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Preface :

~ To Economists: This thesis investigates a classic impOssibility result from economics—
the non-existence of cost-sharing mechanisms that are efﬁeierit;l budget-balanced and
incentive compatible—'using an approach standard in computer science For a speciﬁc
_cost-sharmg problem we ask: How much efﬁcwncy does the best incentive compatl— o
__ble budget- balanced mechanism achieve in comparison to the efficient a,llocatmn?
, Unlike an 1mp0551b1hty. result, this approach is entirely constructive, and lresults in
" a concrete prescription for what mechanism we should deploy. This thesis identifies
'VOptimal mechanisms for a wide 'variety of cost~sharing problems disciisses hdw we
~ can trade budget—balance for efficiency, and what makes some cost sharmg problems o
_harder than others. _ , h
To Computer Scientists: This thesis investigates resource alloeation Whe're
-some of the problem parameters are privately held vby agents that vie for the resources. -
~ We must find algorithms that elicit the privately held parameters, allocate _resoiirces .
optimally, and recover the cost of the allocated resources from the agents. Just as we
 must deal With lack of knowledge of future demand when designing online algorithms,
we must now deal with economlcally and ga.me-theoretlcally motivated constramts
Welcome to a parallel universe replete with hardness results optimal algorlthms and

complexity classes.
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Chapter 1
Introduction

1.1 A Motvivatinngxample

'How should the cost of a joint progect be shared by 1ts part1c1pants7 Here isa

¢ | V'fmotlvatmg example paraphrased from Young et al. [67].

Example 1 1. 1 In the early 1940s some municipalities in southern Sweden formed "
‘an association to tackle a potentlal water scarcity problem. In the late 19605 this
group started to design a major pI‘OJGCt for obtaining water from a lake outside the
region via a 80-km long tunnel Bes1des the tunnel, water treatment systems at the

source and water dlstrlbutlon systems also needed to be built.

The viability of thlS project depended on how many mun1c1paht1es could be in- _'

- duced to participate and bear the cost of the project. This in turn depended on how
much -each of these municipalities would be obliged to pay for participation, bearing

~ in mind the availability and costs of developing their own on-site resources.

The above example is characteristic of the circle of issues we investigate in this
thesis:. Wewvould like to determine an economically efficient level of resource allocation -
in a public project that involves several potential participants. The cost of the project
depends on who participates in it. In the above example, the necessary capacity, and
hence the cost of the tunnel, depended on the set of municipalities that. actually

took part. Part of the problem data—namely, the value. of the public project to

1
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2 |  CHAPTER 1. INTRODUCTION

~ the \_}ariousﬁparticipants—is privately held. The partici'pant‘s. are self-interested, and
: Vmight’ lie about this information if it benefits them. For the project to be feasible,

the cost incurred by it should be recovered from the eventual participants.

| 1 2 Mechanlsm Des1gn

~ Such opt1m1zat10n settlngs where part of the 1nput is prlvately held by self-lnterested
| ‘agents are the topic of study of a field of economics called mechanism deszgn (see for
g instance Chapter 23 of [58]). Mechanism design has numerous applications to, for
example, aucti.on"design,- pricing problems? and network protecol design [34, 42,: 58,
66 | o R o
. An illustr_ative, paradigmatic problem in mechanism design is allocating a single
_unit of an indivisible good to one of n potential buyers. Each bidder ¢ has andluation
v,, ,expressing its maximum willingness to pay' for the good. We assume thet this
value is known only to the bidder, and not to the auctioneer. A mechanism for sellmg
a s1ngle good is a protocol that determines the winner and the selhng price. Each -
‘bidder i is “selfish” in that it wants to maximize its “net gain” (v; - p)z; from the
auction, where p is.the price,and z; is 1 if the bidder wins and 0 if thebidder loses.
What optimization problem underlies a single-good auction? One natural goal is "
economic efficiency, which in this context demands fhat the good is allocated to the
. bidder with the highest valuation. This goal is trivial to e,ceomplish if the valuations -
“are known a priori. Can it be achieved when the valuations are private? -
Vickrey [74] provided an elegant solution. vFirst each player submits a sealed
~bid b; to the seller, Wh1ch is a proxy for its true valuation v;. Second, the seller
awards the good to the hlghest bidder. This achieves the efficient allocation if we can
‘be sure that players bid their true valuations—if b; = v; for every i. To encourage .
players to bid truthfully, we must charge the winner a non-zero price. (Otherwise,
“all players w1ll bid gargantuan amounts in an effort to be the highest.) On the other
hand if we charge the winning player its bid, it encourages players to underbid.
(Bidding your maximum willingness to pay ensures a net gain of zero, win or lose.)

