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Abstract

We consider a single multi-server memoryless service station. Servers have heteroge-
neous service rates. Arrivals are routed to one of the servers, and the routing decisions
are not based on the queue lengths. We consider two criteria for routing selection: the
(Nash) equilibrium, under which each customer minimizes his own mean waiting time,
given the behavior of the others; and social optimization, where the routing minimizes
the average mean waiting time across all arrivals. The ratio between the social costs
of these two routings is called the price of anarchy (PoA). We show that the PoA is
upper bounded by the number of servers used in the socially optimal outcome. We
also show that this bound is tight.

1 Introduction

We consider a single multi-server service station with a number of not necessarily identical
servers. We assume that customers’ costs are their expected waiting times, and that the
time in service is part of the waiting time. Each customer selects a server, and no further
information (such as the queue lengths upon arrival) is given. We assume a never-ending
stream of arrivals which follows a Poisson process, and exponentially-distributed (server-
dependent) service times. We assume that steady-state conditions have been reached, and
in particular that the arrival rate is smaller than the total service rate.

Selfish customers choose a server to minimize their own mean waiting times, ignoring the
social consequences of their actions. As a point of comparison, we also consider the outcome
that directs customers to servers to minimize the average mean waiting time. Naturally,
the outcome reached by selfish customers—a (Nash) equilibrium—need not coincide with
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the socially optimal one. We measure this inefficiency via the price of anarchy (PoA) [7, 8],
defined as the ratio between the average mean waiting times of the (unique) equilibrium
and of the socially optimal outcome. The PoA is by definition at least 1. A PoA close to 1
indicates that the equilibrium is approximately socially optimal, and thus the consequences
of selfish behavior are relatively benign.

Our goal is to understand when the PoA in a multi-server exponential service station is
reasonably small. On the negative side, previous work by Friedman [5] shows that if the
number of servers can be arbitrarily large, then the PoA can also be arbitrarily large. On
the positive side, the PoA is 1 when servers are homogeneous; this is implicit in [3]. Also,
Roughgarden [9] showed that the PoA is upper bounded by a small constant in stations
in which the equilibrium outcome leaves a constant fraction of the capacity of each server
unused.

Our main result is that the PoA is small in exponential service stations with a bounded
number of servers, even when service times are heterogeneous and an arbitrarily large fraction
of the server capacities are used. Specifically, we show that the PoA in such stations is upper
bounded by the number of servers used in the socially optimal outcome. We also give a family
of examples achieving a matching lower bound.

We conclude with brief comments on additional related work. Our model can be viewed
as a special case of the traffic routing model that is often referred to as “traffic equilibria”
(see e.g. [11]) or “selfish routing” (see e.g. [10]). While the PoA in this general model has
been extensively studied, the only results on the PoA in exponential multi-server stations
are those discussed above. Also, although different terminology is used, Koutsoupias and
Papadimitriou [7] study a multi-server system. However, they consider a finite number of
players, each controlling a non-negligible fraction of the arriving traffic. They also define the
social cost to be the maximum individual cost, whereas we consider the average player cost.
For surveys of more recent work in this model, see [2, 4].

2 The Model and Preliminaries

Suppose there are n exponential servers who man a single service station. Let µi be the service
rate of server i, 1 ≤ i ≤ n. Assume without loss of generality that µ1 ≥ µ2 ≥ · · · ≥ µn > 0.
For convenience assume that µn+1 = 0. Denote

∑i
j=1 µj by µ(i). There is a single Poisson

arrival process with rate λ. To guarantee stability, we assume that λ < µ(n).

2.1 Equilibrium

Suppose customers wish to minimize their mean waiting time and select a line to join ac-
cordingly. They do not observe the actual queue lengths at the time of deciding which line to
join. Customers are allowed to randomize regarding their choice of servers. Thus, each line
corresponds to a pure strategy and every distribution over the lines is a mixed (randomized)
strategy.
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We adopt the solution concept of a symmetric Nash equilibrium under steady-state con-
ditions. Specifically, suppose all customers decide to join line i with probability pi, 1 ≤ i ≤ n.
Under the resulting steady-state conditions, the arrival rate to a server i is Poisson with rate
λpi and the mean waiting time is 1/(µi − λpi). The mixed strategy {pi}n

i=1 is a symmetric
Nash equilibrium if when all customers follow this strategy, no customer can decrease its
mean waiting time by unilaterally deviating to a different strategy.

