (f) we mean the max-
imum latency maxpep. fp>0 £p(f) experienced by net-
work traffic; this is the objective function that we seek
to minimize. For an instance (G,r,{) admitting a flow
f at Nash equilibrium, by pa(G,r,£) we mean the ra-
tio M(f)/M(f*), where f* is a flow feasible for (G, r, )
that minimizes the maximum latency.



3 A Theorem and Two Conjectures

Single-Commodity Instances. We begin by
determining the price of anarchy for the maximum
latency for single-commodity networks, in which all
traffic shares a common source and destination. We first
prove an upper bound on the price of anarchy pas, and
then demonstrate that our bound is the best possible.

THEOREM 1. If (G,r,£) is a single-commodity instance
with n > 2 vertices, then pp(G,r,0) <n —1.

Proof. Let f be a Nagh flow for (G,r,£), f* some other
flow feasible for (G,r,£), and d(v) the shortest-path
distance from s to v w.r.t. edge lengths {£.(f.)}. By
the definition of a Nash flow, all flow paths of f are
shortest s-t paths w.r.t. these edge lengths. Thus, the
common (and hence maximum) latency encountered by
traffic in f is precisely d(t).

Since (G,r,#) is a single-commodity instance, the
Nash flow f can be assumed directed acyclic (see
Section 2), and hence the vertices of G can be sorted
in topological order w.r.t. f. We choose some such
topological ordering in which d(v) is nondecreasing in
the ordering. Such an ordering always exists, since d-
values can only increase along a sequence of edges that
carry f-flow (see also [1]).

We now pick consecutive vertices v,w in the or-
dering that precede (or equal) ¢ and maximize the dif-
ference d(w) — d(v); since d(t) is the sum of at most
n — 1 such differences, the maximum difference is at
least d(t)/(n — 1). Let S be the set of vertices between
s and v, inclusive, in the ordering. The set S is an s-
t cut, and since vertices are sorted topologically w.r.t.
f, no f-flow enters S and hence the amount of f-flow
exiting S is precisely r. The s-t flow f* must send at
least r units of flow out of the cut S, so there must
be an edge e = (u,z) exiting S on which f¥ > f. and
f¥ >0, and hence M(f*) > £.(fF) > £c(f.). Moreover,
since f sends flow on shortest paths with respect to the
induced edge latencies, £.(f.) > d(z) — d(u). Since u
is or precedes v in the ordering, z is or succeeds w in
the ordering, and d-values can only increase with the
ordering, d(z) — d(u) > d(w) — d(v). Thus,

M(f*) 2 Le(fe) 2 d(w) —d(v) > d(t)/(n - 1),
and the proof is complete.

The bound of n—1 in Theorem 1 is the best possible
for all n > 2. To see this, fix n > 2, let G be the
network with vertices vy, ..., v, with s = v; and t = v,
and with two edges, a; and b;, directed from v; to v;4+1
for each i+ = 1,...,n — 1. For each such i, we define
£y, (x) = 1 and £, as some continuous, nondecreasing
function satisfying £, (2=2) = 0 and £,(1) = 1. Then,

n

the flow f that routes one unit of flow on edge b; for all
i is at Nash equilibrium for (G, 1,£) with M (f) =n—1.
On the other hand, the flow f* that routes 1/(n — 1)
units of flow on each of the n — 1 s-t paths of G that
eschew exactly one edge of the form b; is feasible for
(G,1,£) with M(f*) =1.

Multicommodity Instances. While the above lower
bound of n — 1 on the price of anarchy for the maxi-
mum latency trivially carries over to multicommodity
networks, the proof of Theorem 1 relies on the combi-
natorial structure of a single-commodity network. We
leave open the question of finding a finite upper bound
on the price of anarchy for multicommodity networks,
but conjecture that such a bound exists.

CONJECTURE 2. There is a finite-valued bivariate func-
tion g such that for all multicommodity instances
(G,7,0) in which G has at most n > 2 vertices and
m > 1 edges, pp (G, r,L) < g(n,m).

We emphasize that this conjecture asserts that the
price of anarchy is a function only of the network size,
and not of the edge latency functions. No such bound
exists for the average latency, even in single-commodity,
two-node two-link networks [3].

We also make the stronger conjecture that Theo-
rem 1 carries over to multicommodity networks.

CONJECTURE 3. For all multicommodity instances
(G,r,0) with n > 2 vertices, pp(G,r,£) <n —1.

A positive resolution of Conjecture 2 would, in par-
ticular, provide the first upper bound on the severity of
“Braess’s Paradox”—the counterintuitive fact that re-
moving edges from a network can decrease the latency
of all traffic in a Nash flow—in multicommodity net-
works. The worst-case severity of Braess’s Paradox in
single-commodity networks was previously determined
by Roughgarden [1].

A negative resolution of Conjecture 3 would also be
of interest, since it would be the first demonstration that
multicommodity networks are more ill-behaved than
single-commodity networks with respect to a natural
price of anarchy measure. Indeed, it is known that
for the price of anarchy for average latency, no such
separation exists [2].
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