Vickrey [74] suggested charging the winner the value of the second-highest bid, and
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1.3. COST-SHARING PROBLEMS ” | 3

proved that this price transforms truthful bidding into an optimal strategy for each
bidder, independent of the bids of the other players. In turn, the Vickrey auction is
guaranteed to produce an efficient allocation of the good, provided all players bid in

the obvious, optimal way.

1.3 Cost-Shariiig 'Problefhs

Unlike the single-item auctions, ‘the "problems we are interested in have no explicit
limit on the number- of winners (players who eventually participate). On the other
hand, servicing many or all the players may require vast resources. So, we must
take into account the cost of prov1d1ng serv1ce Formally, a cost-sharing problem
| is defined by a set U of players vying to receive some good or service, and a cost
functlon C: 2U — R* describing the cost incurred by the mechanism. as a function
of the outcome — the set S of winners. We assume that C(#) = 0 and that C is
‘nondecreasing (i.e., § C T implies C(S) < C(T)). In .Example 1.1.1, for a set S of
municipalities, C(.S) represents the total cost—incurred from the construction. of a
‘water treatment plant, a tunnel of sufficient capacity, and a distribution network—of
delivering water of adequate quality and quantity to the municipalities.
 Asin the previous section, every player 7 € U has a private value v; for service.’
And every bidder is self—interested i.e. it maximizes its “net gain” (v - - p;)z; from
the mechanism where p; is the price it is charged, and z; is 1 if the bldder wins and 0
. if the bidder loses. In Example 1.1.1, the value v; represents municipality #’s value
for the Water project.
For a g1ven set U and function C, a cost—sharmg mechamsm is a- protocol that
takes the cost function C and bids as 1nput and decides which players win (the z;s)

and at what prices (the p;’s).

1.3.1 Desiderata

As this is a public project, the primary goal should be to come up with a solution

that is economically efficient for the society at lai‘ge, i.e. for every valuation profile,
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o ' CHAPTER 1. INTRODUCTION

- we would like to pick an allocatlon that embodies the optimal trade-off between total
" value serviced and total cost incurred. Formally, for a cost function C' and a valuation

.proﬁle {vi}iev, the e]fﬁczent allocation is the subset that maximizes the social welfare:
W(S) = v(S) - C(S)

Here ’U(S ) denotes Zzé s Vi- Of course ‘as in the single—item auction example, values
are prlvate 1nformat10n and we would hke mechamsms that are incentive compat1ble
~i.e. the cost sharing mechanism should encourage players to bid truthfully. However
there is an additional constramt For the project to be fea31ble the mechanism should

- recover the cost of the project from the winners, i.e., it should be no- deﬁczt ‘
Summanzmg, we have 1dent1ﬁed three natural goals in cost- sha.rmg mechanism
design: mcentwe—compatzbzlzty, mea.nmg that every player’s optimal strategy is to
~ bid its true pr1vate value v; for receiving the serv1ce no- deﬁczt meamng that the

mechanlsm recovers its incurred cost with the prices charged and eﬂ‘iczency, meanmg

that the cost and valuations are traded off in an optimal Way (For the most part we B

will identify computatlonally efficiency mechanisms, though our hardness results w111“

not reference this constraint. )

- 1.3.2 ‘Motivating Related Work

. Unfor’tnne.tely, even for"\‘_r_ery simple eost~sharing problems, there are no mechanisms .
that simultaneously satisfy these three constraints (see Example 3.1.1). Intuitively, |
this impossibility ste'ms from: 'the payments having to play two dietinct incompatible
‘roles—to ensure 1ncent1ve compat1b1hty, and to recover cost. Chapter 3 discusses this
issue further. o ‘

