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Abstract. We give several new upper and lower bounds on the worst-case severity of Braess’s
paradox and the price of anarchy of selfish routing with respect to the maximum latency objective. In
single-commodity networks with arbitrary continuous and nondecreasing latency functions, we prove
that this worst-case price of anarchy is exactly n − 1, where n is the number of network vertices.
For Braess’s paradox in such networks, we prove that removing at most c edges from a network
decreases the common latency incurred by traffic at equilibrium by at most a factor of c + 1. In
particular, the worst-case severity of Braess’s paradox with a single edge removal is maximized in
Braess’s original four-vertex network. In multicommodity networks, we exhibit an infinite family of
two-commodity networks, related to the Fibonacci numbers, in which both the worst-case severity
of Braess’s paradox and the price of anarchy for the maximum latency objective grow exponentially
with the network size. This construction demonstrates that numerous known selfish routing results
for single-commodity networks have no analogues in networks with two or more commodities. We
also prove an upper bound on both of these quantities that is exponential in the network size and
independent of the network latency functions, showing that our construction is close to optimal.
Finally, we use our family of two-commodity networks to exhibit a natural network design problem
with intrinsically exponential (in)approximability.
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1. Introduction.

1.1. Selfish routing and the price of anarchy. An important research goal
is to understand when the equilibria of a noncooperative game approximate the ideal
outcome that would be implemented by an all-powerful and altruistic designer. The
most popular approximation measure used for this purpose is the price of anarchy
of a game under a given objective function, which is defined as the worst-case ratio
between the objective function value of a Nash equilibrium of the game and that of
an optimal solution [20, 24].

This paper studies the price of anarchy of selfish routing, a mathematical model
defined by Wardrop [32] to describe how noncooperative agents route traffic in a net-
work with congestion. Formally, the game takes place in a directed multicommodity
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flow network, where each edge possesses a continuous, nondecreasing latency function
that models how the performance of an edge degrades as it becomes increasingly con-
gested. The traffic in the network is assumed to comprise a large number of small
independent network users, so that each individual has negligible impact on the ex-
perience of others. Each user seeks a minimum latency path, given the congestion
imposed by the rest of the traffic. Under this assumption, flows at Nash equilibrium
are naturally defined as the multicommodity flows in which all traffic travels only on
minimum latency paths. As in most noncooperative games, flows at Nash equilibrium
are inefficient, in the sense that they need not optimize natural objective functions.
For the average latency incurred by traffic, the price of anarchy of selfish routing
is well understood, and exact worst-case bounds are known under a wide variety of
assumptions [7, 10, 12, 13, 25, 27, 30].

The first goal of this paper is to study the price of anarchy of selfish routing with
respect to the maximum latency incurred by a user. In a flow at Nash equilibrium in a
single-commodity network, all flow is routed along shortest paths and incurs the same
latency. In contrast, the flow minimizing the average latency can be “unfair,” in that
some users may need to be sacrificed to very costly paths to reduce the congestion
incurred by others [26]. For this reason, it can be more appropriate to compare a flow
at Nash equilibrium to the flow minimizing the maximum latency. In multicommodity
networks, even the flow at Nash equilibrium can be unfair. The best way to compare
different flows is not clear, as different users will have different preferences. The two
most standard objective functions are the average latency and the min-max objective
function considered here. See also Correa, Schulz, and Stier Moses [11] for further
discussion and motivation.

The price of anarchy for the maximum latency objective function turns out to
be closely related to Braess’s paradox, which is the following counterintuitive phe-
nomenon: removing edges from a selfish routing network can decrease the latency
incurred by all of the traffic at equilibrium. Suppose there is a network in which edge
removals can decrease the latency of all traffic by an α factor. Then, α is also a lower
bound on the worst-case price of anarchy for the maximum latency objective: the
equilibrium flow in this network after the edges have been removed is a feasible flow
in the original network with maximum latency at least an α factor smaller than the
flow at Nash equilibrium. Equivalently, an upper bound on the price of anarchy for
the maximum latency objective upper bounds the largest-possible decrease in latency
that can be effected with edge removals. The second goal of this paper is to prove
new upper and lower bounds on the worst-case severity of Braess’s paradox.

1.2. Our results: Single-commodity networks. In analyzing the worst-case
severity of Braess’s paradox in single-commodity networks, Roughgarden [29] proved
that, for every n ≥ 2, removing �n/2� − 1 edges from a single-commodity network
with n vertices can decrease the common latency experienced by all of the traffic by
a factor of �n/2�. Here, we prove that this construction is optimal in the following
sense: for every integer c ≥ 1, the only way to decrease the latency experienced by
traffic by a factor strictly greater than c is to remove at least c edges from the network.
In particular, for a single edge removal, which we prove can only decrease the latency
of all traffic by a factor of 2, no network is worse than Braess’s original four-node
network. Along the way, we give the first combinatorial proof of a useful monotonicity
property of flows at Nash equilibrium.

The construction in [29] immediately implies a lower bound of �n/2� on the
worst-case price of anarchy with the maximum latency objective in n-vertex single-
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commodity networks. We devise a different single-commodity construction that gives
a lower bound of n − 1, and we prove a matching upper bound (for every n ≥ 2)
on the price of anarchy in single-commodity networks with arbitrary continuous and
nondecreasing latency functions. In contrast, no finite upper bound exists for the
price of anarchy with the average latency objective and arbitrary latency functions,
even in networks with only two nodes and two links [30].

1.3. Our results: Multicommodity networks. The rest of our results con-
cern the more challenging setting of multicommodity networks. We establish expo-
nential upper and lower bounds on both the price of anarchy with respect to the
maximum latency and on the worst-possible severity of Braess’s paradox, demon-
strating in the process that both can be much larger in multicommodity networks
than in single-commodity ones. Our two primary results are the following:

• We give a construction, based on the Fibonacci numbers, that shows that re-
moving one edge from a two-commodity network with n vertices can decrease
the latency of all traffic by a 2Ω(n) factor.

• We prove that the price of anarchy with respect to the maximum latency in
networks with k commodities, n vertices, and m edges is 2O(min{kn,m logn}).

The construction that proves the first result implies that for all existing approxima-
tion-type analyses of selfish routing that were known to hold only in single-commodity
networks—in [29] and in this paper—there cannot be any reasonable extension to
multicommodity networks, even those with only two commodities. This dichotomy
between single- and two-commodity networks stands in contrast to the provably ir-
relevant role that the number of commodities plays in the price of anarchy for the
average latency objective [10, 27].

The aforementioned connection between the price of anarchy for the maximum
latency objective and Braess’s paradox implies that our upper and lower bounds on
both the price of anarchy and on the worst-possible severity of Braess’s paradox are
close to tight for networks with a constant number of commodities.

Finally, we consider the problem of detecting and avoiding Braess’s paradox: given
a network, find the subnetwork with the smallest maximum latency. Using our family
of two-commodity networks and ideas from [29] for the single-commodity version of
the problem, we prove that there is no polynomial-time algorithm for this network
design problem with a subexponential approximation ratio (assuming P �= NP ).
Since our upper bound on the price of anarchy trivially implies that an exponential
approximation ratio is achievable, this network design problem is a rare example of a
natural optimization problem with intrinsically exponential approximability.

