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Abstract

The goal of this paper is to identify fundamental limitations on how efficiently algorithms imple-
mented on platforms such as MapReduce and Hadoop can compute the central problems in the motivat-
ing application domains, such as graph connectivity problems.

We introduce an abstract model of massively parallel computation, where essentially the only restric-
tions are that the “fan-in” of each machine is limited to s bits, where s is smaller than the input size n,
and that computation proceeds in synchronized rounds, with no communication between different ma-
chines within a round. Lower bounds on the round complexity of a problem in this model apply to every
computing platform that shares the most basic design principles of MapReduce-type systems.

We prove that computations in our model that use few rounds can be represented as low-degree
polynomials over the reals. This connection allows us to translate a lower bound on the (approximate)
polynomial degree of a Boolean function to a lower bound on the round complexity of every (random-
ized) massively parallel computation of that function. These lower bounds apply even in the “unbounded
width” version of our model, where the number of machines can be arbitrarily large. As one example
of our general results, computing any non-trivial monotone graph property — such as connectivity —
requires a super-constant number of rounds when every machine receives only a sub-polynomial (in n)
number of input bits s.

Finally, we prove that, in two senses, our lower bounds are the best one could hope for. For the
unbounded-width model, we prove a matching upper bound. Restricting to a polynomial number of
machines, we show that asymptotically better lower bounds would separate P from NC1.

1 Introduction

The past decade has seen a resurgence of parallel computation, and there is now an impressive array of
frameworks built for working with large datasets: MapReduce, Hadoop, Pregel, Giraph, Spark, and so
on. The goal of this paper is to identify fundamental limitations on how efficiently these frameworks can
compute the central problems in the motivating application domains, such as graph connectivity.

Modern architectures for massively parallel computation share a number of common attributes. First,
the data, or the input to the computation, is partitioned arbitrarily across all of the nodes participating in
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the computation. Second, computation proceeds in synchronous rounds. In every round, each machine
looks at the local data available and performs some amount of computation without communicating with
other machines. After the computation is done, a communication round begins, where each machine can
send messages to other machines. Importantly, there are no restrictions on the communicating pairs — the
communication pattern can be arbitrary and input-dependent. Once the communication phase is over, a new
round begins. For example, for readers familiar with the MapReduce framework, the computation corre-
sponds to the reduce phase, the designation of addressees to the map phase, and the actual communication
to the shuffle phase.

Most previous work has focused on designing efficient algorithms for these systems. To that end, a
number of models for MapReduce and its variants have been proposed; see Section 1.2 for a complete list
and a detailed comparison to the present work. Since these works aspire to realizable positive results, their
models aim to be faithful to a specific system, and often involve a number of system-dependent parameters
and constraints that govern the algorithmic design space.

In this work, motivated by the rapidly changing landscape of the systems deployed in practice and in
search of impossibility results, we take a different approach. Instead of looking for a faithful model for the
system du jour, we extract the most fundamental constraints shared by all of these models and examine the
consequent restrictions on feasible computations. By focusing on a single parameter, namely the input size
for each machine, and a single benchmark, the number of rounds of computation, we obtain parameterized
lower bounds that apply to every computing framework, present or future, that shares the same design
principles.

1.1 Summary of Contributions

Our first contribution is the definition of the s–SHUFFLE model of massively parallel computation, which
captures the core properties common to all modern parallel processing systems. Why do we need yet another
model of parallel computation? There is a long tradition in theoretical computer science of using one
(reasonably realistic) computational model to design algorithms for a problem and a second (stronger and
less realistic) model to prove lower bounds. For example, in the field of streaming algorithms, ideal upper
bounds are for algorithms that make one pass over the input and use small space and minimal processing
time, while lower bounds are usually derived in the (stronger) communication complexity model [2]. In the
study of data structures, positive results take care to quantify preprocessing time and query time in addition
to space, while space-time trade-offs are typically derived from lower bounds in the extremely powerful
cell-probe model [44]. The point of the s–SHUFFLE model is to act as an ultra-powerful model of parallel
computation, akin to the communication complexity and cell-probe models, in which lower bounds are
unassailable.

Conceptually, computation in the s–SHUFFLE model proceeds in synchronous rounds. In each round,
each machine performs an arbitrary computation on its input and sends arbitrary information to arbitrary
machines in the next round, subject only to the constraint that each machine receives at most s bits each
round. In the most powerful unbounded-width version of our model, where the number of machines is
unlimited, the only restriction is that the “fan-in” of each machine is limited to s bits, where s is a parameter
smaller than the input size n (unlimited extra space can be used for computations on these inputs).

Second, we prove that computations in the s–SHUFFLE model that use few rounds can be represented
as low-degree polynomials over the reals. Specifically, we prove that if a function can be computed by such
a computation with fan-in s per machine in r rounds (even with unbounded width), then the function has a
polynomial representation with degree at most sr (Theorem 3.1). In particular, computing a function with
a polynomial representation of degree n requires dlogs ne rounds. This lower bound implies, for example,

2



that computing such a function with s = nε per machine requires 1/ε rounds in our model. Similarly, if s
is only polylogarithmic, then Ω(log n/ log logn) rounds are needed. Our lower bounds also extend, with a
constant-factor degradation, to randomized computations.

Are there super-constant lower bounds on the number of rounds required to compute natural functions
when the fan-in s is polynomial in n, such as s =

√
n? Our third contribution is a proof that, in two

senses, our lower bounds are the best one could hope for. For the unbounded-width model, our lower
bound is completely tight, as every function can be computed in at most dlogs ne rounds. But what if only
a polynomial number of machines are allowed? Here, we show that better lower bounds require proving
very strong circuit lower bounds. Specifically, any lower bound asymptotically larger than Θ(logs n) for a
function in P would separate NC1 from P , a notorious open question in circuit complexity (Theorem 6.1).

Fourth, by relating MapReduce-type computations to polynomials, we can apply the sophisticated tool-
box known for polynomials to reason about these computations. As one example, by combining the Rivest-
Vuillemin solution to the Aanderaa-Rosenberg conjecture [37] with known relationships between decision
tree complexity and polynomial degree, we obtain a lower bound of approximately 1

2 logs n on the number
of rounds required for deciding any non-trivial monotone graph property, where n is number of vertices and
the input is given as the characteristic vector of the graph’s edge set (Theorem 4.3).

Finally, we develop new machinery for proving lower bounds on the polynomial degree of Boolean
functions, and hence on the round complexity of massively parallel computations. While tight polynomial
degree bounds are of course known for many Boolean functions, we prove new (tight) lower bounds for
graph problems, including undirected ST-CONNECTIVITY (Theorem 5.5). These degree lower bounds imply
lower bounds of roughly 2 logs n on the round complexity of connectivity problems in any conceivable
MapReduce-type system, even when the width is unbounded (Corollaries 5.4, 5.6, 5.8, and 5.10).

1.2 Related Work

The MRC model and its precursors. MapReduce was introduced as a system for large scale data pro-
cessing by Dean and Ghemawat [10]. Karloff et al. [24], inspired in part by Feldman et al. [15], introduced
a computational model specially for MapReduce-type computations. This model is called MRC and it iden-
tified the number of synchronous rounds as the key metric for comparing different algorithms. Furthermore,
they limited the amount of parallelism allowed in the model, insisting that it be not too small, by restricting
the memory of each machine to be sublinear in the input, but also not too large, by restricting the total
number of machines to be sublinear in the input as well. They showed how to simulate a subclass of EREW
algorithms in MRC, but left open the question of whether all NC languages can be simulated. Goodrich et
al. [19] further extended these simulation results and gave MRC algorithms for sorting and searching.

The MRC model in [24] only placed upper bounds on the number of machines and the space available
on each, limiting both to n1−ε for an input of size n and some fixed ε > 0. Goodrich et al. [19] were
the first to focus on the total input to each machine, the key parameter of the model of the present work.
This measure was subsequently adopted by several authors in proving upper bounds on the space-round
trade-offs in these computations, and this parameter has been variously called memory, space, and key-
complexity [3, 6, 17, 29, 35]. The algorithmic tools and techniques developed for efficient computation
in this model include notions of filtering [29], multi-round sampling [14, 28], and coresets [4, 31], among
others. Recently Fish et al. [16] introduced a uniform version of MRC, and proved strict hierarchy theorems
with respect to the computation time per processor.

Valiant’s bulk-synchronous parallel (BSP) model [41] anticipated many of the features of MapReduce-
type computations. Computation in the BSP model proceeds in “supersteps,” analogous to rounds in the
MRC model, with each processor sending and receiving at most h messages between rounds (so h cor-
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responds to our fan-in parameter s). Positive results in the BSP model generally focus on minimizing a
combination of delays from synchronization and the amount of computation time performed. One interest-
ing exception is the work of Goodrich [18], who gave asymptotically matching upper and lower bounds on
the number of supersteps for sorting in the BSP model. The lower bound in [18] uses a reduction to sorting
from computing the logical OR function, and adapts an argument from Cook et al. [9] for “ideal PRAMs”
to prove a lower bound of Ω(logh n), where n is the input length. This lower bound is analogous to our
warm-up result in Corollary 4.1, where we prove a tight lower bound of dlogs ne on the number of rounds
need to compute the OR function (among others) in our model.