'This impossibility result motivates relaxing at least ole of these properties. Until
recently, nearly all work in cost—_sha,ring mechanism design completely ignored either
the cost-recover v.constraint or efficiency. Without the cost-recovery constraint, there
is an extremely powerful and flexible mechanism that is incentive-competible and
efficient: the VCG mechanism (see e.g. [33, 63]). This mechanism  specializes ‘to‘ :

the Vickrey auction when selling a single good, but it is far more general. The
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1.4, WHAT IS IN THIS THESIS? ~ - | 5

_VCG mechanism typically does not satisfy the cost-recevery constraint within any ‘_
approximation faetor' (assuming “individually rational” pricee, see e.g. [32] for details). -
A second approach is to discard economic eﬁiciehcy' as an objective and insist
oii incentive-cempatibility anld the no-deficit condition. Until .\}ety recently (see
Chapter 4)), the only general technique for designing mechanisms‘: of this type was
- due to Moulin [62]. Researchers have developed numerous approximately no-deficit.
Moulin mechanisms for cost-sharing problems arisi'ng' from different combinatorial op-
timization problems, including fixed-tree multicast problems [5, 32, 33]; more general
submodular problems [62, 63]; scheduling problefns [11, 17); network design pfob-’ |
lems [37, 39, 47, 48, 51, 55, 68]; facility location problems [56, 68]; and various cov-
ering problems [26, 45]. With one exception discussed in Section _4.5.1, none of these
works provided any gﬁarantees on the economic efficiency aehieved by the proposed

‘mechanisms.

1.4 What Is in this Thesis?
- _Hereis a brief overview of the results in this thesis.

- 1.4.1 Meas_uring Efﬁciency Loss via Appro’ximation
- Impossibility results,'are common in corhputer science. There are, for instance, the
(conditional) impossibility of polynomial time:implementetion motivated by Cook’s
theorem [23'],‘ and the information "theoretic- lower bounds stemming from lack of
information in restricted models of computation such as the online model [16] or the
| ‘streaming model [64]. ‘When faced with such hafdness results computer scientists
are accustomed to devising heuristics and proving worst-case guarantees about them
using the notion of approximation. | '
Following this approach, we quantify the efficiency loss of incentive compatible,
no-deficit mechanisms via approximation ratios. That is,' we discuss; for a fixed cost- -
sharing problem; what approximation of the optimal welfare does a specific truthful, '

no-deficit mechanism achieve? Chapter 3 describes this approach.
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6 | CHAPTER 1. INTRODUCTION

- 1.4.2 Optimal Moulin Mechanisms '

Given this quantitative measure of efficiency lOsé, we can rigorously compare the

~ economic efficiency of different mechariisms for a cost-sharing problem. Given two
mechanisms A and B, mechanism A has better economic efﬁciency that mechanisni
Bif it provides a better worst-case approx1mat10n to economic efficiency. Given this
ability to rank mechamsms we can then identify a mechanism as “optimally efficient”
subject to cost-recovery and incentive compatibility constraints. - |
We apply this approach to Moulin mechanisms, which until very recently were the

- only general framework for designing mechanisms_that are no-deficit and incentive
Compatible. All Moulin mechanisms use carefully designed pricing oracles to simulate
ascending auctions. Our analysis reveals that the a certain (iombinatorial property of
the pricing oracie, called its summability, charac_térizes (lower and upper bounds) the
worst-case efficiency loss of the Moulin mechanism that eniploys it. Chapter 5 uses
this characterization to identify optimal Moulin mechanisms for various cdst-sharing
H broblems; (In general, different public projects will induce different cost functions;
» Chaptér 2 defines several types of cost-sharing problems.) All of the mechanisms
we identify as optimal Moulin mechénisms are polynomial-time implementable, and
. optimal even among Moulin mechanisms not restricted to run in polynomial time.

Our proofs include ideas inspired by prima,lédual and online algorithms.