1.4. Related work. The maximum latency objective has been extensively stud-
ied in a game-theoretic scheduling context, which corresponds to a network of parallel
links and players that control a nonnegligible amount of traffic. Koutsoupias and
Papadimitriou [20] initiated this line of research, and Vöcking in [23, Chapter 20]
surveys it. Weitz [33] was the first to study the price of anarchy of selfish routing
under the maximum latency objective and noted that, for single-commodity networks,
the price of anarchy for the maximum latency is no more than that for the average
latency objective. Weitz [33] also proved that the price of anarchy for the maxi-
mum latency objective is at least approximately n/2 in multicommodity networks
with linear latency functions and a large number of commodities; for an analogous
single-sink example, see [11]. Concurrently with the conference version of some of our
work [28], Correa, Schulz, and Stier Moses [11] studied various fairness objective func-
tions including the maximum latency objective. The results of [11] mostly concern the
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computational complexity of computing an optimal solution and the extent to which
multiple objective functions can be simultaneously optimized for restricted classes of
latency functions; they are disjoint from those presented in this paper. Other studies
of fairness issues in selfish routing networks include [6, 16, 26]. For work on com-
puting or approximating a flow with minimum maximum latency in polynomial time,
see [11, 19] and the references therein.

Braess’s paradox was first presented in [4] and has motivated a vast number of
follow-up papers; see [29] for an overview. The worst-case severity of Braess’s paradox
was first studied in [18] for Braess’s four-node network topology and independently
in [29] for general single-commodity networks.

Finally, subsequent to the conference versions of the present work [21, 22, 28], sev-
eral papers have given upper and lower bounds on the worst-case severity of Braess’s
paradox and the price of anarchy with the maximum latency objective in atomic self-
ish routing networks, where there is a finite number of players who each control a
nonnegligible amount of traffic [1, 2, 5, 8, 14].

1.5. Organization. Section 2 formally defines selfish routing networks and their
equilibria, the price of anarchy, and our measure of the severity of Braess’s paradox.
Sections 3 and 4 consider bounds on the price of anarchy and Braess’s paradox,
respectively, in single-commodity networks. Sections 5 and 6 prove lower and upper
bounds, respectively, on the worst-case severity of Braess’s paradox and the price of
anarchy in multicommodity networks. Section 7 describes a network design problem,
motivated by detecting Braess’s paradox in multicommodity networks, for which the
best-possible approximation ratio of a polynomial-time algorithm is exponential in
the network size (assuming P �= NP ).

2. Preliminaries.

2.1. The model. We study the standard model of selfish routing, with a mul-
ticommodity flow network described by a directed graph G = (V,E) and k source-
destination vertex pairs (s1, t1), . . . , (sk, tk). We denote by ri the amount of traffic
that wishes to travel from the source si to the destination ti—the traffic rate. Single-
commodity networks are those with k = 1. The graph G can contain parallel edges,
but we can exclude self-loops. We denote the si-ti paths of G by Pi and assume that
Pi is nonempty for all i. We use P to denote ∪k

i=1Pi.
A flow is a nonnegative vector indexed by P . By fe we mean the amount of flow

that traverses edge e, which is
∑

P∈P : e∈P fP . By f
(i)
e we mean the amount of flow on

edge e from commodity i, which is
∑

P∈Pi : e∈P fP . With respect to a network G and
a vector r of traffic rates, a flow f is feasible if

∑
P∈Pi

fP = ri for all commodities i.
To model congestion effects, we give each edge e a nonnegative, continuous, non-

decreasing latency function �e describing the time needed to traverse the edge as a
function of the edge congestion fe. Given a flow f , the latency �P of a path P is the
sum of the latencies of the edges in the path: �P (f) =

∑
e∈P �e(fe). We call a triple

of the form (G, r, �) an instance.

2.2. Flows at Nash equilibrium. Assuming that all network users have negli-
gible size and want to minimize the latency experienced, we expect all users to travel
on paths with the minimum-possible latency. We formalize this in the definition of a
flow at Nash equilibrium.

Definition 2.1 (flow at Nash equilibrium [32]). A flow f feasible for (G, r, �)
is at Nash equilibrium, or is a Nash flow, if for every i ∈ {1, 2, . . . , k} and two paths
P1, P2 ∈ Pi with fP1 > 0, �P1(f) ≤ �P2(f).
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Fig. 1. Example 2.2. One unit of selfish traffic travels from s to t. Edges are labeled with their
latency functions. In (a), the flow at Nash equilibrium sends all traffic on the path s → v → w → t,
and the common latency is 2. In (b), the flow at Nash equilibrium splits the traffic between the paths
s → v → t and s → w → t, and the common latency is 3/2.

Example 2.2 (Braess’s paradox [4]). Consider the selfish routing network shown
in Figure 1(a), with one unit of traffic traveling from s to t. In the unique flow at
Nash equilibrium, all traffic uses the path s → v → w → t and incurs 2 units of
latency. In the unique flow at Nash equilibrium in the network in Figure 1(b), the
traffic is split evenly between the two s-t paths and all traffic experiences 3/2 units of
latency. Thus removing the edge (v, w) from the first network decreases the common
latency of traffic in a Nash flow by a 4/3 factor.

If we change the latency functions of edges (s, v) and (w, t) from �(x) = x to
�(x) = xd, then removing the edge (v, w) decreases the latency of traffic by a factor
that approaches 2 as d → ∞.

Under our assumptions that latency functions are continuous and nondecreasing,
Nash flows always exist and all Nash flows of an instance induce the same latency on
every edge.

Proposition 2.3 (existence and uniqueness of Nash flows [3]). Let (G, r, �) be
an instance:

(a) There is at least one Nash flow for (G, r, �).
(b) If f, f̃ are Nash flows for (G, r, �), then �e(fe) = �e(f̃e) for every edge e.
A stronger form of Proposition 2.3(a) holds in single-commodity networks.
Proposition 2.4 (existence of an acyclic Nash flow [29]). In every single-

commodity instance, there is a Nash flow f such that the subgraph of edges with fe > 0
is directed acyclic.

We use Proposition 2.4 in the proofs of Theorems 3.2 and 4.1.
In several proofs (of Theorems 3.2, 4.1, and 6.4), we use the following straight-

forward characterization of the flows at Nash equilibrium of an instance. It expresses
the shortest-path condition of Definition 2.1 in terms of shortest-path distance labels.

Proposition 2.5 (Nash flows via shortest-path labels [29]). Let f be a flow
feasible for the instance (G, r, �). For a vertex v in G and a commodity i, let di(v)
denote the length, with respect to edge lengths �e(fe), of a shortest si-v path in G.
Then f is at Nash equilibrium if and only if for every pair v, w of vertices in G, every
commodity i, and every v-w path P the following hold:

(a) di(w) − di(v) ≤ ∑
e∈P �e(fe); and

(b) if f
(i)
e > 0 for every edge e ∈ P , then di(w) − di(v) =

∑
e∈P �e(fe).
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For example, if f denotes the flow at Nash equilibrium in the network in Fig-
ure 1(a), then the corresponding distance labels are d(s) = 0, d(v) = d(w) = 1, and
d(t) = 2.

2.3. The price of anarchy. The price of anarchy of a game is defined with re-
spect to an objective function. In this paper, we consider the maximum latency M(f)
incurred by a flow f :

M(f) = max
P∈P : fP>0

�P (f).