Lower bounds for MapReduce-type computations. Most of the known lower bounds for explicit func-
tions in models of massively parallel computation concern either communication (with a fixed number
of rounds) or restricted classes of algorithms (for round lower bounds). Pietracaprina et al. [35] prove
non-trivial lower bounds for matrix multiplication in a limited setting, which requires computing all el-
ementary products (and specifically excludes Strassen-like algorithms). Similar kinds of limitations are
required by [22] and [6] to prove lower bounds for a list ranking problem and relational query processing,
respectively. Bilardi et al. [7] prove tight lower bounds on the fan-in required to compute the Fast Fourier
Transform in a restricted BSP model, where the computation conforms to a directed acyclic graph on the
operations to be performed. Finally, both Beame et al. [6] and Afrati et al. [1] study, for a fixed number of
rounds (usually a single round), space-communication trade-offs.

In distributed computing, the total amount of communication is often the most relevant complexity
measure. For example, Woodruff and Zhang [43] and Klauck et al. [25] identify models and problems for
which there is no algorithm that beats the communication benchmark of sending the entire input to a single
machine. Because massively parallel systems are designed to send a potentially large amount of data in a
single round, such communication lower bounds do not generally imply lower bounds for round complexity.
For example, in practice, matrix multiplication is regarded as an “easy” problem in MapReduce — indeed,
MapReduce was invented for precisely such computations (see e.g. [30]) — even though its solution requires
total communication proportional to the size of the matrix.

We next compare and contrast our s–SHUFFLE model with several other parallel and distributed compu-
tational models that have been studied.

Congested clique. The “congested clique” model is the special case of the CONGEST model [34] in
which each pair of machines is connected by a direct link (see [13] and the references therein). The original
motivation for this model was the design and analysis of distributed algorithms, but it is also relevant to
massively parallel computation. In the most commonly studied version of the model, n machines with
unlimited computational power communicate in synchronized rounds. Each machine initially holds some
number m of input bits, and in each round each machine can send a (different) message of w bits to every
other machine. (Typically, w = Θ(log n).) Thus, the number nw of bits that a machine can send and receive
in each round automatically scales linearly with the number of machines.

In our model, we allow the number s of bits that a machine can receive in a given round to be sublinear
in the total number of machines. In this sense, our model is weaker than the congested clique model (when
s = o(n)).1 On the other hand, MapReduce-type systems differ from distributed settings in that there is little
motivation for restricting the amount of point-to-point communication in a round. In our model, a machine
can receive all s of its bits in a round from a single other machine. In this sense, our model is stronger than

1For a simple example, suppose the machines want to compute the logical OR of their nm input bits. In the congested clique
model, this problem can be solved in 1 round. In our model, when the parameter s is less than n, more than 1 round is required.
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the congested clique model (when s = ω(w)). Hegeman and Pemmaraju [20] show that congested clique
computations can be simulated by MapReduce computations (in the model in [24]), albeit with space-per-
machine proportional to the communication-per-machine in the congested clique computation. As already
noted, the latter generally scales with the number of machines, while we are generally interested in space-
per-machine smaller than this.

Drucker et al. [13] forge an interesting connection between congested clique computations and circuits.
In analogy with our “barrier” result in Section 6, they prove a simulation result implying that even slightly
super-constant lower bounds on the round complexity of congested clique computations for a problem in
NP would imply better circuit size-depth trade-offs for such problems than are currently known (for un-
bounded fan-in circuits with unweighted threshold gates or with mod-m gates, e.g. m = 6).2

Circuits with medium fan-in. Another related model is “circuits with medium fan-in” — arbitrary gates
with fan-in that scales with, but is smaller than, the input size — introduced recently in [21]. Our model is
stronger than the one in [21], with the most significant difference being that the communication pattern in
our model can be input-dependent. Our round complexity lower bounds imply depth lower bounds for the
model in [21]. The focus of [21] is on circuit size (rather than depth), so the lower bounds and barriers to
lower bounds identified in [21] appear incomparable to ours.

Ideal PRAMs. The much older model of “ideal CREW PRAMs” is also highly relevant to our unbounded-
width model. In this model, which was introduced in [9], there is an unbounded number of processors with
unbounded computational power and a shared memory. Computation proceeds in synchronous rounds.
Each round, each processor can read a single memory cell and write to a single memory cell, subject to
the constraint that at each time step at most one processor can write to any given memory cell. Perhaps
the most intriguing result in [9] is a parallel algorithm that computes the logical OR function (and, through
reductions, many other functions) in strictly fewer than log2 n rounds. The key idea in this result is to
implicitly transmit extra information by not writing to a memory cell. This potential “power of staying
silent” is exactly what makes our lower bounds in Section 3 interesting and non-trivial. Cook et al. [9] also
prove a lower bound of Ω(log n) on the number of rounds required to compute the OR function (and many
others). This lower bound translates (via a simulation argument) to a lower bound of the form Ω(s−1 log n)
in our model (in [9] each processor reads only one cell in each round, while in our model each machine
receives s bits per round). This implied lower bound is non-trivial only when s = o(log n), and our lower
bound of Ω(logs n) is asymptotically superior for all super-constant s.

The work of [9] also inspired Nisan [32] to introduce the fundamental concept of the “block sensitivity”
of a Boolean function (the logarithm of which characterizes the ideal PRAM round complexity, up to a con-
stant factor), which in turn is polynomially related to the decision tree complexity, degree, and approximate
degree of the function [32, 33]. Our results in Section 4 rely on this circle of ideas.

Finally, our technique of characterizing parallel computations as polynomials resembles the work of
Dietzfelbinger et al. [11], who used related ideas to sharpen the lower bound in [9] by a constant factor for
many Boolean functions.3

2To match our barrier in Section 6 and resolve NC1 vs. P using the techniques in [13], it seems necessary to prove logarithmic
(rather than just super-constant) round lower bounds for congested clique computations.

3More broadly, variations of “the polynomial method” have been used previously to prove lower bounds in many fields of
complexity theory, including circuit complexity [36, 40] and quantum query complexity [5].
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2 The s-Shuffle Model

Section 2.1 develops intuition for our computational model by presenting an example, and highlights some
ways in which MapReduce-type computations differ from traditional circuit computations. Section 2.2
formally defines the s–SHUFFLE model. Section 2.3 presents the slightly more general s–SHUFFLE(Σ)
model and proves that it is powerful enough to simulate MapReduce computations. Only Section 2.2 is
essential for understanding most of the rest of the paper.

2.1 A Warm-Up Example

Before formally defining our model, we study a specific example, adapted from Nisan and Szegedy [33]. The
first purpose of this example is to introduce the reader to the abstract s–SHUFFLE model in a concrete way.
The second is to build an appreciation for the lower bounds in Sections 3–5 by illustrating the cleverness
possible in a parallel computation.4

Example 2.1 (Silence Is Golden) Consider the Boolean function E12 : {0, 1}3 → {0, 1} on three inputs
which evaluates to 1 if and only if exactly one or two inputs are 1. Define E2

12 : {0, 1}9 → {0, 1} as the
Boolean function that takes nine inputs, applies E12 to each block of three inputs, and then applies E12 to
the results of the three blocks. For instance:

• E2
12(0, 0, 1, 0, 1, 0, 1, 0, 0) = E12(1, 1, 1) = 0;

• E2
12(0, 0, 0, 1, 1, 0, 1, 1, 1) = E12(0, 1, 0) = 1.

x = 001010100
E2

12(x) = 0

0 0 1 0 1 0 1 0 0

M12 M31 M23 M45 M64 M56 M78 M97 M89

B12 B31 B23

R

y1 x = 000110111
E2

12(x) = 1

0 0 0 1 1 0 1 1 1

M12 M31 M23 M45 M64 M56 M78 M97 M89

B12 B31 B23

R

y1

Figure 1: The parallel computation of E2
12, for two different inputs. The arrows show how the machines

send bits; an arrow pointing to the bottom left of a machine indicates that the bit is sent to the first port,
while the bottom right indicates the second port. Notice that at most one arrow points to a given port, but
the arrow that does so may change from input to input. Red arrows represent a zero bit and blue arrows
represent a one bit.

4Of course, there are countless examples of analogously clever parallel algorithms in the literature.
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We now describe a remarkably efficient strategy for computing E2
12 in parallel, using only machines that

operate on two (ordered) bits at a time. We first show how to compute E12 in two “rounds.” Let (x1, x2, x3)
denote the input. The first machine reads the bits x1 and x2; the second machine x2 and x3; and the last
machine x3 and x1. There is also a fourth machine which belongs to “the second round.” Each machine in
the first round sends a 1 to the second-round machine if its inputs are 0 and 1 (in this order); otherwise, it
stays silent (i.e., sends nothing). The second-round machine receives either a 1 bit (if E12(x1, x2, x3) = 1)
or no bits at all (if E12(x1, x2, x3) = 0), and in all cases can correctly determine and output the value of the
function.