1.4.3 A H:ierar'chy of Cost-Sharing Problems

Cost-sharing problems vary in difficulty (in terms of achieving our desiderata). We
icientify the intrinsic complexity of a cost-sharing problems with the worst-case ap-
proximatibn achieved by an optimal Moulin mechanism for it. As an analogy recall
that the “difﬁéulty” of an NP-hard optimization problem is often identified with the
best-possible approximation ratio achieva.ble' by a polynomial-time algorithm for ‘it,
assuming P # NP. Different NP- Hard problems admit different approx1mat10n ratios
(see e.g. [7]). | |

~ Our analysis reveals a hierarchy of cost-sharing problems: Problems involving sub-

modular cost and fé,cility location always admit a ldgarithmic approximation (in the
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1.4. WHAT IS IN THIS THESIS? o . 7

number of players), and in the worst case, nothing better. Network design .problems '
that are Variant»s of Steiner tree cost functidns admit a polylogarithmic approxima-
tion, and in the worst case, no better. Finally, problems that involve variants of
© set-cover admit no better than a polynomial approximation in the worst case. See
Section 4.3; ' ‘

'1.4.4 New Mechanisms: Acylic Mechanisms
Having ideht\iﬁed optimal Moulin mechanisms for various cost-sharing problems, we
ask if there is a better alternative to the Moulin framework. We identify a new frame-
work for designing;.‘truthful a.nd‘vno-deﬁcit cost-sharing mechanisms, called acycAlz'c
' mechanisms. | | ’ " | , S
Like Moulin mechanisms, acyclic mechanisms are ascending auctions. However,
~ careful resolutioh of certain non-determinism present in Moulin mechanisms pefmits
acyclic mechanisms to employ a wider class of pricing oracles. Thus, acyclic mech-’
anisms strictly generalize Moulin mechanisms and offer two important advantages. |
First, it is easier to design acydic mechanisms than Moulin mechanisms: many clas- .'
sical combinatorial algorithms (based on the primal-dual method) naturally induce
non-Moulin, polynomial-time i‘mplementable‘ acyclic mechanisms with good perfof—
mance guarantées. Second, for important Vclﬁass'es of cost-sharing problems, acyclic
mechanisms have exponentially better econbmic efficiency than Moulin mechanisms.
The only, minor‘drawbac'k of acyclic mechanisms is that they sacrifice a modicum of
incentive compatibility: Moulin mechanisms are slightly more robust to coalitional

" manipulations compared to acyclic 'mechénisms. See Chapters 6 and 7 for details.

1.4.5 | Lower Bounds on Truthful Mechanisms

Are there mechanisins, not necessarily computationally efficient, that -are superior
to acyclic mechanisms? We identify a no-deficit, incentive comp.at'ible nqn—écyclic '
mechanism that achieves a logarithmic approximation (in the number of players) of
the optimal efficiency for all cost-sharing problems with underlying monotone cost

functions. In contrast, for acyclic mechanisms, we only know of an analogous result -
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8 S ' CHAPTER 1. INTRODUCTION

for the narrower class of subaddmve cost-sharmg problems.

Are there no-deﬁc1t mechanisms, not necessarily computat1onally efﬁc1ent that
‘achieve a constant factor approximation of the optimal efficiency? We show _that, in -
the worst case, the answer is negative. We identify a logarithmic lower bound on

~ the worst-case efficiency approximation of every truthful, no-deficit mechanism, ap-

' plicable‘to a simple and central“co'st-sharing problem. The lower bound is robust and o
even applies to all truthful, randomized cost-sharlng mechanisms, and randomizléd ‘
mechanisms that‘are’only truthful in expeetation See Ch‘apter 8. ‘

We conclude W1th a list of open questlons in Chapter 9.

Remark 1.4. 1 This thesis is based on the followmg papers. Roughgarden and Sun-
dararajan [72] formulates the approximation based measure of efficiency loss. Rough—
- garden and Sundararajan [72], Roughgarden and Sundararajan [71] and Chawla et
al. [19] use this to 1dent1fy optimal Moulin mechanisms for various cost—sharlng prob— '
' lems. Mehta et al. [59] introduces acyclic mechanisms, and bounds their perf_ormance. _'
Dobzinski et al. [27] establishes fnndalnental Jower bounds on the efficiency loss of all

incentive compatible, approximately bndget-balanced mechanisms.