With respect to an instance (G, r, �), a flow that minimizes M(·) over all feasible flows
is called optimal. Since the feasible flows of an instance form a compact subset of a
Euclidean space and M(·) is a continuous function, every instance admits an optimal
flow.

The price of anarchy of a selfish routing network is the ratio of the objective
function values of a flow at Nash equilibrium and an optimal flow.

Definition 2.6 (price of anarchy). If (G, r, �) is an instance, then the price of
anarchy of (G, r, �), denoted by ρ(G, r, �), is the ratio M(f)/M(f∗), where f is a Nash
flow and f∗ is an optimal flow.

Proposition 2.3 implies that all Nash flows of an instance have the same maximum
latency, and so the price of anarchy of an instance is well defined, provided M(f∗) >
0. If M(f∗) = 0, then f∗ is also a flow at Nash equilibrium and we define the
price of anarchy to be 1. For example, in the first network of Example 2.2, shown
in Figure 1(a), the price of anarchy is 4/3: M(f) = 2 for the Nash flow f , while
M(f∗) = 3/2 for the optimal flow f∗, which splits traffic equally between the paths
s → v → t and s → w → t.

2.4. The Braess ratio. A quantity related to but different from the price of
anarchy is the Braess ratio of a selfish routing network, defined as the largest factor
by which the equilibrium latency of all traffic can be decreased by edge removals. To
define this quantity formally, we use the notation Li(G, r, �) to denote the common
latency of the ith commodity’s traffic in a Nash flow for the instance (G, r, �); by
Proposition 2.3(b), this number is well defined (i.e., independent of the particular
Nash flow).

Definition 2.7 (Braess ratio). The Braess ratio β(G, r, �) of an instance (G, r, �)
is

β(G, r, �) = max
H⊆G

k
min
i=1

Li(G, r, �)

Li(H, r, �)
,

where H ranges over the subnetworks of G that contain an si-ti path for each i.
In Definition 2.7, we interpret the ratio 0/0 as 1. Observe that the Braess ratio of

a multicommodity instance is large only if removing some set of edges decreases the
latency incurred by the traffic of every commodity by a large amount. In a single-
commodity network, Definition 2.7 simplifies to β(G, r, �) = maxH [L(G, r, �)/L(H, r, �)],
where L(·, ·, ·) denotes the equilibrium latency of all traffic in such a network. For
example, in the first network of Example 2.2, the Braess ratio is 4/3.

An upper bound on the price of anarchy of an instance applies immediately to its
Braess ratio.

Proposition 2.8 (price of anarchy upper bounds Braess ratio). For every in-
stance (G, r, �), the Braess ratio β(G, r, �) is at most the price of anarchy ρ(G, r, �).
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Fig. 2. Example 3.1 with n = 4. The worst-case price of anarchy with the maximum latency
objective in single-commodity networks with n vertices is at least n− 1.

Proof. For every subgraph H of G, a flow at Nash equilibrium fH for (H, r, �)
is a feasible flow for (G, r, �). By the definition of the price of anarchy, the maxi-
mum latency of a flow at Nash equilibrium for (G, r, �) is at most a ρ(G, r, �) factor
larger than that of fH . Taking i∗ as a commodity maximizing Li(H, r, �), we have
Li∗(G, r, �) ≤ ρ(G, r, �) · Li∗(H, r, �), and the proof is complete.

3. The maximum latency in single-commodity networks. To begin, we
give matching upper and lower bounds on the worst-case price of anarchy for the
maximum latency objective in single-commodity networks. We start with the lower
bound.

Example 3.1 (lower bound on the price of anarchy in single-commodity networks).
Let n ≥ 2 be an integer. LetG be the network with vertices v1, . . . , vn, with s = v1 and
t = vn, and with two edges, ai and bi, directed from vi to vi+1 for each i = 1, . . . , n−1.
See Figure 2. For each such i, edge ai is given the constant latency function �ai(x) = 1
and edge bi a latency function that satisfies �bi((n − 2)/(n− 1)) = 0 and �bi(1) = 1.
The flow f that routes one unit of flow on edge bi for all i is at Nash equilibrium for
(G, 1, �) with M(f) = n− 1. On the other hand, the flow f∗ that splits traffic evenly
between the n − 1 paths that eschew exactly one edge of the form bi is feasible for
(G, 1, �), with M(f∗) = 1.

Example 3.1 shows that the worst-case price of anarchy in single-commodity in-
stances with n vertices is at least n− 1. This improves over the lower bound of �n/2�
that follows from Proposition 2.8 and the lower bound on the Braess ratio in [29].
The next theorem provides a matching upper bound.

Theorem 3.2 (upper bound on the price of anarchy in single-commodity net-
works). For every n ≥ 2 and every single-commodity instance (G, r, �) with n vertices,
ρ(G, r, �) ≤ n− 1.

Proof. Fix n ≥ 2 and let (G, r, �) be an n-vertex single-commodity instance. Let
f be a Nash flow for (G, r, �), f∗ a feasible flow for (G, r, �), and d(v) the shortest-path
distance from s to v with respect to edge lengths �e(fe), as in Proposition 2.5. That
proposition implies that M(f) = d(t).

Since all Nash flows have equal maximum latency, Proposition 2.4 implies that we
can assume without loss of generality that f is a directed acyclic flow. This implies
that the vertices of G can be sorted s = v1, v2, . . . , vq = t, vq+1, . . . , vn in topological
order with respect to f such that d(v) is nondecreasing in the ordering. To see why,
start from an arbitrary topological ordering and repeatedly swap consecutive vertices
v, w for which d(v) > d(w). Proposition 2.5(b) implies that every such swap yields
another topological ordering of the vertices with respect to f , and after a finite number
of swaps the desired ordering is obtained.

We now pick consecutive vertices v, w that precede or equal t in the ordering and
that maximize the difference d(w) − d(v); since d(t) is the sum of q − 1 ≤ n− 1 such
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differences, the maximum difference is at least d(t)/(n − 1). Let S denote the set of
vertices between s and v, inclusive, in the ordering. The set S is an s-t cut, and since
vertices are sorted topologically with respect to f , no f -flow enters S and hence the
amount of f -flow exiting S is precisely r. The s-t flow f∗ sends at least r units of flow
out of the cut S, so there is an edge e = (u, x) exiting S on which f∗

e ≥ fe and f∗
e > 0.

Hence, M(f∗) ≥ �e(f
∗
e ) ≥ �e(fe) ≥ d(x)−d(u), where the final inequality follows from

Proposition 2.5(a). Since u is or precedes v in the ordering, x is or succeeds w in the
ordering, and d-values can only increase with the ordering, d(x)−d(u) ≥ d(w)−d(v).
Thus,

M(f∗) ≥ �e(fe) ≥ d(w) − d(v) ≥ d(t)

n− 1
,

and the proof is complete.

4. A monotonicity result and Braess’s paradox bounds in single-com-
modity networks. This section gives the first bound on the Braess ratio that is
parameterized by the number of removed edges. Along the way, we give the first
combinatorial proof of an important monotonicity result for Nash flows in single-
commodity selfish routing networks.

Our most general result is that the size of the largest matching of V \{s, t} among
the removed edges controls how much the latency of a Nash flow can decrease.

Theorem 4.1 (parameterized upper bound on Braess’s paradox). Let (G, r, �)
be a single-commodity instance, with G = (V,E). Let H be a subgraph of G and S
be the edges that are in G but not H. If every subset of S that forms a matching
of V \ {s, t} has size as most c, then

L(G, r, �) ≤ (c+ 1) · L(H, r, �).