To compute the function E2
12, we use a layered version of the same idea (see also Figure 1). We think

of the nine input bits as three blocks of three bits each. There are nine machines in the first round, three for
each block. There are three machines in the second round, each responsible for a pair of blocks. There is a
single machine in the third round, responsible for the final output.

The three bits of a block are distributed to the corresponding three first-round machines (in ordered
pairs) as in the computation of E12. Second-round machines have two “ports” in that their inputs are also
ordered; each has a “first input” (possibly empty) and a “second input” (again, possibly empty). If the
inputs of a first-round machine are 0 and 1 (in this order), then the machine sends a 1 to the two second-
round machines responsible for its block; otherwise, it sends nothing. The communication pattern between
the three blocks of first-round machines and the second-round machines mirrors that of the distribution of
bits to first-round machines: the first second-round machine receives bits (if any) from the first and second
blocks of first-round machines on its first and second ports, respectively; the middle second-round machine
receives bits from the second and third blocks on its first and second ports, respectively; and the last second-
round machine receives bits from the third and first blocks on its first and second ports, respectively. If a
second-round machine receives nothing as its first input and a 1 as its second input, then it sends a 1 to the
third-round machine; otherwise, it sends nothing. Finally, the third-round machine outputs 1 if it was sent
a 1, and otherwise (in which case it receives nothing) it outputs 0. It is straightforward to verify that this
computation correctly evaluates E2

12 on all inputs. The computation uses three rounds of communication,
with each machine receiving at most two bits of input.

Shuffles vs. circuits. There are, unsurprisingly, many resemblances between this parallel computation and
circuits — each picture in Figure 1 looks like a Boolean circuit, with machines corresponding to gates, the
number of rounds corresponding to the depth, the number of machines corresponding to the size, and the
number of input ports corresponding to the fan-in. We note, however, that no circuit with fan-in 2 and
depth 3 (of any size) computes the function E2

12, as the function depends on all nine of its inputs. This
is true even for circuits with an alphabet larger than {0, 1}, such as {0, 1, “nothing”}. In general, while
dlogs ne is an obvious lower bound on the depth of any circuit with fan-in s that computes a function that
depends on all inputs, this lower bound does not necessarily hold for the number of rounds required by a
MapReduce-type computation.

2.2 The Basic Model

What augmentations to standard circuit models are required to capture arbitrary MapReduce-type computa-
tions? The first two are evident from our parallel computation of E2

12 in Section 2.1.

(1) The communication pattern, which plays the role of the circuit topology (i.e., which gates are con-
nected to which), can be input-dependent. (Cf., Figure 1.)

(2) Each machine has the option of staying silent and sending nothing. We refer to this as “sending a ⊥.”
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At first blush, extension (2) might seem equivalent to enlarging the alphabet by one character. This is not
quite correct, since ⊥’s combine with each other and with other bits in a particular way.

Definition 2.2 (⊥-sum) The ⊥-sum of z1, z2, . . . , zm ∈ {0, 1,⊥} is:

• 1 if exactly one zi is 1 and the rest are ⊥;

• 0 if exactly one zi is 0 and the rest are ⊥;

• ⊥ if every zi is ⊥;

• undefined (or invalid) otherwise.

The ⊥-sum of m s-tuples a1, . . . , am is the entry-by-entry ⊥-sum, denoted �mi=1ai.

Most circuit models severely restrict the computational power of each gate. This is not appropriate in the
present context, where each “gate” corresponds to a general-purpose machine embedded in a MapReduce-
type infrastructure. This motivates our third extension.

(3) Each machine can perform an arbitrary computation on its inputs.5

Our formal model extends the usual notion of a circuit (with fan-in s) to accommodate (1)–(3). Our
notation follows that in Vollmer [42] for circuits.

Definition 2.3 (s–SHUFFLE Computation) An R-round s–SHUFFLE computation with inputs x1, . . . , xn
and outputs y1, . . . , yk has the following ingredients:

1. A set V of machines, which includes one machine for each input bit xi and each output bit yi.

2. An assignment of a round r(v) to each machine v ∈ V . Machines corresponding to input bits have
round 0. Machines corresponding to output bits have round R + 1. All other machines have a round
in {1, 2, . . . , R}.

3. For each pair (u, v) of machines with r(u) < r(v), a function αuv from {0, 1,⊥}s to {0, 1,⊥}s.

We think of each machine as having s “ports,” where each port can accept at most 1 bit. The inter-
pretation of a function αuv is: given that machine u received z = z1, . . . , zs on its s input ports (where
each zi ∈ {0, 1,⊥}), it sends the message αuv(z) ∈ {0, 1,⊥}s to the s input ports of v.6 Thus, machine
u explicitly communicates with machine v (on at least one port) if and only if at least one coordinate of
αuv(z) is not ⊥. We conclude that the model supports input-dependent communication patterns, as in (1).
The model also supports (2) and (3), by definition.

The output of an s–SHUFFLE computation is evaluated as in a circuit, with the important constraint that,
on every input, each input port should receive a bit (i.e., a non-⊥) from at most one machine.

5When the goal is to prove algorithmically meaningful upper bounds, it would be sensible to restrict machines to efficient
computations. Also, the total space used by a machine, both for its input and for its computations, should be small (certainly
sublinear in the total input size). Given our focus on lower bounds, our allowance of arbitrary computations and unlimited scratch
space on each machine only makes our results stronger.

6The model allows a machine to communicate with machines in all later rounds, not just machines in the next round. Computa-
tions of the former type can be translated to computations of the latter type by adding dummy machines, so this is not an important
distinction.
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Definition 2.4 (Result of an s–SHUFFLE Computation) The result of an s–SHUFFLE computation assigns
a value g(v) ∈ {0, 1,⊥}s to every machine v ∈ V , and is defined inductively as follows.

1. For a round-0 machine v, corresponding to an input bit xi, the value g(v) is the s-tuple
(xi,⊥,⊥, . . . ,⊥).

2. Given the value g(u) assigned to every machine u with r(u) < q, the value assigned to a machine v
with r(v) = q is the ⊥-sum, over all machines u with r(u) < r(v), of the message αuv(g(u)) sent to
v by u:

g(v) := �u : r(u)<r(v)αuv(g(u)). (1)

The result of an s–SHUFFLE computation is valid if every ⊥-sum in equation (1) is well defined, and,
if for every machine v corresponding to an output bit yi, the value g(v) is either (0,⊥,⊥, . . . ,⊥) or
(1,⊥,⊥, . . . ,⊥). The “0” or “1” in the first coordinate is then interpreted as the corresponding output
bit yi. Unless otherwise noted, we consider only valid s–SHUFFLE computations.

By convention, the machines corresponding to the input and output bits of the function do not contribute
to the number of rounds — these are “placeholder machines” that cannot do any non-trivial computations.
Translating the parallel computations in Section 2.1 of the functions E12 and E2

12 into the formalism of
Definitions 2.3 and 2.4 yields 2-round and 3-round s–SHUFFLE computations, respectively, in accordance
with intuition.

The following definition is analogous to that for circuits.

Definition 2.5 (Width) The width of an s–SHUFFLE computation is the maximum number of machines in
a round other than round 0 and the final round.

Remark 2.6 (Randomized Computations) A randomized s–SHUFFLE computation is a probability distri-
bution over deterministic s–SHUFFLE computations.7 We say that such a computation computes a function f
if, for every input x, the output of the computation equals f(x) with probability at least 2/3.

2.3 Simulating MapReduce in the s–SHUFFLE Model

In the definition of the s–SHUFFLE model, the input ports of each machine are ordered, and a message
from one machine to another includes a designation of which outbound bit is destined for which input
port. In actual MapReduce computations, in each round a machine receives an unordered collection of key-
value pairs sent from other machines. We next extend the basic s–SHUFFLE model to accommodate such
unordered sets of messages.

Fix a word size w, the largest message size (in bits) that one machine can send to another. (In our
MapReduce simulation, w will be n1−ε for a parameter ε > 0.) Let Σ denote all possible multi-sets of bit
strings with length at most w. The s–SHUFFLE(Σ) model is defined analogously to the s–SHUFFLE model,
with the following changes. The value g(u) assigned to a machine u, other than the machines corresponding
to the inputs and the outputs, is now an element of Σ with total bit complexity (i.e., sum of message lengths)
at most s. Thus, a machine now receives an unordered set of messages with at most w bits each, but is still
constrained to receive at most s bits of information per round. We redefine the functions αuv to have domain
and range equal to the elements of Σ that have total bit complexity at most s. A ⊥-sum of such multi-sets is

7This definition corresponds to “public coins,” in that it allows different machines to coordinate their coin flips with no com-
munication. One could also define a “private coins” model where each machine flips its own coins. Our lower bounds are for the
stronger public-coin model, and apply to the private-coin model as a special case.
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their union (with multiplicities adding), and is undefined if the total bit complexity of this union exceeds s.
The value of the ith round-0 machine is {xi}, where xi is the ith input bit. In a valid s–SHUFFLE(Σ)
computation, the value of every machine corresponding to an output bit is either {0} or {1}.