1.5 Notes
1.5.1 - Binary Service.

A key restrlction of our rnodel is that the nlechanism offers each player only one
“of two levels of participation, servme or no serv1ce One could take instead model

~ and determine the extent of players part1c1patlon in the project. (Clarke [22] and
~ Groves [36]) allow for this possibility.)

* However, this restriction offers two technlcal advantages First, from a mechamsm
design point of view, players are smgle-parameter agents, i.e. each player’s private
information is a single number. Incentive compatible mechanisms ‘fo_r sin_gle—parameter
settings are better understood than those for multi-parameter settings, a fact we

leverage throughout this thesis, especially in Chapter 8 1.

1Admlttedly there do emst more general smgle-parameter models that allow for multiple levels of
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1.5. NOTES - 9

~ Second, for cost functions that are defined implicitly as the optimal solution of
an instance of a combinatorial optimization problem (see Section 2.2), we aléo hold
the mechanism M responsible for constructing a feasible solution to the optimization :
problem induced by the served set 5. When there is a binary notion of service, several
p'ieviously developed algorithmic techniques are useful for this task.
Even with this restriction, we cén model several natural resource allocation set-
tings, ahd, further, our ideas have found application in settings with multiple levels
-~ of service. See [59, 14]. ’

1.5.2 Excludability

Another restriction on our model is that we assume that the mechanism can exclude - -
playérs from participation. The ability to exclude players is vital to recovering the
cost of the constructed Solutibn, without Whiéh we encounter the free rider problem,
ie., participanté can enjoy..the.beneﬁts of participation without contributing to the
cost of the resources (see for instance [2]). Implementing exclusion may however

require special effort:

Example 1.5.1 An interesting historical example of exclusion is Foothills Park, a
park adjoining three cities, Palo Alto, Mountain View, and Los Altos. During the
planning phase, all three cities considered par-ticipating in a project to turn this land
into a park. Eventually, Mountain View and Los Altos felt their money could be
better spent and refused to take part. As a resul_t Palo Alto bought and developed
the land, turning it into what is now Foothills Park. However, they also ensured that
only residents of Palo Alto have access to the park. Proof of residency in Palo Alto

is required at the gate [1]!

Of course, exclusion need not imply lack of service. For instance, in Example 1.1.1,
exclusion may mean that municipalities develop and use on-site water resources; in
the above example, residents of Mountain View and Los Altos have access to other

parks.

service. However, these prevent us from leveraging the rich literature on combinatorial algorithms .
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Admittedly, for some public projects, exclusion is not feasible, and our model is not
applicable to these. For instance, consider a public project inVolving municipalities to
ensure clean air. It is not (yet?) possible to exclude non—partlclpatmg mumclpa,htles

from enJoylng the benefits of cleaner air.

v1 5.3 Cooperatlve Game theory

Part of our model—the cost function on subsets of players—deﬁnes a cost game from ’
) cooperatlve game theory (see for instance Osborne and Rubinstein [66] Chapter 13)

A solution in ‘cooperative game . theory, given a set of potentlally cooperatmg
players, describes a putative assignment of prircesv.‘ to these players that cover the cost
of service, i.e. for all sets § C U of cooperating players, 'fa\setv of numbers x(, S)

forallie S such that Y, ¢ x(i,S) = C(S).’ This corresponds to our cost-recovery
requirement. , ‘ | ‘ - ‘v _
: .Unlike mechanism design, cooperative game theory does not deal with priyate ‘
“information, in fact it does not include the notion of value for service, and presumee
" that all players desire service, no matter Awhat they are charged. Consequently, there
is no notion of computing an optimal trade-off between value and cost, i.e. no no-
tion of economic efficiency. And, there is no notion of incentive compatibility as all
information is considered pubhc |

The key issues 1n cooperatlve game theory are core stabzlzty-whlch means no
coalition has an mcentlve to secede from the project—and fairness. Both issues are
vaiid concern‘s. in our motivating examples, but we choose the mechanism design
approach and focus on the private in_formatioh and economic efficiency aspects. That
said, some of the mechanisms we study inadvertently satisfy (approximate) versions
of core stability and fairness. '

Our work is related to cooperative game-theory in the broader sense of Moulin [61].
Moulin [61] proposes three modes of cooperation. The direct agreement mode—where
players arrive at consensus by face-to-face bargaining, the decentralized mode—where -
the outcome results from players acting in a decentralized, self-interested way, and

the justice mode where decision power is vested in a central arbitrator, whose choices
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1.5. NOTES 11

follow some normative principles, presumably arrived at by consensus among the
players. The model that we study corresponds to the third mode, with the normative

principles being efficiency, no-deficit and incentive compatibility.