We immediately obtain the promised upper bound that is parameterized by the
number of removed edges. This upper bound was first conjectured by Kameda [17].

Corollary 4.2 (bounding Braess’s paradox with limited edge removals). If
(G, r, �) is a single-commodity instance and H is obtained from G by removing at
most c edges, then

L(G, r, �) ≤ (c+ 1) · L(H, r, �).

Theorem 4.1 also gives a new proof of one of the main results in [29].
Corollary 4.3 (bounding Braess’s paradox with unlimited edge removals [29]).

If (G, r, �) is a single-commodity instance with n vertices, then

β(G, r, �) ≤
⌊n
2

⌋
.

Proof. Since there are only n− 2 nodes in G that are not s or t, every matching
of V \{s, t} contains at most �(n− 2)/2� = �n/2�−1 edges. Theorem 4.1 now implies
the corollary.

A family of networks described in [29] shows that Theorem 4.1 and Corollaries 4.2
and 4.3 are tight in the worst case for all values of c ≥ 1 and n ≥ 2.

We now turn toward proving Theorem 4.1. We begin with a definition.
Definition 4.4 (light and heavy edges; alternating paths). Let f and f̃ be flows

feasible for the instances (G, r, �) and (G, r̃, �), respectively:



BOUNDS ON BRAESS’S PARADOX AND THE MAXIMUM LATENCY 1675

(a) An edge e of G is (f, f̃)-light if fe ≤ f̃e and f̃e > 0, (f, f̃)-heavy if fe > f̃e,
and (f, f̃)-null if fe = f̃e = 0.

(b) An undirected path is (f, f̃)-alternating if it comprises only forward light edges
and backward heavy edges.

When the context is clear, we drop the dependence on f and f̃ for the terms in
Definition 4.4.

Example 4.5 (an alternating path). Let f be the Nash flow and f̃ be the optimal
flow in Figure 1(a). Then, edges (s, v), (v, w), and (w, t) are (f, f̃)-heavy while edges
(s, w) and (v, t) are (f, f̃)-light. The unique (f, f̃)-alternating s-t path is s → w →
v → t.

We now prove that an s-t alternating path exists when comparing one flow to
another at the same or an increased traffic rate.

Lemma 4.6 (existence of alternating paths). Let f and f̃ be flows feasible for
the single-commodity instances (G, r, �) and (G, r̃, �), respectively, with r ≤ r̃. Then,
there is an (f, f̃)-alternating s-t path. Moreover, if f is directed acyclic, then every
such path begins and ends with an (f, f̃)-light edge.

Proof. Suppose for contradiction that there is no (f, f̃)-alternating s-t path, and
let S denote the set of nodes reachable from s via such paths. The set S contains s
and, by assumption, does not contain t; it is therefore an s-t cut. Since the same net
amount of s-t flow crosses every s-t cut of a flow network, we have

(1)
∑

e∈δ+(S)

fe −
∑

e∈δ−(S)

fe = r

and

(2)
∑

e∈δ+(S)

f̃e −
∑

e∈δ−(S)

f̃e = r̃,

where δ+(S) is the set of edges exiting S and δ−(S) is the set of edges entering S.
Since vertices in S can be reached from s via (f, f̃)-alternating paths and vertices

outside S cannot, edges that exit S are heavy or null. In addition, one such edge is
heavy, since otherwise the left-hand side of (1) would be nonpositive. Similarly, edges
that enter S are light or null. These observations imply that the left-hand side of (1)
is strictly greater than that of (2), contradicting the fact that r ≤ r̃.

Moreover, if f is directed acyclic, then it sends no flow into s or out of t. Thus,
the first and last edges of every (f, f̃)-alternating s-t path are light.

To prepare for the proof of Theorem 4.1, we first prove an orthogonal monotonicity
result that is interesting in its own right. An intuitive but far from obvious fact is
that the latency encountered by traffic in a Nash flow can only increase as we inject
new traffic into the system (recall that edge latency functions are nondecreasing).
It was first proved by Hall [15], in a more general multicommodity network setting,
using techniques for sensitivity analysis of convex programs. Here, we give a direct
and combinatorial proof. The proof techniques will be directly useful in our proof of
Theorem 4.1.

Theorem 4.7 (equilibrium latency is nondecreasing in the traffic rate [15]). For
every network G with one source-destination pair and latency functions �, the value
L(G, r, �) is nondecreasing in r.

Proof. Let f and f̃ be Nash flows for (G, r, �) and (G, r̃, �), respectively, with
r ≤ r̃. For a vertex v, let d(v) and d̃(v) denote the shortest-path distances from s
to v with respect to edge lengths �e(fe) and �e(f̃e), respectively. These are the same
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shortest-path distance labels as in Proposition 2.5. By definition, L(G, r, �) = d(t)
and L(G, r̃, �) = d̃(t). The proposition asserts that d(t) ≤ d̃(t).

We prove the stronger result that d(v) ≤ d̃(v) for all vertices v of an arbitrary
(f, f̃)-alternating s-t path P . At least one such path exists by Lemma 4.6. We proceed
by induction. For the base case, d(s) = d̃(s) = 0. Suppose that d(v) ≤ d̃(v) for some
vertex v on P , and let w be the next vertex on P . There are now two cases.

First, suppose that edge e = (v, w) is (f, f̃)-light. Then, �e(fe) ≤ �e(f̃e) and
f̃e > 0. Since f and f̃ are Nash flows, Proposition 2.5 and the inductive hypothesis
imply that

d(w) ≤ d(v) + �e(fe) ≤ d̃(v) + �e(f̃e) = d̃(w).

Now suppose that edge e = (w, v) is (f, f̃)-heavy. Since fe > 0 and f is a Nash
flow, Proposition 2.5 implies that

(3) d(v) = d(w) + �e(fe).

Similarly, for f̃ we have

(4) d̃(v) ≤ d̃(w) + �e(f̃e).

Since d(v) ≤ d̃(v) by the inductive hypothesis, and �e(f̃e) ≤ �e(fe) since e is (f, f̃)-
heavy, equation (3) and inequality (4) are compatible only if d(w) ≤ d̃(w). This
completes the inductive step and the proof of the theorem.

Finally, we show how a refinement of the proof of Theorem 4.7 proves Theorem 4.1.
Proof of Theorem 4.1. Let f and f̃ be an acyclic Nash flow and a Nash flow for

(G, r, �) and (H, r, �), respectively; the former exists by Proposition 2.4. We view f̃ as
a flow in the larger network G in the obvious way. As in the proof of Theorem 4.7, let
d and d̃ denote shortest-path distances with respect to the edge latencies induced by
f and f̃ in G and H , respectively. This proof must differ from that of Theorem 4.7,
as f̃ is a Nash flow in H but not in G.