With this extension to the model, it is straightforward to map an arbitrary r-round MapReduce compu-
tation that uses m machines with space at most s bits each to an (r+ 1)-round s–SHUFFLE(Σ) computation
that usesm(r+1) machines (not counting the machines that correspond to input and output bits). To be more
precise, we focus specifically on the computational model used to define theMRC complexity class in [24].
In this model, there is a parameter ε > 0, and there are at most n1−ε machines, each with space at most n1−ε

bits. The basic unit of information in a MapReduce computation is a 〈key; value〉 pair. The computation in
a given round is defined by two sets of functions, mappers and reducers. A mapper is a function that takes as
input some number of 〈key; value〉 pairs and, independently for each such pair, produces a finite multiset of
〈key; value〉 pairs. A reducer is a function that takes as input a binary string, representing a key k, and a set
of values v1, v2, . . . (from key-value pairs with key k), and outputs a set of 〈key; value〉 pairs. We can think
of the set of reducers as being indexed by the corresponding key k. The shuffle step of a round is responsible
for routing the key-value pairs generated by the mappers in that round to the appropriate reducers in that
round, essentially by grouping and assigning together key-value pairs that have the same key. The key-value
pairs emitted by reducers proceed straight to the mappers of the next round; no routing between machines is
necessary. It should be possible to deduce the output of the computation from the key-value pairs produced
by the reducers in the final round. Every machine used in the MapReduce computation can host any number
of mappers and reducers, subject to the per-machine space constraint of n1−ε bits.

Proposition 2.7 (Simulating MapReduce) Every r-round MapReduce computation with m machines and
space s per machine can be simulated by an (r + 1)-round s–SHUFFLE(Σ) computation with (r + 1)m
machines and word size s.

Proof: The idea is to make the machines in a round of the s–SHUFFLE(Σ) computation responsible for
simulating the computation and communication that occurs in the corresponding round of the MapReduce
computation.

In detail, fix a MapReduce computation that uses m machines with space at most s each. Call these ma-
chines M-machines, to distinguish them from the machines used in our s–SHUFFLE(Σ) computation, which
we call S-machines. We simulate the MapReduce computation in the s–SHUFFLE(Σ) model as follows. In
addition to the usual (fictitious) S-machines corresponding to input and output bits, there are m S-machines
for each round 1, 2, . . . , r + 1. The functions αuv from round-0 S-machines u to round-1 S-machines v are
defined to simulate the initial assignment of input bits to themM-machines of the MapReduce computation.
In a generic round of the s–SHUFFLE(Σ) simulation, every round-i S-machine simulates the round-(i − 1)
reducers and the round-i mappers of the corresponding M-machine, and also the routing of key-value pairs
to reducers done in the ith shuffle step of the MapReduce computation. (For i = 1, round-1 S-machines only
need to simulate the corresponding round-1 mappers and the subsequent shuffle step.) Thus for round-i and
round-(i+ 1) S-machines u and v, the function αuv is defined as the set of key-value pairs generated by the
M-machine corresponding to u (by its round-(i− 1) reducers composed with its round-i mappers, given the
key-value pairs it was assigned in the previous round) that get routed to the M-machine corresponding to v
in the shuffle step of round i of the MapReduce computation. Because the M-machines have space only s,
the total bit complexity of the messages sent to an S-machine in the simulation is at most s.

Inductively, the value g(u) assigned to an S-machine u in round i of the s–SHUFFLE(Σ) computation
is exactly the set of key-value pairs given to the round-(i − 1) reducers hosted on the corresponding M-
machine in the MapReduce computation. Thus the round-(r + 1) S-machines are assigned the final key-
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value pairs of the MapReduce computation, from which the output bits can be deduced and sent to the
corresponding output S-machines. This completes the simulation of MapReduce computations in the s–
SHUFFLE(Σ) model. �

3 Representing Shuffles as Polynomials

This section shows that low-round s–SHUFFLE computations with small s can only compute Boolean func-
tions that can be represented as low-degree polynomials. Section 3.1 proves this for the basic s–SHUFFLE

model. Section 3.2 shows that the implied lower bounds on round complexity are the best possible for the
unbounded-width s–SHUFFLE model. Section 3.3 extends these lower bounds to randomized computations
and Section 3.4 to the s–SHUFFLE(Σ) model from Section 2.3.

3.1 Representing s–SHUFFLE Computations

To prove lower bounds on the number of rounds required by an s–SHUFFLE computation, we associate each
computation with a polynomial over the reals that matches (on {0, 1}n) the function it computes. We show
that the number of rounds used by the computation governs the maximum degree of this polynomial, and
hence functions that correspond to polynomials of high degree cannot be computed in few rounds.

Theorem 3.1 (Round-Efficient Shuffles Are Low-Degree Polynomials) Suppose that an s–SHUFFLE com-
putation correctly computes the function f : {0, 1}n → {0, 1}k in r rounds. Then, there are k polynomials
{pi(x1, . . . , xn)}ki=1 of degree at most sr such that pi(x) = f(x)i for all i ∈ {1, 2, . . . , k} and x ∈ {0, 1}n.

Proof: We proceed by induction on the number of rounds. We claim that for every non-output machine
v ∈ V and value z ∈ {0, 1,⊥}s, there is a polynomial pv,z(x1, . . . , xn) that evaluates to 1 on points x for
which the computation’s assigned value g(v) to v is z and to 0 on all other points x ∈ {0, 1}n. Furthermore,
pv,z has degree at most sr(v).

The base case of the induction is for a machine v in round zero (r(v) = 0). Each such machine
corresponds to an input bit xi and its value g(v) is (xi,⊥,⊥, . . . ,⊥). The (degree-1) polynomials for z =
(0,⊥, . . . ,⊥) and z = (1,⊥, . . . ,⊥) are pv,z(x1, . . . , xn) = 1−xi and pv,z(x1, . . . , xn) = xi, respectively.
All other values of z are impossible for such a machine, so they have polynomials pv,z(x1, . . . , xn) = 0.

Consider a machine v that corresponds to neither an input bit nor an output bit. Fix some potential value
z ∈ {0, 1,⊥}s of g(v), and focus first on the ith coordinate of g(v). When is it equal to zi? We first consider
the case where zi is 0 or 1 (and not ⊥). The entry g(v)i is a ⊥-sum of the messages that machine v receives
on port i from all machines in previous rounds. Hence g(v)i = zi when a single machine in a previous round
sends zi on port i to machine v (and the rest send ⊥’s). Consider some machine u of a previous round. It
sends zi on port i to machine v when αuv(g(u)) has an ith entry of zi. The set of assigned values g(u)
to u that cause it to do this is the preimage, under αuv, of the subset of {0, 1,⊥}s containing all elements
with a zi in the ith coordinate. By our inductive hypothesis, for each value g(u) in this preimage, there is a
polynomial of degree at most sr(v)−1 that indicates the inputs x for which u receives this value. Since u is
assigned exactly one value, we can sum these polynomials together to get a polynomial (of degree at most
sr(v)−1) that indicates when u receives any value in this preimage. This polynomial indicates the inputs x
for which u sends zi to port i of machine v. Furthermore, since the s–SHUFFLE computation is valid, at most
one machine in a previous round can send a non-⊥ value to v on port i. Summing over the polynomials of
all machines in previous rounds yields a polynomial, still with degree at most sr(v)−1, that indicates whether
or not v received zi on port i (from any machine).
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The inputs x for which g(v)i = ⊥ are those for which no machine from a previous round sends a 0 or
a 1 to v on the ith port. A polynomial for this case is just 1 minus the polynomials for the g(v)i = 0 and
g(v)i = 1 cases. The degree of this polynomial is at most sr(v)−1.

To obtain a polynomial that represents the inputs x for which g(v) = z, we just take the product of the
polynomials that represent the events g(v)1 = z1, . . . , g(v)s = zs. This polynomial has degree at most
sr(v), and this completes the inductive step.

Finally, consider a machine v that corresponds to an output bit yi. As in the inductive step above, we
can represent the first coordinate of g(yi) with a polynomial pi of degree at most sr(yi)−1 = sr. Since the
s–SHUFFLE computation is valid, the polynomial pi also represents the ith output bit of the function f . �

The following corollary is immediate.

Corollary 3.2 (Round Lower Bound) If some output bit of the function f : {0, 1}n → {0, 1}k cannot be
represented by a polynomial with degree less than d, then every s–SHUFFLE computation that computes f
uses at least dlogs de rounds.

There is a mature toolbox for bounding below the polynomial degree necessary to represent Boolean
functions; we apply and contribute to this toolbox in Section 4.

Theorem 3.1 and Corollary 3.2 apply even to unbounded-width s–SHUFFLE computations. For func-
tions f with d = n, Proposition 3.4 gives a matching upper bound in the unbounded-width model.