In a symmetric Nash equilibrium, the mean waiting times in all utilized servers are
identical and their common value is smaller than or equal to the mean service time of each
idle server. Bell and Stidham [1] (see also [6, P.63]) show that at equilibrium, the only servers
that are used are the first ie servers, where

ie = min

{
i ≥ 1 : µi+1 ≤

µ(i) − λ

i

}
. (1)

Moreover, the Poisson arrival rate to server i, denoted here by λe
i , is λe

i = µi − (µ(ie) − λ)ie.
The common mean waiting time in queues 1 through ie is

W e =
ie

µ(ie) − λ
(2)

and the total social cost per unit of time equals

Le = λ
ie

µ(ie) − λ
. (3)

The social cost under equilibrium behavior is therefore a function only of the number of and
the sum of the service rates of the used servers.

Equation (1) implies that ie is non-decreasing in λ. We also require the answer to the
inverse question: for a given integer m ≤ n what is the infimum value for λ such that the
first m servers are used at equilibrium? Denote this value by λmin

e (m). Equation (1) implies
that

λmin
e (m) = µ(m−1) − µm(m− 1), 1 ≤ m ≤ n. (4)

To see this, note that equation (1) gives

λmin
e (m) = min{λ ≥ 0 : µi+1 ≥

µ(i) − λ

i
, 1 ≤ i ≤ m− 1}.

Since µi is nondecreasing in i, this inequality holds for all i ∈ {1, 2, . . . ,m − 1} if and only
if it holds for i = m− 1. This implies (4). As expected, λmin

e (m) is nondecreasing in m.

Remark 2.1 With one server with service rate µ(ie), the common mean waiting time would
be 1/(µ(ie) − λ), a 1/ie fraction of (2). This increase in the mean waiting time is a function
only of the number ie of used servers, and not a function of how the µ(ie) total service rate
is partitioned among these servers. Nonetheless, as we will see below, the PoA depends on
the partition in the total capacity.
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This phenomenon is also reminiscent of the following fact about queue splitting. Suppose
instead of one server with an arrival rate of λ and a service rate of µ, there are n servers
such that the arrival rate and service rate at each server i ∈ {1, 2, . . . , n} are, respectively,
piλ and piµ for some positive probabilities {pi}n

i=1 with
∑n

i=1 pi = 1. Let ρ = λ/µ. Then,
for any choice of pi’s, all servers are utilized at the level of ρ and the mean queue length in
each is ρ/(1 − ρ), as in the single queue. This implies that the total mean number in the
system after the split is n times larger than the original mean and likewise, by Little’s Law,
the mean waiting time is n times larger than the corresponding mean before the split. Note
also that the social cost after such a split coincides with the social cost under equilibrium (3)
if all n servers are used in the equilibrium outcome.

2.2 Social Optimization

Every symmetric mixed strategy leads to a set of arrival rates {λi}n
i=1 to the servers. The

search for a socially optimal symmetric strategy is therefore equivalent to solving the follow-
ing mathematical program:

min
λ1,...,λn

n∑
j=1

λj

µj − λj

subject to the constraints
∑n

j=1 λj = λ and 0 ≤ λj < µj for all j ∈ {1, 2, . . . , n}. Bell and
Stidham [1] showed that, in an optimal solution, the first is servers are used, where

is = min

{
i ≥ 1 : µi+1 ≤

(µ(i) − λ)2

(
∑i

j=1

√
µj)2

}
. (5)

Moreover, the socially optimal arrival rate λs
i to each server i ≤ is is

λs
i = µi −

√
µi

β
, (6)

where

β =

∑is
j=1

√
µj

µ(is) − λ
.