Let P be an (f, f̃)-alternating s-t path, which exists by Lemma 4.6. A segment
of P is a maximal subpath of P that contains only (f, f̃)-light or only (f, f̃)-heavy
edges. Edges that are in G but not in H are called absent. Since f̃e > 0 on (f, f̃)-light
edges, absent edges can only reside in (f, f̃)-heavy segments. The key claim is that
if v is a vertex at the end of a segment of P and c (heavy) segments of P between s
and v contain an absent edge, then

(5) d(v) ≤ d̃(v) + c · d̃(t).
This claim implies the theorem. To see why, first apply (5) to t to obtain

d(t) ≤ d̃(t) + c · d̃(t) = (c+ 1) · d̃(t),
where c is the number of segments of P that include an absent edge. This inequality
reduces the proof of the theorem to exhibiting c absent edges that form a matching of
V \ {s, t}. By Definition 4.4 and Lemma 4.6, (f, f̃)-heavy segments of P are disjoint
from each other and from s and t. Picking one absent edge from each (f, f̃)-heavy
segment that contains one provides the desired matching.

We now prove (5) by induction on the segments of P . The inequality trivially
holds when v = s, so suppose it holds for a vertex v that is last on a segment of P
or is equal to s. We wish to prove (5) for w, defined as the last vertex on the next
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segment. If no edges in the segment between v and w are absent, then (5) holds by
the arguments in the penultimate or the final paragraph of the proof of Theorem 4.7,
depending on whether the segment contains light or heavy edges, respectively.

Since absent edges can only be heavy, we can finish the proof by establishing the
inductive hypothesis when the segment between v and w comprises heavy backward
edges, at least one of which is absent. First, since fe > 0 on all of these edges,
Proposition 2.5(b) implies that d(w) ≤ d(v). Since the path P begins with a light
edge (Lemma 4.6), v �= s and there is a light edge entering v. Since f̃ routes flow
into v, it must route flow from v to t. By Proposition 2.5(b), d̃(v) ≤ d̃(t). Combining
what we know with the inductive hypothesis completes the proof:

d(w) ≤ d(v) ≤ d̃(v) + c · d̃(t) ≤ (c+ 1) · d̃(t) ≤ d̃(w) + (c+ 1) · d̃(t).

5. Braess’s paradox in multicommodity networks. This section proves
that there is a “phase transition” in the worst-case severity of Braess’s paradox be-
tween single-commodity networks, where the Braess ratio is always polynomial in the
network size, and multicommodity networks, where the Braess ratio can be exponen-
tial in the network size, even with only two commodities. This construction is also
the starting point for our inapproximability results in section 7.

Our family of two-commodity instances is closely related to the Fibonacci num-
bers, where the pth Fibonacci number Fp is defined as F0 = 0, F1 = 1, and Fp =
Fp−2 + Fp−1 for p ≥ 2. It is well known that Fp ≈ c · φp as p → ∞, where c ≈ 0.4472
and φ ≈ 1.618 is the golden ratio. Our main result in this section is the following.

Theorem 5.1 (exponential lower bound in two-commodity networks). There is
an infinite family {(Gp, rp, �p)}∞p=1 of instances with the following properties:

(a) (Gp, rp, �p) has two commodities and O(p) vertices and edges as p → ∞;
(b) for p odd, L1(G

p, rp, �p) = Fp−1 + 1 and L2(G
p, rp, �p) = Fp;

(c) for p even, L1(G
p, rp, �p) = Fp + 1 and L2(G

p, rp, �p) = Fp−1;
(d) for every p, there is a subgraph Hp of Gp with one less edge than Gp that

satisfies L1(H
p, rp, �p) = 1 and L2(H

p, rp, �p) = 0.
Theorem 5.1 has a number of implications. We first note two immediate corollar-

ies.
Corollary 5.2. Removing a single edge from an n-vertex two-commodity in-

stance can decrease the latency of all traffic by a 2Ω(n) factor as n → ∞.
Corollary 5.3. The worst-case price of anarchy in two-commodity instances

with at most n vertices is 2Ω(n) as n → ∞.
These corollaries obviously apply also to networks with more than two commodi-

ties.
Theorem 5.1 and Corollaries 5.2 and 5.3 show that Theorem 3.2 and Corollaries 4.2

and 4.3 utterly fail to extend to multicommodity networks. This dichotomy stands in
contrast to bounds on the price of anarchy for the average latency objective function,
where there is provably no separation between single-commodity and multicommodity
instances [27].

We now give the construction of the family of instances claimed in Theorem 5.1.
We begin by defining the graph Gp for p ≥ 1; see Figure 3. We describe the construc-
tion only for odd p; the construction for even p is almost the same. We begin with
two paths, which we will call P1 and P2. The (p+3)-vertex path P2, drawn vertically
in Figure 3, is s2 → w0 → w1 → · · · → wp → t2. The (p + 4)-vertex path P1, drawn
horizontally in Figure 3, is s1 → a → w1 → v1 → · · · → vp → t1. We also add the
following edges between the two paths: (a, wi) for all positive even i; (vi, wi) for all
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Fig. 3. The instance (Gp, rp, �p) when p = 7 without the “extra edge” (s1, w0). Solid edges
carry flow at Nash equilibrium; dotted edges do not. Edge latencies are with respect to the Nash
flow. Unlabeled edges have zero latency.

positive even i; (s2, vi) for all odd i at most p− 2; and (wi, vi) for all odd i. Finally,
we complete Gp by adding what we call an extra edge, defined as the edge (s1, w0).

For all p, the traffic rates are rp1 = rp2 = 1. To complete the construction, we need
to describe the edge latency functions. All edges possess either a constant latency
function, or a latency function that approximates a step function. Precisely, for a
positive integer i and a positive real number δ, giδ denotes a continuous, nondecreasing
function with giδ(x) = 0 for x ≤ 1 and giδ(x) equal to the ith Fibonacci number Fi

for x ≥ 1 + δ. (The function giδ can be defined arbitrarily on (1, 1 + δ), provided it is
continuous and nondecreasing.)

For i ∈ {0, 1, . . . , p − 1}, we define the edge ei to be (wi, wi+1) if i is even and
(vi, vi+1) if i is odd. The latency functions �p for Gp are, for some sufficiently small δ
as follows: for each i > 0, edge ei receives the latency function �p(x) = giδ(x); edge e0
receives the latency function �p(x) = g1δ (x); edge (s1, a) receives the latency function
�p(x) = 1; and all other edges receive the latency function �p(x) = 0.

We now prove Theorem 5.1 for odd p; the arguments for even p are almost iden-
tical. Part (a) is obvious. Part (d) is easy to see: if Hp is obtained from Gp by
removing the extra edge (s1, w0) and f is the flow that routes one unit on both P1

and P2, then f is at Nash equilibrium for (Hp, rp, �p), showing that L1(H
p, rp, �p) = 1

and L2(H
p, rp, �p) = 0. See Figure 3.

To finish the proof of Theorem 5.1 (for p odd), we prove part (b) via a sequence
of lemmas. The first one requires some definitions. We say that a flow f , feasible for
(Gp, rp, �p), floods the instance if fei ≥ 1 + δ for all i ∈ {0, 1, . . . , p − 1}. If f floods
(Gp, rp, �p), then all edge latencies are at their maximum, as in Figure 4. Next, for
i even and positive, Qi denotes the s1-t1 path that uses edge ei as a “short cut”:
s1 → a → wi → wi+1 → vi+1 → · · · → vp → t1. The path Q0 has the same form,
except vertex a is skipped via the extra edge: s1 → w0 → w1 → v1 → · · · → vp → s1.
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Fig. 4. Nash flow in (Gp, rp, �p), with p = 7. All edges carry flow. Edge latencies are with
respect to the Nash flow. Unlabeled edges have zero latency.