Remark 3.3 (No Converse to Theorem 3.1) A natural question (raised by a referee) is whether the con-
verse to Theorem 3.1 also holds: can every degree-sr polynomial be computed by an r-round s–SHUFFLE?
The answer is no. One simple counterexample is the degree-3 polynomial

p(x1, x2, x3, x4) = (x1 + x2 + x3 + x4)− (x1x2 + x1x3 + x1x4)− 2(x2x3 + x2x4 + x3x4)

+ (x1x2x3 + x1x2x4 + x1x3x4) + 3x2x3x4

in four variables. Restricted to the set {0, 1}4, p is a Boolean function, equal to 1 on every point (x1, x2, x3, x4)
with Hamming weight 1 or 4, and also every point with Hamming weight 2 for which x1 = 1. A simple
case analysis shows that there is no 1-round 3-shuffle computation that computes this function. We leave
as an open question the problem of characterizing the set of functions that can be computed by r-round
s–SHUFFLE computations.

3.2 A Matching Upper Bound in Unbounded Width Model

We next show that the round lower bound in Corollary 3.2 is best possible in the unbounded-width s–
SHUFFLE model (with an unlimited number of machines): for every s ≥ 2 and every function f : {0, 1}n →
{0, 1}k, f can be computed by an s–SHUFFLE computation in dlogs ne rounds. We conclude that stronger
lower bounds are only possible under additional assumptions. The prospects for stronger lower bounds for
polynomial-width s–SHUFFLE computations are the subject of Section 6.

Proposition 3.4 (Unbounded Width Upper Bound) For every s ≥ 2, every function f : {0, 1}n →
{0, 1}k can be computed by an s–SHUFFLE computation in dlogs ne rounds.

Proof: The idea is for every possible input to have a dedicated set of machines, responsible for computing f
on that input. In more detail, there is one machine vx at round dlogs ne – the last round before the outputs –
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for each possible input x ∈ {0, 1}n. Each machine vx serves as the root of a tree Tx with branching factor s
and depth dlogs ne. The machines of Tx are responsible for notifying vx whether or not the input is in fact x.
Each of the dn/se machines at the leaves checks if the s input bits that it monitors conforms to x, and if so,
it notifies its parent accordingly. After dlogs ne levels of such computations, vx knows whether or not the
input is indeed x. The machine vx either sends nothing to the outputs (in the likely case that the input is not
x), or the bits of the answer f(x) to the k output machines (if the input is x). �

3.3 Randomized Computations

We say that a polynomial p(x1, . . . , xn) approximately represents a Boolean function f : {0, 1}n → {0, 1}
if |p(x) − f(x)| ≤ 1

3 for every x ∈ {0, 1}n. The approximate degree of a Boolean function is the smallest
value of d such that f can be approximately represented by a degree-d polynomial. We next give an analog of
Theorem 3.1 for randomized s–SHUFFLE computations (Remark 2.6), which connects the rounds required
by such computations to the approximate degree of Boolean functions.

Theorem 3.5 (Round-Efficient Randomized Shuffles Are Low-Degree Approximate Polynomials)
Suppose that a randomized s–SHUFFLE computation computes the function f : {0, 1}n → {0, 1}k in r
rounds. Then there are k polynomials {pi(x1, . . . , xn)}ki=1 of degree at most sr such that |pi(x)−f(x)i| ≤ 1

3
for all i ∈ {1, 2, . . . , k} and x ∈ {0, 1}n.

Proof: A randomized s–SHUFFLE computation is a distribution over deterministic computations. By Theo-
rem 3.1, we can represent each output bit of these deterministic computations by a polynomial of degree at
most sr. The weighted averages of these polynomials, with the weights equal to the probabilities of the cor-
responding deterministic computations, yields polynomials p1, . . . , pk such that, for every i and x ∈ {0, 1}n,
pi(x) equals the probability that the randomized s–SHUFFLE computation outputs a 1 on the input x. Since
the randomized computation computes f in the sense of Remark 2.6, these polynomials satisfy the conclu-
sion of the theorem. �

Corollary 3.6 (Round Lower Bound (Randomized)) If some output bit of the function f : {0, 1}n →
{0, 1}k has approximate degree at least d, then every randomized s–SHUFFLE computation that computes f
uses at least dlogs de rounds.

Section 4 applies tools for bounding from below the approximate degree of Boolean functions to derive
round lower bounds for randomized s–SHUFFLE computations.

3.4 Representing the s–SHUFFLE(Σ) Model

Finally, we extend Theorem 3.1 to the s–SHUFFLE(Σ) model of Section 2.3.

Theorem 3.7 (Extension to the s–SHUFFLE(Σ) Model) Suppose that an s–SHUFFLE(Σ) computation cor-
rectly computes the function f : {0, 1}n → {0, 1}k in r rounds. Then, there are k polynomials {pi(x1, . . . , xn)}ki=1

of degree at most sr such that pi(x) = f(x)i for all i ∈ {1, 2, . . . , k} and x ∈ {0, 1}n.

Proof: The proof follows that of Theorem 3.1, with minor changes. We will again have a polynomial
pv,z(x1, . . . , xn) that indicates the inputs x for which machine v is assigned the value z. Note that z is now
an element of Σ—a multi-set of strings each with length at most w—with total bit complexity at most s,
rather than an element of {0, 1,⊥}s. We define degree-1 polynomials for the input machines as in the proof
of Theorem 3.1.
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For the general case, consider a machine v that corresponds to neither an input bit nor an output bit.
We can no longer argue coordinate-by-coordinate. First consider an input z with maximum-possible bit
complexity s. For a given assignment of the messages in z to (at most s) machines in rounds prior to r(v),
the event that v receives the value z in precisely this way can be inductively expressed as the product of
at most s polynomials that have degree at most sr(v)−1 each, yielding a polynomial with degree at most
sr(v). (Because z has the maximum-allowable size s and the computation is valid, the other machines must
send nothing to v.) Summing over all possible assignments of z to previous machines yields a degree-sr(v)

polynomial that indicates the inputs for which v is assigned the value z.
Now consider a value z with bit complexity only s− 1. The event that v receives some superset of z can

be likewise expressed as a polynomial with degree at most sr(v). Subtracting out the events corresponding
to strict supersets of z—which much have bit complexity exactly s and hence are each representable by an
sr(v)-degree polynomial—gives a degree-sr(v) polynomial that indicates the inputs for which v is assigned
the value z. Continuing the argument with values z with s−2 bits, and so on, gives a degree-sr(v) polynomial
representation for every v and z.

Finally, in a valid s–SHUFFLE(Σ) computation, an output machine receives either a single message
of {0} or a single message of {1}. Indicating which of these is the case can be expressed as a sum of
polynomials from the last non-output round of the computation, and hence also has a sr-degree polynomial
representation. �

Corollary 3.8 (Round Lower Bound (s–SHUFFLE(Σ) Model)) If some output bit of the function f : {0, 1}n →
{0, 1}k cannot be represented by a polynomial with degree less than d, then every s–SHUFFLE(Σ) compu-
tation that computes f uses at least dlogs de rounds.

By the simulation argument in Proposition 2.7, the same lower bound (less 1) applies to the computa-
tional model of MapReduce used to define theMRC complexity class in [24].

4 Lower Bounds for Polynomial Degree

Corollary 3.2 and its extensions reduce the problem of proving lower bounds on the round complexity of s–
SHUFFLE computations to proving lower bounds on the degree of polynomials that exactly or approximately
represent the function to be computed. There is a sophisticated set of tools for proving the latter type of lower
bounds, which we now put to use.

4.1 Warm Up

Consider a Boolean function f : {0, 1}n → {0, 1}. If f can be represented by a polynomial p, meaning
f(x) = p(x) for all x ∈ {0, 1}n, then it can be represented by a multilinear polynomial (since x2

i = xi for
xi ∈ {0, 1}). Recall that for every such function f , there is a unique multilinear polynomial that represents
it (see e.g. [12]). We call the degree of this polynomial the degree of the Boolean function. The maximum-
possible degree is n.

For example, since the ANDn function is represented (uniquely) by the polynomial
∏n
i=1 xi, it has the

maximum-possible degree. Similarly, the ORn function has degree n because it is represented by the poly-
nomial 1−

∏n
i=1(1− xi). Corollary 3.2 immediately implies the following for s–SHUFFLE computations.

Corollary 4.1 (Lower Bound for ANDn and ORn) Every s–SHUFFLE computation that computes theANDn

or the ORn function uses at least dlogs ne rounds.
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Corollary 3.8 implies the same lower bound for s–SHUFFLE(Σ) computations.

4.2 Monotone Graph Properties

While pinning down the precise degree of a Boolean function representing a graph problem can be a difficult
task, there are powerful tools for proving loose but useful lower bounds.

The first ingredient concerns the decision tree complexity of monotone graph properties. Recall that
a graph property is a property of undirected graphs that is independent of the vertex labeling. It is non-
trivial if it does not assign the same value to all graphs, and monotone if adding edges cannot destroy the
property. The Aanderaa-Rosenberg conjecture states that, for every non-trivial monotone graph property,
the decision-tree complexity is Ω(n2) [38]. It was first proved by Rivest and Vuillemin with a lower bound
of n2/16 [37], and a long line of work has yielded a lower bound of n2/3− o(n2) [23, 26, 27, 39].