1.5.4 Profit Maximization

An alternative route to the one we take in this thesis (maximizing social welfare
and ensuring cost-recovery) is to maximize the mechanism’s profit, like Myerson [65]
does in the context of single-item auctions. A straightforward generalization of Myer-
son [65] identifies revenue-maximizing, incentive-compatible cost-sharing mechanisms
under Bayesian assumptions on player valuations. Beyond this observation, we are

unaware of any cost-sharing work that takes this route.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapte_r 2
Preliminaries

’ Th1s chapter includes deﬁn1t1ons and prehmmary results used throughout this thesis.
Treat this chapter as a reference. Sectlon 2. 1 describes our mechamsm desrgn set-

’_tmg Sect1on 2.2 defines several types of cost-sharing problems Section 2.3 defines.

our des1derata—budget-balance and ejﬁczency Section 2.4 discusses and deﬁnes the

various notions of incentive compat1b1l1ty used in this thesis. Section 2.5. d1scusses
cost- shamng methods, a combmatonal abstractmn used extensively in the hterature )

. on cost-sharmg mechamsms

2.1 Meché’nism Design Setting

This section describes the. inputs to the mechanism, the outputs of the mechanism,

the basrc protocol, and the knowledge assumptions.

The problem input is a set U of n players and a cost function C that assigns a cost

C(S) to every set S C U of players We assume that C((Z)) 0 and that C(S) < C( ) |

foral SCTCU. In add1t1on, every player i € U possesses a private, nonnegative
valuation v;, representing player #’s maximum willingness to pay for being included
“in the chosen set S. |

A mechanism collects a nonnega,tlve bid b; from each player i € U selects a set

S C U of players and charges every player i a price p;. " For cost functlons that . are

12
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'2.2. A HIERARCHY OF COST-SHARING PROBLEMS , 13

defined implicitly as the optimal solution of an instance of a combinatorial optimiza-
tion problem (see Secﬁtion“ 2.2 for several examples), we also hold the mechanism M
responsible for constructing a feasible solution to the optimization problem induced
by:the'ser_ved set S. The cost Cy(S) of this feasible solution is in general larger than
the cost C(S) of an optimal solution; indeed, many of the underlying combinatorial
optimization problems we study are NP-Hard and the mechanisms Wé'p'roposevwill

run in polynomial time.

Remark 2.1.1 Mechanisms can be defined more generally, but the Revelation Prin-
~ ciple [58, P.871] justifies restricting attention to the class of “direct-revelation mech-

 anisms” defined above.

22 A HierarChy' of COSt-Sharing PrOblems -

| Oﬁe of the main pbihts of this thesis is to contrast the intrinsic diﬁ'iculty of vari-
ous cost-sharing problemé, as a function of the unde_rlying cost-function (recall Sec-
tion 1.4.3). To this end we define, and will later study, several types of cost-sharing
problems. Many of these are motivated by standard combinato’ri‘al optimization prob-
lems. ‘We now define these cost-sharing problems via their underlying cost fﬁnctions.

- These cost-sharing problems are in a hierarchy as Figure 2.1 éhoWs; for instance ev-
ery fixed-tree multicast problem (Example 2.2.8) is also a submodulai' cost-sharing
problem (Example 2.2.2). i

We start by defining a class of cost-sharing problems that encompasses all those |
we study. In several resource allocation settings, a feasible vway‘ to service a set S; of
players can be combined with a feasible way to service a set Sy of players to serve
the union S; U S, of players, at no additional cost. The cost function defined by the -
optimal solutions (ranging over subsets of U ) of such an optimization problem defines

a subadditive cost function in the following sense.