For i odd, Qi denotes the s2-t2 path that uses edge ei as a “short cut”: s2 → vi →
vi+1 → wi+1 → · · · → wp → t2. The paths Q0, . . . , Qp−1, together P1 and P2, are
short paths. The next lemma justifies this terminology, at least for flows that flood
the instance (Gp, rp, �p).

Lemma 5.4. If f floods (Gp, rp, �p) with p odd, then the following hold:
(a) �P (f) ≥ Fp−1 + 1 for every s1-t1 path P , and equality holds for short paths;
(b) �P (f) ≥ Fp for every s2-t2 path P , and equality holds for short paths.
We prove only part (b) of Lemma 5.4, as the proof of part (a) is similar. In the

proof, we use the following lemma about the Fibonacci numbers, which is easy to
verify by induction.

Lemma 5.5. Let j and p be odd positive integers with j < p and I be the even
numbers between j and p. Then, Fj +

∑
i∈I Fi = Fp.

Proof of Lemma 5.4. Let P be an s2-t2 path. Let j be the largest odd number
such that ej ∈ P , or 0 if there is no such number. We can assume that j > 0, since
the j = 0 and j = 1 cases are the same. Since j > 0 is maximal, P contains ej and
also ei for all even i that are strictly between j and p. Since f floods (Gp, rp, �p),
Lemma 5.5 implies that �P (f) ≥ Fp. Moreover, this inequality holds with equality
for short paths.

Our final lemma states that routing flow on short paths suffices to flood the
instance (Gp, rp, �p). For the statement of the lemma, recall that the parameter δ
controls how rapidly the nonconstant latency functions of (Gp, rp, �p) increase as the
amount of flow on the edge exceeds 1.

Lemma 5.6. For all p odd and δ sufficiently small, there is flow f , with fP > 0
only for short paths P , which floods (Gp, rp, �p).

Proof. Define the flow f as follows. First, for i = 0, 1, . . . , p−1, route 2−(i+1) units
of flow (of the appropriate commodity) on the short path Qi. This routes strictly less
than one unit of flow of each commodity. The remaining flow is then routed on the
short paths P1 and P2. To complete the proof, we show that fei ≥ 1 + δ for every



1680 H. LIN, T. ROUGHGARDEN, É. TARDOS, AND A. WALKOVER

i ∈ {0, 1, . . . , p− 1}, provided δ is sufficiently small. We prove this inequality only for
odd i; the argument for even i is very similar.

The second commodity uses edge ei only in the short path Qi, on which it routes
2−(i+1) units of flow. The first commodity uses edge ei in all of its flow paths except
for the short paths Qj for j even and greater than i. The total amount of flow on ei
is more than

(6) 2−(i+1) +

⎛
⎝1−

∞∑
j=0

2−(i+2+2j)

⎞
⎠ = 1 + 2−(i+1) − 4

3
· 2−(i+2) > 1 + 2−(i+3).

Thus, as long as we choose δ ≤ 2−(p+3), f floods (Gp, rp, �p), and the proof is com-
plete.

Theorem 5.1(b) now follows immediately from Definition 2.1, Lemma 5.4, and
Lemma 5.6.

6. Upper bounds on the price of anarchy in multicommodity networks.
This section proves upper bounds on the price of anarchy and, as a consequence, on
the worst-possible severity of Braess’s paradox. Our upper bound comes close to the
lower bound of Theorem 5.1.

We begin with a weak bound on the price of anarchy that depends on parameters
other than the network size. While not interesting in its own right, it plays an
important role in later proofs in this section.

Lemma 6.1. Let f be a Nash flow and f∗ be a feasible flow for an instance
(G, r, �), where G has m edges. For every edge ê of G with fê > f∗

ê ,

(7) �ê(fê) ≤ m
∑k

i=1 ri
fê − f∗

ê

·max
e∈E

�e(f
∗
e ).

Proof. Let F ⊆ E denote the edges e of G for which fe > f∗
e . The definition of a

flow at Nash equilibrium easily implies that
∑

e∈E �e(fe)(f
∗
e − fe) ≥ 0; see also [31].

Proceeding crudely, for ê ∈ F we have

�ê(fê)(fê− f∗
ê ) ≤

∑
e∈F

�e(fe)(fe− f∗
e ) ≤

∑
e∈E\F

�e(fe)(f
∗
e − fe) ≤ max

e∈E
�e(f

∗
e ) ·m ·

k∑
i=1

ri.

Rearranging proves the lemma.
We next use Lemma 6.1 as a bootstrap for deriving upper bounds on the price

of anarchy that depend only on the network size. We accomplish this as follows. For
an arbitrary instance, we set up a linear program, with edge latencies as variables,
that maximizes the price of anarchy among instances that are “basically equivalent”
to the given instance. We define our notion of equivalence so that Lemma 6.1 ensures
that the linear program has a bounded maximum and then analyze the vertices of the
feasible region of the linear program to derive the following bound.

Theorem 6.2 (upper bound #1 on the price of anarchy). If (G, r, �) is an
instance with n vertices and m edges, then ρ(G, r, �) = 2O(m logn).

To implement this proof approach, we need a proposition that bounds the max-
imum size of the optimal value of a linear program with a constraint matrix with
entries in {−1, 0, 1}.

Proposition 6.3. Let A be an m×n matrix with entries in {−1, 0, 1} and at most
λ nonzero entries in each row. Let b be a real-valued m-vector and let i ∈ {1, 2, . . . , n}.
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If the linear program maxxi subject to Ax ≤ b and x ≥ 0 has a finite maximum, then
it is at most nλn‖b‖∞, where ‖b‖∞ denotes maxj |bj |.

Proof. Basic linear programming theory ensures that there is an optimal solu-
tion x∗ to the linear program that is a vertex of the feasible region. (See, e.g., [9].)
Since there are n decision variables, the vertex x∗ is the unique solution to a square
linear system of the form Cx = z, where C is an n× n matrix of constraints (from A
and the identity matrix I) and z is the corresponding n-vector of entries from b and
of zeros (from the nonnegativity constraints). Using Cramer’s rule to compute the
solution and expanding determinants, each component of x∗ is, at worst, the sum
of λn nonzero terms, each of magnitude at most ‖b‖∞. The proposition follows.

Proof of Theorem 6.2. Let (G, r, �) be an instance with n vertices and m edges.
Let f and f∗ be Nash and optimal flows for (G, r, �), respectively. We aim to show
that ρ(G, r, �) = 2O(m logn).

We first preprocess the instance (G, r, �). First, if fe = f∗
e = 0 for some edge e,

then that edge can be removed from the instance without affecting its ρ-value. We
can therefore assume that f∗

e > 0 or fe > 0 for every edge e. Second, we can assume
that �e(0) = 0 whenever f∗

e = 0. To see why, note that replacing the latency function
�e(x) of such an edge by the function equal to (e.g.) min{x/fe, 1} · �e(x) leaves the
Nash flow unaffected while only decreasing the minimum-possible maximum latency
and hence increasing the ρ-value of the instance. Combining these two assumptions,
we can assume, without loss of generality, that �e(f

∗
e ) ≤ M(f∗) for every edge e of G:

either f∗
e = 0 and hence �e(f

∗
e ) = 0 ≤ M(f∗), or f∗

e > 0 and hence �e(f
∗
e ) ≤ M(f∗).