The second ingredient is the known polynomial relationship between the decision tree complexity and
the degree of a Boolean function. Specifically, Nisan and Smolensky (cited in [8]) proved that, for every
Boolean function f , the decision-tree complexity of f is at most 2 deg(f)4, where deg(f) is the degree of f .

Combining these two ingredients with Corollary 3.2 yields the following.

Theorem 4.2 (Lower Bound for Monotone Graph Properties) For every non-trivial monotone graph prop-
erty f : {0, 1}(

n
2) → {0, 1} of graphs with n vertices, every s–SHUFFLE computation that computes f

requires at least 1
2 logs n− 1

4 logs 6 rounds.

In Section 5 we prove tight degree lower bounds for polynomials that represent classical connectivity
problems (special cases of monotone graph properties), improving the lower bound in Theorem 4.2 by
roughly a factor of 4 (Corollaries 5.4, 5.6, 5.8, and 5.10).

4.3 Approximate Degree and Randomized Computations

Recall from Corollary 3.6 that lower bounds on the approximate degree of a Boolean function translate to
lower bounds on the number of rounds required by randomized s–SHUFFLE computations. It is also known
that both the degree and decision tree complexity of every Boolean function are polynomially related to its
approximate degree: deg(f) ≤ D(f) ≤ 216 · d̃eg(f)6, where d̃eg denotes the approximate degree [5, 33].8

We therefore have the following analog of Theorem 4.2 for randomized computations.

Theorem 4.3 (Lower Bound for Monotone Graph Properties (Randomized)) For every non-trivial mono-
tone graph property f : {0, 1}(

n
2) → {0, 1} of graphs with n vertices, every randomized s–SHUFFLE com-

putation that computes f requires at least 1
3 logs n− 1

6 logs 648 rounds.

In general, round lower bounds for deterministic s–SHUFFLE computations proved via Corollaries 3.2
and 3.8 extend automatically, with a small constant-factor loss, to randomized computations.

5 Lower Bounds for Graph Computations

The goal of this section is develop and apply a technique for showing that many problems that are impor-
tant in the field of algorithms (as opposed to in Boolean function analysis) — such as graph connectivity
problems — have maximum-possible degree.

8For some specific functions, better bounds are known. For example, the majority function has approximate degree Ω(
√
n) [36].
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Buhrman and de Wolf [8] credit Yaoyun Shi with the observation that a Boolean function has degree n if
and only if the number of even solutions (i.e., assignments with an even number of 1s for which the function
evaluates to 1) is not equal to the number of odd solutions. For the reader familiar with Boolean Fourier
analysis, this corresponds to computing whether f̂([n]), the function’s Fourier coefficient for the set [n], is
nonzero. For example, the function XORn has no even solutions and 2n−1 odd solutions, so the function
has degree n and hence (by Corollary 3.2) s–SHUFFLE computations require dlogs ne rounds to compute it.

5.1 Parity Difference Preliminaries

We first establish some notation and lemmas that simplify the proofs.

Definition 5.1 (Parity Difference) Given a set S ⊆ {0, 1}n, define the parity difference function as the
number of even inputs in S minus the number of odd inputs in S:

Φ(S) =
∑
x∈S

∏
i

(−1)xi .

Define the parity difference of a Boolean function f on n bits by Φ(f) = Φ({x | f(x) = 1}).

In Fourier-analytic terms, Φ(f) is exactly 2nf̂([n]). We have the following identities.

Lemma 5.2 (Properties of Parity Differences) Fix a set S ⊆ {0, 1}n.

(a) If S1, S2 form a partition of S, then

Φ(S) = Φ(S1) + Φ(S2).

(b) If S is the Cartesian product S1 × S2 of sets S1, S2, then

Φ(S) = Φ(S1) · Φ(S2).

Proof: The lemma follows immediately from basic Boolean Fourier analysis, if we consider the functions
that represent the characteristic vectors of S, S1, and S2.

It is also easy to prove the lemma directly from definitions. For part (a), using the partition assumption,
we have ∑

x∈S

∏
i

(−1)xi =
∑
y∈S1

∏
i

(−1)yi +
∑
z∈S2

∏
i

(−1)zi .

For part (b), we can split each x ∈ S according to the product S1 × S2 to factor the sum:∑
x∈S

∏
i

(−1)xi =
∑
y∈S1

∑
z∈S2

∏
i

(−1)yi
∏
i

(−1)zi

=
∑
y∈S1

∏
i

(−1)yi
∑
z∈S2

∏
i

(−1)zi .

�
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5.2 Graph Connectivity Problems

We express graph problems as Boolean functions using a
(
n
2

)
-variable input to represent an undirected graph

on n vertices (or a 2
(
n
2

)
-variable input for directed graphs), where each variable indicates the presence or

absence of a given edge. This is effectively the adjacency matrix representation of the graph.
The CONNECTIVITY problem is: given a graph G = (V,E), is there a path from every vertex to every

other vertex? The related ST-CONNECTIVITY problem is: given a graph G = (V,E) and two vertices
s, t ∈ V , is there a path from s to t? We pinpoint the degree of both of these problems for both undirected
and directed graphs. The proof strategy is similar in all four cases: we induct on the number of vertices n,
decompose larger problems into smaller problems, and use this decomposition to analyze the highest-degree
Fourier coefficient.

5.2.1 Undirected Connectivity

We begin with the undirected case. Recall that to prove that a Boolean function has maximum-possible
degree, it suffices to show that its parity difference is non-zero.

Theorem 5.3 (Undirected Connectivity) The degree of the Boolean function for undirected CONNECTIVITY

on graphs with n vertices is
(
n
2

)
.

Proof: Let fn denote the Boolean function representing undirected CONNECTIVITY for graphs with n
vertices. We prove that

Φ(fn) = (−1)n−1(n− 1)!, (2)

which implies the theorem.
We proceed by induction on n. The base case n = 1 is trivial; the graph is always connected and never

has any edges, so Φ(f1) = 1.
Suppose that our inductive hypothesis is true for all smaller values of n. Consider the first vertex of our

graph on n vertices. If we begin with a connected graph and remove this vertex, we obtain a partition of the
remaining n − 1 vertices into connected components. We can split the set S of all connected graphs into
sets SP which yield the same partition P of connected components when the first vertex is removed. By
Lemma 5.2(a), Φ(S) =

∑
P Φ(SP ).

Consider a particular partition P of n − 1 vertices. Each class of the partition must be connected, and
the first vertex of the graph must be connected to each partition class with at least one edge. Thus, SP can
be thought of as a cross product between the set of ways to connect the first vertex to the first class, the set
of ways to connect the first class, the set of ways to connect the first vertex to the second class, the set of
ways to connect the second class, and so on. By Lemma 5.2(b), it suffices to compute the parity difference
of each of these sets separately, and take their product.

First, we consider the set of ways to connect the first vertex to a class with k vertices. There are k
possible edges, and the only forbidden choice is the one with no edges. Hence there are 2k−1 odd choices
but only 2k−1 − 1 even choices (the missing choice is even), and the parity difference of this set is −1.

By induction, the set of ways of connecting a class of size k has parity difference (−1)k−1(k − 1)!.
Multiplying this with the parity difference of the set of ways that the first vertex can be connected to the
class, the factor of a partition’s parity difference corresponding to a class of size k is (−1)k(k − 1)!. The
contribution of a single partition is the product of such terms, with one term per class.

Finally, we need to sum the parity differences over all partitions. Since these are all partitions of n − 1
vertices, they all have the same sign: (−1)n−1. We need to show that the total magnitude is (n − 1)! to
complete the proof.
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To see this, consider all (n− 1)! permutations of n− 1 items. Think of a permutation in cycle notation,
with one cycle per orbit of the permutation, and with the smallest element of the cycle written first. The
cycles of a permutation yield a partition of n − 1 vertices. A class of k vertices can be created by any of
(k−1)! possible cycles on these vertices. Multiplying over the classes of a partition, we see that the number
of permutations that map to a partition is exactly the magnitude of the parity difference of the partition. This
implies that the total parity difference magnitude is the number (n − 1)! of permutations, which completes
the inductive hypothesis and the proof. �

Corollary 5.4 (Lower Bound for Undirected CONNECTIVITY) Every s–SHUFFLE or s–SHUFFLE(Σ) com-
putation that computes the undirected CONNECTIVITY function uses at least dlogs

(
n
2

)
e ≈ 2 logs n− logs 2

rounds.

Theorem 5.5 (Undirected s-t Connectivity) The degree of the Boolean function representing undirected
ST-CONNECTIVITY on graphs with n vertices is

(
n
2

)
.

Proof: Let fn denote the Boolean function representing undirected ST-CONNECTIVITY for graphs with n
vertices. By convention, we assume that s and t are the first and second vertices. We show that Φ(fn) =
(−1)n−1(n− 2)! 6= 0.