Example 2.2.1 (Subadditive Cost Function) A subadditive cost-sharing problem

is defined by a player set U and a nondecreasing cost function C such that, for every
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Subadditive Cost

Submodular Cost

Set Cover

Steiner forest

Steiner tree

Vertex Cover

Fixed Tree Multicast

& Public excludable
good

Figure 2.1: A hierarchy of cost-sharing problems. Nodes are families of cost-sharing
problems. Edges between nodes assert that every problem instance of the destination
node is also a problem instance of the source node.

S1CU, S5 CU,
C(S1) + C(S2) > C(S1 U Sy). (2.1)

Next, we define a family of cost-sharing problems whose underlying cost function
exhibits diminishing returns, i.e., the incremental cost of servicing a player falls as
the set of players already serviced grows. If players are symmetric, this corresponds

to a cost-sharing problem with a concave cost function. In general, we have:

Example 2.2.2 (Submodular Cost Function) A submodular cost-sharing prob-

lem is defined by a player set U and a nondecreasing cost function C such that, for
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Flgu_re 2.2: An irlsta.nceof ‘uncé,pacitafed facility loQation'(‘NMUFL)(Example 2:.2.3)
every Slvg Sy C U andi€U,i1 ¢ S,,
C(S,U{i}) - (52) <C@uEn-cE). (22)

We now discuss types of Cost-:sha,ringproblerns defined implioitly by combinatorial;

opt1m1za.t1on problems. " Though subadditive, these cost-sharing problems are not

, submodular in general (as deplcted in Figure 2.1). We begin with a famﬂy of cost-

sharing problems based on the Well known facility location problem o

) "Exar'rlple 2v.2.3v,(Non'-Metric‘U'n(:apacit‘,ated Facility Location (NMUFL)) An
~ uncapacitated facilz'ty location (NMUFL) cost-sharing problem is defined by a player
set U and a nondecreasing cost function C, defined implicitly by a set F' of facilities,
o larn opening cost Iq lor each facility q € F, and a nonnegative cost function c defined
| on F'xU. In Flgure 2.2, for exa.mple the universe contains three players there are
two facilities with opemng costs fi=1and f, = 2, and the connection costs between
facilities and players are as shown. For a subset S C U of the players, the cost C' (S)
“ is defined as the cost of the cheapest way to open a nOﬁ-empty subset of facilities and

- connect all of the players in S to open facilities. Formally,
C(S) = mi
C($) = , min (EZF fo+ ;mmc qm))
For instance, in Figure 2.2, the cost C({4, B, C}) of servicing all of the players is 7.

We pay special attention to NMUFL cost-sharing problems that have metric con- '

nection costs:
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| ~Example 2.24 (Metrlc Uncapacltated Facility Locatlon) A metric uncapaci-
 tated facility location cost—shamng p'roblem isa NMUFL cost- sharmg problem in Wh1ch :
the connect1on costs satisfy the trlangle inequality: for every pair 4,7’ € U of demands

and palr q,q € F of facrhtles
- _C(q:, Z') S., o(q,7) +c(¢,7) + (g 9).

Another sub—clasS of NMUFL cest—s‘haring' prbblems have connection costs that
are either zero or co. The underlying cest functions are equivalent to the Well-khewn
set-coxrer problem, where the.elements correspond to ‘demands, sets and their costs

= cdrreSpond to facilities and their open"in"gv costs, and connection costs are ’either‘O (if

‘the given element belongs to the given set) or oo (otherwise).

'Exam‘ple 2.2. 5 (Set Cover) A set'cever eost-sharz'ng problem is defined by a player

set U and a nondecreasing cost function C defined as follows.  There is a collection

C= {Al, , A} of subsets of U with nonnegatlve costs: cl,  C- For a: subset S C
, vU C (S ) 1s deﬁned as the cost of the cheapest way of coverlng the elements of S using

subsets from C..

~ Some instances of set cover cost-sharing problems are also instances of the vertex:
cover optimization problem Edges correspond to elements and sets of edges 1nc1dent

on a common vertex form the subsets. .