We now set up a linear program that attempts to further transform the latency
functions to make the ρ-value of the given instance as large as possible. In the linear
program, the flow amounts {fe}e∈E and {f∗

e }e∈E , as well as the latencies {�e(f∗
e )}e∈E

with respect to f∗, are held fixed. There is a nonnegative variable �̂e(fe) representing
the latency of edge e with respect to the flow f . So that the new latency functions are
nondecreasing, we impose the following linear constraints, which we call monotonicity
constraints:

• for all edges e with fe ≤ f∗
e , �̂e(fe) ≤ �e(f

∗
e );

• for all edges e with fe ≥ f∗
e , �̂e(fe) ≥ �e(f

∗
e ).

Additionally, we insist that the (fixed) flow f be at Nash equilibrium with respect to

the (variable) latencies {�̂e(fe)}e∈E . There are several ways that this requirement can
be encoded with linear constraints. For the present proof, we use a naive approach:
in our linear program, we insist that

∑
e∈P

�̂e(fe) ≤
∑
e∈P̃

�̂e(fe)

for every commodity i, and every pair of paths P, P̃ ∈ Pi for which f
(i)
e > 0 for all

e ∈ P . Since this linear program has only m variables, we will not be hampered by
its potentially massive number of constraints.

By construction, our constraints ensure the following: for every feasible solu-
tion {�̂e(fe)}e∈E , there is an instance (G, r, �̂) with continuous, nondecreasing latency

functions �̂, so that these latency functions interpolate their two prescribed values
and f is a Nash flow for (G, r, �̂). Consider the problem of maximizing the value of

a single variable �̂e(fe) over the feasible region. Our key claim is that the resulting
linear program is not unbounded. For edges e with fe ≤ f∗

e , the claim is obvious
from the monotonicity constraints. For edges e with fe > f∗

e , the claim follows from
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Lemma 6.1 and the fact that all parameters on the right-hand side of the bound (7)
are fixed in the linear program.

Since the maximum of the above linear program is bounded, we can apply Propo-
sition 6.3. In our linear program, there are a total of m variables, of which each
constraint contains at most 2n. The right-hand side of each constraint is either a 0 or
a term of the form �e(f

∗
e ). By our preprocessing step, �e(f

∗
e ) ≤ M(f∗) for all edges

e. Hence, Proposition 6.3 implies that the maximum of the linear program is at most
mnO(m) · M(f∗). Hence, returning to the original instance (G, r, �), we must have
�e(fe) ≤ mnO(m) ·M(f∗) for all edges e. Since a flow path of f can contain only n
edges, we can conclude that ρ(G, r, �) ≤ nmnO(m) = 2O(m logn).

When the number of commodities is small, we can obtain a nearly optimal bound
of 2O(kn). We obtain the bound by applying Proposition 6.3 to an alternative linear
program written in terms of distance variables that correspond to the lengths of
shortest paths with respect to the edge lengths {�̂e(fe)}e∈E .

Theorem 6.4 (upper bound #2 on the price of anarchy). If (G, r, �) is an
n-vertex, k-commodity instance, then ρ(G, r, �) = 2O(kn).

Proof. To prove our bound, we start with the linear program from the proof
of Theorem 6.2. We leave the monotonicity constraints the same but change the
constraints that ensure that f is a Nash equilibrium with respect to the edge laten-
cies {�̂e(fe)}e∈E . The point of this change is to bring the number λ of variables in
each constraint down to a constant.

We introduce an auxiliary variable d̂i(v) for each commodity i and for each vertex
v reachable from that commodity’s source si, which represents the length of the
shortest path from si to v with respect to the latencies {�̂e(fe)}e∈E . We use the
following constraints:

• d̂i(si) = 0 for every commodity i;

• d̂i(v) = d̂i(u)+ �̂e(fe) for every commodity i and edge e = (u, v) with f
(i)
e > 0;

• d̂i(v) ≤ d̂i(u) + �̂e(fe) for every commodity i and edge e = (u, v).
We first prove that the feasible region of this linear program faithfully encodes

the edge latencies for which f is a Nash equilibrium and then show how to reduce
the number of variables of the linear program. Consider edge latencies {�̂e(fe)}e∈E

for which f is at Nash equilibrium. We can extend these into a feasible solution to
the linear program as follows: for each commodity i and vertex v reachable from si,
take d̂i(v) to be the shortest length of an si-v path with respect to these latencies.
Conversely, consider a feasible solution to the linear program. The constraints ensure
that, for every commodity i and path P ∈ Pi, the latency

∑
e∈P �̂e(fe) of this path

is at least d̂i(ti); and this lower bound holds with equality if f
(i)
e > 0 for every

e ∈ P . By Proposition 2.5, f is at Nash equilibrium with respect to the edge latencies
{�̂e(fe)}e∈E . Thus, maximizing the value of �̂e(fe) over this feasible region yields the
largest edge latency possible for e subject to f being at Nash equilibrium with respect
to the computed edge latencies (and subject to the monotonicity constraints).

Currently, our linear program has O(m + kn) variables. To reduce this number,

we show how to eliminate the latency variables. For an edge e = (u, v) with f
(i)
e > 0,

d̂i(v) = d̂i(u) + �̂e(fe) and we can replace every occurrence of �̂e(fe) in our linear

program with d̂i(v) − d̂i(u). For every other edge e (with fe = 0 and f∗
e > 0), �̂e(fe)

may as well be fixed to its largest feasible value, �e(f
∗
e ) (which is at most M(f∗)).

With these substitutions, we have not changed the optimal value of our linear program,
and we are left with only O(kn) variables. Moreover, there is still a constant number
of variables per constraint, and the magnitude of each entry of b is still bounded by
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M(f∗). Proceeding as in the proof of Theorem 6.2, we can apply Proposition 6.3 and
upper bound the price of anarchy of the original instance (G, r, �) by 2O(kn).

7. Exponential inapproximability for network design. In this section, we
show that a natural network design problem motivated by Braess’s paradox has intrin-
sically exponential approximability. The problem, which we call Multicommodity

Network Design (MCND), is as follows:

Given an instance (G, r, �), find a subgraph H of G that minimizes maxi Li(H, r, �).

For single-commodity instances, the best-possible polynomial-time approximation ra-
tio (assuming P �= NP ) was shown to be �n/2� in [29], where n denotes the number
of network vertices.

The trivial algorithm is defined as the algorithm that always returns the entire
graphG. Theorems 6.2 and 6.4 imply that the trivial algorithm is a 2O(min{kn,m logn})-
approximation algorithm for MCND. Our main result in this section uses our lower
bound construction in section 5 to show that the MCND problem is approximation-
resistant, in the sense that no significantly better polynomial-time approximation
algorithm exists (assuming P �= NP ).

Theorem 7.1 (exponential inapproximability for detecting Braess’s paradox).
Assuming P �= NP , there is no 2o(n)-approximation algorithm for MCND.