It is convenient to analyze−Φ(fn) and consider all graphs in which s and t are not connected. Let SA,B
be the subset of such graphs in which the connected component of s is A and the connected component of t
is B. By Lemma 5.2(a), −Φ(fn) is the sum of the Φ(SA,B)’s for all such A,B.

Fix A and B. Both are connected, and the remainder of the vertices of the graph can have an arbitrary
subset of edges within it. We can therefore think of SA,B as a product of the set of ways to connect A, the
set of ways to connect B, and, if there are at least two vertices outside A ∪B, the set of ways to pick edges
in the remainder of the graph. By Lemma 5.2(b), we only need to compute the parity differences of each of
these sets and take their product.

First, we observe that if V \ (A ∪ B) contains more than one vertex, then the parity difference of the
last set (all subsets of edges of V \ (A ∪B)) is zero. For the rest of the proof, we focus on sets A,B whose
union includes all vertices, except possibly for one.

If A has a vertices and B has b vertices, then by (2) the parity difference for the set of ways to connect
A is (−1)a−1(a− 1)! and the parity difference for the set of ways to connect B is (−1)b−1(b− 1)!.

Since V \ (A ∪ B) has zero or one vertex, there are (n−2)!
(a−1)!(b−1)! ways to choose a set A of size a and a

set B of size b (in the latter case, there are n− 2 choices for the missing vertex, and
(
n−3
a−1

)
ways of selecting

the vertices that join s in A). Thus, the total contribution to the parity difference of sets A,B with sizes a, b
is (−1)n−2(n− 2)! (if a+ b = n) or (−1)n−3(n− 2)! (if a+ b = n− 1). There are n− 1 ways to choose
a ≥ 1 and b ≥ 1 so that a+ b = n, and n− 2 ways to choose a ≥ 1 and b ≥ 1 so that a+ b = n− 1. Our
final parity difference (for −Φ) is

(n− 1)(−1)n−2(n− 2)! + (n− 2)(−1)n−3(n− 2)! = (−1)n−2(n− 2)!.

This completes the proof. �

Corollary 5.6 (Lower Bound for Undirected ST-CONNECTIVITY) Every s–SHUFFLE or s–SHUFFLE(Σ)
computation that computes the undirected ST-CONNECTIVITY function uses at least dlogs

(
n
2

)
e ≈ 2 logs n−

logs 2 rounds.
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5.2.2 Directed Connectivity

We now consider the more complicated case of directed graphs, where we ask whether the graph is strongly
connected.

Theorem 5.7 (Directed Connectivity) The degree of the Boolean function for directed CONNECTIVITY on
graphs with n vertices is 2

(
n
2

)
.

Proof: The proof is similar but somewhat trickier than that for undirected CONNECTIVITY. Letting fn
denote the Boolean function for directed CONNECTIVITY on graphs with n vertices, we show by induction
on n that Φ(fn) = (n − 1)!. The base case of n = 1 is trivial, as the graph is always connected and
Φ(f1) = 1.

For the inductive step, fix n > 1 and consider the first vertex of a strongly connected graph on n
vertices. If we remove this vertex, then the remaining n− 1 vertices are partitioned into strongly connected
components. We can split the set S of all strongly connected graphs into sets SP that yield the same partition
P after the first vertex is removed. By Lemma 5.2(a), Φ(S) =

∑
P Φ(SP ).

We claim that total parity difference contributions Φ(SP ) of the partitions P of the last n − 1 vertices
in which there is at least one edge between two classes is zero. To see this, order the edges that span
different classes arbitrarily, and bucket the strongly connected graphs that induce P according to the first
such edge (v, w) that it includes. Now fix (v, w), let v be in class A, w in class B, and let u denote the first
vertex of the graph. For each graph G in this bucket that includes the edge (u,w), the graph G \ {(u,w)}
is also in this bucket — since all graphs in the bucket include edge (v, w) and contain a path from u to all
vertices in A, G \ {(u,w)} is also strongly connected. Thus, we can uniquely pair up the even and odd
solutions of this bucket. Since the buckets are disjoint, we can pair up the even and odd strongly connected
graphs that include at least one edge that spans two classes.

We now consider only strongly connected graphs with no edges between the classes of the partition P .
Fixing P , we can view these graphs as a product of the set of directed edges between the first vertex and
the first class, the set of ways to choose how the first class is strongly connected, the set of directed edges
between the first vertex and the second class, the set of ways to choose how the second class is strongly con-
nected, and so on. By Lemma 5.2(b), we can compute the parity difference of each of these sets separately,
and take their product.

First, we consider the number of ways to connect the first vertex to a class with k vertices. There are k
possible edges to the class, and k possible edges from the class. We count the parity differences separately
and invoke Lemma 5.2(b) to compute the total parity difference by multiplying. For the k edges to the class,
the only forbidden choice is the empty set. Hence there are 2k−1 odd choices but only 2k−1−1 even choices.
The parity difference here is −1. But the same reasoning applies to the k edges from the class, so the total
parity difference is 1.

By induction, the parity difference of the number of ways to choose how a class of size k is strongly
connected is (k − 1)!. If we include the number of ways that the first vertex can be connected to the class,
the net contribution to the partition from a class of size k is (k − 1)!.

Finally, we need to sum the parity difference over all partitions, which we claim is (n − 1)!. As in the
proof of Theorem 5.3, partitions with classes weighted by (k − 1)! correspond to permutations of n − 1
items, and the total parity difference is (n− 1)!. This proves the inductive step and completes the proof. �

Corollary 5.8 (Lower Bound for Directed CONNECTIVITY) Every s–SHUFFLE or s–SHUFFLE(Σ) com-
putation that computes the directed CONNECTIVITY function uses at least dlogs 2

(
n
2

)
e ≈ 2 logs n rounds.
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Finally, we consider the directed ST-CONNECTIVITY problem. In contrast to the other three cases,
the degree of the corresponding Boolean function is only half of the maximum possible. The proof is
correspondingly more intricate, as we cannot simply prove that the parity difference of the function is non-
zero.

Theorem 5.9 (Directed s-t Connectivity) The degree of the Boolean function for directed ST-CONNECTIVITY

on graphs with n vertices is
(
n
2

)
.

Proof: Let fn denote the Boolean function for directed ST-CONNECTIVITY on graphs with n vertices. First,
we show that deg(fn) ≥

(
n
2

)
. Suppose that the polynomial for directed ST-CONNECTIVITY is p(x), and

index x by possible edges in our graph, i.e. x(i,j) denotes whether edge (i, j) is in the graph. Suppose we
plug in both x(i,j) = y(i,j) for all i < j and x(j,i) = y(i,j) for all i < j and simplify. In other words,
we replace variables for each pair of directed edges with a single variable for an undirected edge. The
polynomial now computes undirected ST-CONNECTIVITY. Its degree can only be lower than that of the
original polynomial for directed ST-CONNECTIVITY, because simplifying consists only of applying the rule
x2 = x and combining like terms. By Theorem 5.5, the degree for undirected ST-CONNECTIVITY is

(
n
2

)
, so

the degree for directed ST-CONNECTIVITY is at least that.
In the rest of the proof, we show that deg(fn) ≤

(
n
2

)
. We continue to use p(x) to represent the poly-

nomial for directed ST-CONNECTIVITY. We use E to denote the set of all possible edge sets over V . Then
written as a sum of monomials, p(x) looks like:

p(x) =
∑
E∈E

αE
∏
e∈E

xe, (3)

where the αE’s are constant coefficients.
We will want to evaluate p(x) for particular choices of x. We write xE for the vector where xe = 1 if

and only if e ∈ E. Evaluating p(xE) then yields whether there is an s-t path using only edges in E. Notice
that the only non-zero terms in (3) correspond to edge sets E′ with E′ ⊆ E, and so

p(xE) =
∑
E′⊆E

αE′ .

Our first claim is that αE = 0 for any edge set E ∈ E that contains an edge e ∈ E which is not used by
any simple s-t path that only goes through edges in E. We will prove this claim by induction on the size of
E.

The base case of our induction, when |E| = 0, is trivially true because E does not have any edges. For
the inductive step, consider an edge set E with such an edge e. Let Ē = E \ e. Because e is not used in any
simple s-t paths, removing it does not change whether there is an s-t path. In other words, p(xE) = p(xĒ).
We can then expand the expression for p(xE), treating subsets E′ of E that contain e and those that do not
separately:

p(xE) =
∑

E′⊆E:e∈E′
αE′ +

∑
E′⊆E:e6∈E′

αE′

=
∑

E′⊆E:e∈E′
αE′ + p(xĒ)
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and
∑

E′⊆E:e∈E′ αE′ = 0. Our inductive hypothesis states that for every edge set E′ with fewer edges than
E and which contains an edge e ∈ E′ which is not used in any simple s-t path, we have that αE′ = 0. Since
e was not used in any simple s-t path containing only edges from E, e is also not used in any simple s-t
path containing only edges from any E′. Hence αE′ = 0 for every term in this summation with E′ 6= E,
which in turn implies that αE = 0 as well. This completes the proof of our first claim.