The corresponding socially optimal policy is for each customer to join server i, 1 ≤ i ≤ is,
with probability λs

i/λ, and to join the other servers with probability zero. Finally, the mean
waiting time in the utilized server i equals

W s
i = β/

√
µi, 1 ≤ i ≤ is. (7)

In particular, the mean waiting time is smaller in the fast servers who nevertheless receive
more traffic than the slow servers. This should be compared with the equilibrium criterion in
which mean waiting times in all utilized servers are identical. Note also that the utilization
levels λs

i/µi = 1− 1/(β
√

µi), for 1 ≤ i ≤ is, are higher at the faster servers.
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The social cost (mean number in the system) under the socially optimal behavior, denoted
by Ls, is Ls =

∑is
i=1 λs

iW
s
i where λs

i and W s
i are defined as in (6) and (7), respectively. This,

after minimal algebra, equals

Ls =
(
∑is

i=1

√
µi)

2

µ(is) − λ
− is . (8)

Note that the socially optimal cost is a function only of the number of used servers, and of
the sum and the sum of the square roots of the service rates of these servers.

Equation (5) implies that is is non-decreasing in λ. Let λmin
s (m) denote the infimum

value of λ such that the first m servers are utilized in the socially optimal outcome. We then
obtain

λmin
s (m) = µ(m−1) −

√
µm

m−1∑
j=1

√
µj, 1 ≤ m ≤ n (9)

via the same argument used to establish (4). Comparing (4) and (9), we see that λmin
e (m) ≥

λmin
s (m) for all m ∈ {1, 2, . . . , n}. It follows that ie ≤ is.

Remark 2.2 Starting from socially optimal behavior as a point of departure, customers
will migrate from queues with high mean waiting times to queues with smaller mean wait-
ing times—from servers with high indices to those with lower indices. In particular, this
may cause some servers that are used in the socially optimal outcome to become empty in
the equilibrium. There are thus two related reasons that the PoA can be large: (1) over-
congestion at faster servers; and (2) servers which are slower but socially useful may stay
idle with selfish behavior.

3 Main Results

Our main results are that the price of anarchy in every multi-server exponential service
station is upper bounded by the number of servers, and that no better upper bound is
possible. The following lemma, which considers the special case of service stations in which
the socially optimal and equilibrium outcomes use the same set of servers, is crucial for our
upper bound proof.

Lemma 3.1 In a multi-server exponential service station in which both the socially optimal
and the equilibrium outcomes use the same number m of servers, the price of anarchy is at
most m.

Proof: By definition, the PoA is Le/Ls, where Le and Ls are defined as in (3) and (8),
respectively. Assume that ie = is = m—i.e., that the socially optimal and equilibrium
outcomes both use precisely the first m servers. We can assume that m > 1, as otherwise
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the PoA is clearly 1. The PoA is then

Le

Ls
= λie

µ(is) − λ

µ(ie) − λ

( is∑
i=1

√
µi

)2

− is(µ(is) − λ)

−1

=
λm

(
∑m

i=1

√
µi)2 −m(µ(m) − λ)

. (10)

First, note that the socially optimal and equilibrium outcomes, along with the ratio of
their social costs (3) and (8), remain unchanged if all service and arrival rates are scaled
by a common positive value. We can therefore assume, without loss of generality, that
µ(m) = 1. Second, the expression (10) is strictly decreasing in λ, and λ ≥ λmin

e (m) by
definition. Combining our expression (4) for λmin

e (m) with (10) then gives

Le

Ls
≤ m(1−mµm)

(
∑m

i=1

√
µi)2 −m2µm

. (11)

Our next goal is to maximize the right-hand side of (11) where the decision variables µi,
1 ≤ i ≤ m, are constrained so that µ1 ≥ µ2 ≥ · · · ≥ µm ≥ 0 and

∑m
i=1 µi = 1.