Proof. The idea of the reduction is to start with an instance (Gp, rp, �p) of the
form described in Theorem 5.1, and to replace the extra edge (s1, w0) with a collection
of parallel edges representing an instance I = {a1, . . . , aq} of the NP -hard problem
Partition, where the feasible solutions are defined as the subsets S ⊆ {1, 2, . . . , q}
for which

∑
i∈S ai =

1
2

∑q
i=1 ai. We give these parallel edges latency functions that

simulate “capacities,” with an edge representing an integer aj of I receiving capacity
aj . The proof has three parts. First, if too many of these parallel edges are removed
from the network, there is insufficient capacity remaining to send flow cheaply. To
implement this, we also give capacities to the other edges of (Gp, rp, �p). Second,
if too few of the parallel edges are removed, the excess of capacity results in a bad
flow at Nash equilibrium similar to that of Figure 4. Finally, these two cases can be
avoided if and only if I is a “yes” instance of Partition, in which case removing the
appropriate collection of parallel edges results in a network that admits a good flow
at Nash equilibrium similar to that of Figure 3.

Formally, consider an instance I = {aj}qj=1 of Partition, with each aj a positive
integer. By scaling, there is no loss of generality in assuming that each aj is a multiple
of a large number R (say R = q2). Let G denote the graph Gp from the construction in
Theorem 5.1, where p ∈ {q, q+1} is odd, except with the extra edge (s1, w0) replaced
by q edges e1, e2, . . . , eq. We call these the parallel edges of G. Label the s1-t1 short
paths P1, Q

1
0, . . . , Q

q
0, Q2, Q4, . . . , Qp−1 and the s2-t2 short paths P2, Q1, Q3, . . . , Qp−2.

A good flow in G has the following form: a total of A/2 units of flow are routed
on the paths Q1

0, . . . , Q
q
0, and R units of flow are routed on every other short path

(where R = q2). We set the traffic rates r1, r2 so that a good flow is feasible for them
(so r1 = A

2 +R(p+ 1)/2 and r2 = R(p+ 1)/2). Note that every good flow routes the
same amount of traffic on a nonparallel edge e; denote this amount by ge.

Also, for a nonparallel edge e, let he denote the difference between the amount
of flow routed on e in the proof of Lemma 5.6 (Figure 4) and in the proof of Theo-
rem 5.1(d) (Figure 3). Recall the following properties: he ≤ 1 for every nonparallel
edge e; he > 0 for every edge of the form ei (as shown in (6)); and he < 0 for every
nonparallel edge not of the form ei.
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We define the network latency functions as follows, for a sufficiently small con-
stant δ:

• The parallel edge ej is given a latency function � with �(x) = 0 for x ≤ aj−δ;
�(aj) = 1; and �(x) = Fp for x ≥ aj + δ.

• An edge of the form ei is given a latency function � with �(x) = 0 for x ≤
ge + he − δ; �(ge + he) = Fi; and �(x) = Fp for x ≥ ge + he + δ.

• Every other edge is given a latency function � with �(x) = 0 for x ≤ ge; and
�(x) = Fp for x ≥ ge + δ.

These latency functions can be defined arbitrarily outside the prescribed regions,
subject to continuity and monotonicity. The capacity of an edge of the first type is aj ;
the other edges’ capacities are defined analogously. We call an edge oversaturated by
a flow if the amount of flow on it exceeds its capacity by δ or more, in which case the
maximum latency of the flow is at least Fp. The instance (G, r, �) can be constructed
in time polynomial in the size of the Partition instance I.

The following two statements imply the theorem:
(i) If I is a “yes” instance of Partition, then G admits a subgraph H with

L1(H, r, �) = 1 and L2(H, r, �) = 0.
(ii) If I is a “no” instance, then maxi=1,2 Li(H, r, �) ≥ Fp for every subgraph H

of G.
To prove (i), suppose that I admits a partition, with

∑
j∈S aj = A/2 for some

S ⊆ {1, 2, . . . , q}. Obtain H from G by deleting all parallel edges ej with j /∈ S. Let f
denote the corresponding good flow in H , with aj units of flow routed on path Qj

0 for
each j ∈ S. The latencies of all edges are the same as in Figure 3, with all remaining
parallel edges (ej with j ∈ S) having latency 1. Thus f is a flow at Nash equilibrium
for (H, r, �), which shows that L1(H, r, �) = 1 and L2(H, r, �) = 0.

For statement (ii), we first claim that if H omits any nonparallel edge, then
every feasible flow in H oversaturates some edge and hence has maximum latency
at least Fp. The basic reason for this is the following: edge capacities ensure that
every flow which oversaturates no edge routes at most max{0, he} + δ ≤ 1 + δ more
units of flow than a good flow on every nonparallel edge; and removing a nonparallel
edge destroys some short path, thereby forcing at least R units of flow to be rerouted
relative to a good flow. For example, suppose H omits some edge incident to s2. This
reduces the total edge capacity incident to s2 to at most 1

2 (p− 1)(R+1), whereas the
traffic rate r2 is 1

2 (p+1)R. Assuming R is sufficiently large and δ is sufficiently small,
every feasible flow then oversaturates an edge incident to s2. Analogous arguments
show that every nonparallel edge removal inevitably leads to an oversaturated edge.

Now suppose that H omits only parallel edges. Since I is a “no” instance and
all aj ’s are multiples of R, the total capacity of the remaining edges incident to s1 is
either strictly more or strictly less than r1 = A

2 + R(p + 1)/2 by at least R. In the
latter case, a capacity argument again shows that every feasible flow oversaturates
some edge incident to s1.

For the final case, in which the total capacity of the parallel edges in H is A′ ≥
A
2 +R, we explicitly define a flow f at Nash equilibrium for (H, r, �) with the same edge
latencies as in Figure 4, with all remaining parallel edges having zero latency with
respect to f . Intuitively, we define f as follows: we begin with a good flow g, with the
flow on the parallel edges split in proportion to their capacities; then, we take one unit
of flow off of P1 and P2 and replace it with the (bad) flow at Nash equilibrium shown
in Figure 4, again splitting the additional flow on the parallel edges in proportion to
the edge capacities. Precisely, we set fe = ge + he for every nonparallel edge e; and
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for every parallel edge ej of H , we set

fej =
aj
A′ ·

(
A

2
+ hsw0

)
,

where hsw0 is the flow on the extra edge (s, w0) in the proof of Lemma 5.6. Since
A′ ≥ A

2 + R, fej ≤ aj − δ for large enough R and small enough δ, so the latency of
edge ej is 0. Thus, f is a feasible flow for (H, r, �) with edge latencies precisely as in
Figure 4; it is therefore at Nash equilibrium and proves that L2(H, r, �) ≥ Fp.

Acknowledgment. We thank Hisao Kameda for sharing his conjecture (Corol-
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[23] N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani, eds., Algorithmic Game Theory,
Cambridge University Press, Cambridge, UK, 2007.

[24] C. H. Papadimitriou, Algorithms, games, and the internet, in Proceedings of the 33rd Annual
ACM Symposium on Theory of Computing (STOC), 2001, pp. 749–753.

[25] G. Perakis, The “price of anarchy” under nonlinear and asymmetric costs, Math. Oper. Res.,
32 (2007), pp. 614–628.

[26] T. Roughgarden, How unfair is optimal routing?, in Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2002, pp. 203–204.

[27] T. Roughgarden, The price of anarchy is independent of the network topology, J. Comput.
System Sci., 67 (2003), pp. 341–364.

[28] T. Roughgarden, The maximum latency of selfish routing, in Proceedings of the 15th Annual
Symposium on Discrete Algorithms (SODA), 2004, pp. 973–974.

[29] T. Roughgarden, On the severity of Braess’s Paradox: Designing networks for selfish users
is hard, J. Comput. System Sci., 72 (2006), pp. 922–953.
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