Our second claim is that for every edge set E ∈ E which contains both an edge e = (i, j) and its reverse
edge e′ = (j, i), we have αE = 0. This second claim is enough to complete the proof, since it implies that
every edge set E ∈ E with a nonzero αE has at most

(
n
2

)
edges, and hence the degree of the polynomial is

at most
(
n
2

)
. We also prove our second claim by induction on the size of E.

The base case |E| = 0 is again trivial. For the inductive step, consider an edge set E with such a pair of
edges e = (i, j) and e′ = (j, i).

Due to our first claim, αE is zero if either of e or e′ is not used in a simple s-t path. Hence we need only
consider the case where there are simple s-t paths using both of these edges. This implies that there must be
s-i, s-j, i-t, and j-t paths, none of which use e or e′. LetE1 = E\{e},E2 = E\{e′}, andE3 = E\{e, e′}.
We know that all of E, E1, E2, and E3 still have s-t paths, i.e. p(xE) = p(xE1) = p(xE2) = p(xE3) = 1.
Similar to the proof of our first claim, we can manipulate the expression for p(xE) by considering the four
different types of subsets E′ ⊆ E separately (depending on whether or not E′ contains e, and whether or
not it contains e′):

p(xE) =
∑
E′⊆E:
e∈E′,
e′∈E′

αE′ +
∑
E′⊆E:
e∈E′,
e′ 6∈E′

αE′ +
∑
E′⊆E:
e 6∈E′,
e′∈E′

αE′ +
∑
E′⊆E:
e 6∈E′,
e′ 6∈E′

αE′

=
∑
E′⊆E:
e∈E′
e′∈E′

αE′ + [p(xE2)− p(xE3)] + [p(xE1)− p(xE3)] + [p(xE3)]

and so
1 =

∑
E′⊆E:
e∈E′
e′∈E′

αE′ + [1− 1] + [1− 1] + [1]

and ∑
E′⊆E:
e∈E′
e′∈E′

αE′ = 0.

Our inductive hypothesis states that for every edge setE′ with fewer edges thanE and which contains edges
e = (i, j) and e′ = (j, i), αE′ = 0. Again, this implies that every term in the summation other than αE
must be zero, and hence αE = 0 as well. This completes the proof of the second claim and the theorem. �

Corollary 5.10 (Lower Bound for Directed ST-CONNECTIVITY) Every s–SHUFFLE or s–SHUFFLE(Σ)
computation that computes the directed ST-CONNECTIVITY function uses at least dlogs

(
n
2

)
e ≈ 2 logs n −

logs 2 rounds.

Remark 5.11 (Graphs Represented with Adjacency Lists) Similar ideas can be used to prove degree lower
bounds for connectivity problems where the input graph is represented using adjacency lists rather than an
adjacency matrix. For example, consider the undirected ST-CONNECTIVITY problem for graphs with n
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vertices and m edges. The input is an m-vector, with each component drawn from an alphabet of size
(
n
2

)
(the possible edges). The problem is trivial if m is sufficiently close to n2 (every graph will be connected),
so assume that 1 ≤ m ≤ n2/8.

We prove the lower bound using only a family of 2m different graphs. Assume that s and t are the
vertices 0 and 1. The first edge is either (0, 1) or (0, 2), the second either (1, 2) or (1, 3), the third either
(0, 3) or (0, 4), the fourth either (2, 3) or (2, 4), and so on. In general, each edge is drawn from a pair
of the form {(a, b), (a, b + 1)}, where a < b and a, b have opposite parities, and pairs are considered in
nondecreasing order of b, with ties broken in favor of smaller values of a. There are at least n2/8 pairs
of this form. Since m ≤ n2/8, we can consider the first m such pairs and the corresponding 2m different
inputs. The key observation is that such an input fails to contain an s-t path if and only if, for each edge, the
second option is chosen. As long as the second option is chosen, the graph has two connected components,
one spanning the even-parity vertices considered so far (including 0) and the other the odd-parity vertices
considered so far (including 1). If the first option is ever chosen, this edge connects the two components,
and in particular 0 and 1. Restricted to these 2m inputs, the ST-CONNECTIVITY function computes the
ORm function. Since there is no smaller-than-degree-m polynomial representation of the ORm function
(Corollary 4.1), there is no such representation of the ST-CONNECTIVITY function.

6 Prospects for Stronger Lower Bounds

Our lower bounds in Section 3–4 apply to general unbounded-width s–SHUFFLE computations, and by
Proposition 3.4 such lower bounds cannot be larger than dlogs ne. Realizable MapReduce-type computa-
tions translate to s–SHUFFLE computations with a reasonable number of machines, so a natural question
is whether or not stronger lower bounds hold for a polynomial number of machines. For example, can we
prove that there is no O(1)-round s–SHUFFLE computation for graph connectivity problems with s =

√
n

and a polynomial number of machines? In this section, we show that proving such stronger impossibility
results requires proving new circuit lower bounds.

The following result, while not difficult to prove, has significant implications for the prospects of strong
lower bounds for parallel computation.

Theorem 6.1 (Circuit Complexity Barrier to Stronger Lower Bounds) Consider any model of parallel
computation with the following properties:

1. The number of machines is polynomial in the input size n.

2. Computation proceeds in time steps. In each time step, a machine can read s(n) ≥ 2 bits from the
input or from previously completed computations.

3. Each machine has enough power to evaluate a Boolean circuit with size at most s(n) and depth at
most log2 s(n) in one time step.

If some problem in P cannot be solved in O(logs(n) n) time steps in such a model, then NC1 ( P .

Property (1) states that an arbitrarily large polynomial number of machines is allowed. Property (2) asks
for a complete communication graph and concurrent reads, and property (3) only requires fairly weak com-
puting power per machine. s–SHUFFLE computations with a polynomial number of machines are certainly
one example of a model that satisfies these assumptions. The point of Theorem 6.1 is that, more generally,
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Circuit

x1 x2 x3 x4 x5

g1 g2

g3 g4

g5 g6

g7

y1 s-SHUFFLE

x1 x2 x3 x4 x5

m1 m2 m3 m4

m5 m6 m7

y1

Figure 2: A depth-four circuit and its corresponding s-SHUFFLE with s = 4 that runs in two rounds. The
number on a machine matches the number of the gate it computes.

the only possible way of proving lower bounds stronger than Θ(logs n) for any model of parallel computa-
tion is to either (i) prove a notoriously difficult circuit lower bound or (ii) restrict the model so much that
one of the hypotheses in the theorem is not satisfied. In particular, Theorem 6.1 leaves open the possibility
of proving strong lower bounds for restricted classes of algorithms (where the third property may not hold),
and some of the previous work reviewed in Section 1.2 is of this type.

Proof of Theorem 6.1: We simply need to show that every model with these three properties can efficiently
simulate NC1 circuits. Fix some such model of parallel computation. Recall that NC1 is the family of
problems that can be computed by a logspace-uniform circuit family Cn of fan-in 2 with poly(n) gates
and O(log n) depth (where n denotes the number of inputs). We will transform each circuit into a parallel
computation that uses only O(logs(n) n) time steps (see Figure 2 for an example). This will show that no
NC1 family computes our hypothesized problem, and hence NC1 ( P , as desired.

By the first assumed property, we can associate each gate of the circuit with a machine, whose sole
responsibility is to compute the output of the gate. Each time step of the parallel computation will correspond
to log2 s(n) layers of the circuit. For example, in the first time step, we will have a machine for every gate
at depth at most log2 s(n). Since the circuit has fan-in 2, computing the output of this gate requires reading
at most s(n) input bits and evaluating a Boolean circuit with depth at most log2 s(n) and size at most s(n).
By the second and third assumed properties, the corresponding machine can perform this computation in the
first time step of the parallel computation. In general, in the ith time step, we have a machine for every gate
at depth between (i−1) log2 s(n) and i log2 s(n). Again, the output of each of these gates can be computed
by reading at most s(n) bits (from the input or the outputs of gates corresponding to machines in previous
time steps) and evaluating a depth-log2 s(n) and size-s(n) Boolean circuit. We reach the output gates and
complete the computation in O( logn

log s(n)) = O(logs(n) n) time steps of parallel computation, as desired. �

The simulation argument in the proof of Theorem 6.1 is quite versatile. For example, an analogous
statement holds in the uniform setting. Since NC1 is defined to be logspace-uniform, the lower bound
barrier holds even if the model of parallel computation is restricted to logspace-uniform computations at each
machine. Also, the simulation in the proof of Theorem 6.1 only blows up the width by a factor of log2 s(n)
from the circuit to parallel computation. Hence, given a round lower bound on a width-restricted model of
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parallel computation, we would get a depth lower bound on a width-restricted (less so by a factor log2 s(n))
version of NC, which would still be a significant result in circuit complexity. Similarly, the simulation
results in the same number of machines as there were gates, so a round lower bound for a machine-restricted
model of parallel computation would give a depth lower bound for a size-restricted version of NC.
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