We claim that the optimal solution is of the form µi = µm for 2 ≤ i ≤ m and µ1 =
1 − (m − 1)µm. To see this, fix a value for µm; since µ1 ≥ · · · ≥ µm ≥ 0 and

∑m
i=1 µi = 1,

we have µm ≤ 1/m. Now maximize the right-hand side of (11) with respect to the other
variables µ1, µ2, . . . , µm−1. This optimization problem is equivalent to minimizing

∑m−1
i=1

√
µi

subject to µ1 ≥ µ2 ≥ · · · ≥ µm and
∑m−1

i=1 µi = 1 − µm. Since this is minimizing a strictly
concave function over a convex set, the optimal solution is on the boundary, which in this
case implies that µ2 = µ3 = · · · = µm−1 = µm and µ1 = 1− (m− 1)µm.

Maximizing the right-hand side of (11) thus reduces to maximizing the following single
variable objective:

m(1−mµm)

1− (3m− 2)µm + 2(m− 1)
√

µm(1− (m− 1)µm)
.

Finally, trivial algebra shows that

1−mx ≤ 1− (3m− 2)x + 2(m− 1)
√

x(1− (m− 1)x)

for every x ∈ [0, 1/m], which proves that the PoA (10) is at most m. �

We next show that the bound m derived in Lemma 3.1 is applicable also when more
servers are used in the socially optimal outcome than in the equilibrium one. Thus, in a
multi-server service station with n servers, the price of anarchy is at most n.

Theorem 3.1 In every multi-server exponential service station, the price of anarchy is at
most the number of servers used in the socially optimal outcome.
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Proof: Recall from Subsection 2.2 that the number of servers is used in the socially optimal
outcome can only be greater than the number ie used by the equilibrium outcome. Suppose
that ie < is = m. Define augmented service rates µ′

j as follows: µ′
j = µj for j /∈ {ie +

1, . . . ,m}, and

µ′
j =

µ(ie) − λ

ie
, ie + 1 ≤ j ≤ m.

The definition of these augmented service rates ensures that the equilibrium outcome is
unaffected: the rates of the unused servers are increased to the largest value at which cus-
tomers still do not switch to a server with an index ie + 1 or higher. Thus, Le (the social
cost under equilibrium) is not changed but Ls (the social cost under optimal behavior) has
been reduced due to the improvement in the service capacities. In particular, these capacity
augmentations increase the PoA. We can therefore prove the theorem by showing that the
PoA is at most m in the augmented service station.

Now consider slightly increasing the arrival rate λ to the augmented service station. At
equilibrium, the added flow of jobs is evenly spread among servers 1, . . . , is, making the
number of used servers equal to the number m of such servers in the optimal outcome. Of
course, this infinitesimal change in λ has only infinitesimal effects on both Le and Ls—
formally, Le and Ls are both continuous functions of λ. We can therefore conclude that the
PoA of the augmented multi-server service station is bounded above by the PoA of a service
station in which the socially optimal and equilibrium outcomes both use the same m servers.
Lemma 3.1 then implies that the PoA of the augmented service station is at most m, which
completes the proof of the theorem. �

We conclude with an example that demonstrates that our upper bound of n in The-
orem 3.1 is the best possible. In other words, we show that for every n ≥ 1, there are
multi-server exponential service stations with n servers and PoA arbitrarily close to n.

Example 3.1 Fix n ≥ 1, an arrival rate λ > n, and a constant ε > 0, let µ1 = λ + 1 + ε
and µi = 1 + ε for i ∈ {2, . . . , n}. In the equilibrium outcome, all customers choose the first
server, and

Le =
λ

1 + ε
. (12)

Now consider assigning customers to servers so that λ1 = λ − n + 1 and λi = 1 for every
i ∈ {2, . . . , n}. The mean number in the n queues in this outcome upper bounds Ls from
above and equals

λ− n + 1

n + ε
+ (n− 1)

1

ε
. (13)

Now divide (12) by (13) and take λ to infinity. For each fixed n ≥ 1 and ε > 0, the limit of
this ratio is (n + ε)/(1 + ε). This expression can be made arbitrarily close to n by choosing
the constant ε > 0 to be sufficiently small. Hence, there are n-server service stations with
PoA arbitrarily close to n, and the upper bound in Theorem 3.1 is optimal.
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