EXampl'e 2.2.6 (Vertex Cover) A verte:t cover cost—shering problem is defined by
-a player set U and a noridecreasing cost function C defined implicitly by an undirected
'grapih G = (V,U) with nonnegative vertex Weights For a subset S C U, C(S) is -
defined as the minimum weight vertex cover of the graph V S—a. subset of vertices

that 1ncludes at least one endpomt of each edge in S

An important class of non—NMUFL cost-sharing problems have the well-known

- Steiner tree problem,' or a variant of it, as the'underlying cost function:

Example 2.2.7 (Stemer Tree) A Steiner tree cost-sharing problem [47] is defined
by a player set U and a nondecreasmg cost function C' implicitly defined by the
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following. There is an undirected graph G = (V, E) with non-negative weights on
the edges. There is a designated vertex t € V called the root. Every player ¢ € U
is associated with a node in V. The cost C(S) of a subset S of players is defined as

. that of a minimum-cost subgraph of G that spans all of the players of S as well as.
the root t. o

~ While Steiner tree cost-sharmg problems are not in general submodular a sub- ‘

class of these problems are:

‘Example 2.2.8 (FiXed—Tree Multicast) A fized-tree multicast cost-shaﬁng prob-

lem [33 63], is a Stemer tree cost—shanng problem Where the 1nput graph is a tree

We next l1st three generahzatlons of Stemer tree cost-sharmg problems

_ Example 2.2.9 (Steiner For‘est) In a Stez'ner fOrest cost-sham'ng problem with player
set U, the cost function is deﬁned as follows There is an undirected graph G =
'(V E) a non—negatwe cost functlon ¢c: E - R, and a set R of terminal pairs :
{(s1,t1), (52, t2) - - (sk,tk)} C V x V. The cost of servicing a subset S C U of termi- . .
- nal pairs is the cost of the m1n1mum Welght subgraph of G that connects the terminal o

‘pairs together. -

A different generaliZation of Steiner Tree problems:models'a, settmg where the

- cost of an edge is a function of the number of nodes that use it to connect to the ro'ot.

., ’Exampl’e 2.2.10 (Single-Sink Rent-or-Buy (SSRoB)) In_la_ single‘-*sz'nk_ rent-or-
buy (SSRoB) cost-shar"ing pé’"oblem with player set U, the cost funclion is .deﬁned
as follows. There is a graph G = (V, E) with edge costs that satisfy the Triangle

Inequality, a root vertex t and a parameter M > 1. Each player i € U is located
at a vertex of G. For any set S C U of players, a feasible solu_tron to the SSRoB
problem induoed by S is a way of installing sufficient capacity on the edges of G so

“that every player in S can simultaneously route one unit of flow to £. lnstalling  units
of capacity on an edge e costs c. - min{z, M}; the parameter M can be interpreted
as the ratio between the cost of “buying” infinite capacity for a flat fee and the cost

of “renting” a single unit of capacity. The cost C(S) of a subset S C U of players is
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bthen defined as the cost of an optimal solut1on to the SSRoB problem induced by the
set S ' ’ :

We now deﬁne ‘a set of cost- sharlng problems that srmultaneously generahze

Stemer forest and SSRoB cost—sharmg problems :

Example 2.2. 11 (Multicommodity Rent-oréBuy(MRoB)) In aMRoB cost- sharing
problem, each player % corresponds to a pair of nodes s;, t All other aspects of the

) »problem are s1m1lar to SSRoB cost-sharing problems

' The followmg cost-sharing problem is fundamental because it is an_ 1nstance of '
‘ every one of the cost-sharing problems defined above. - Thus every negatlve result that
apphes to this problem automatlcally applies to all of the other cost sharmg problemv

: fam1lles

 Example 2.2. 12 (Excludable Public Good) In the ezcludable public good cost-
. sharing pmblem with player set U, the cost functlon is defined as follows The cost

'rof any non—empty subset S c U of players is 1 and the cost of the empty set is 0.

To conclude, we mentlon a s1mple cost-sharlng problem based’ on pure ’margmal

cost.

Example 2.2.13 (Marginal Cost) In an additive cost—,sﬁdm’ng problem with player
| set U, the cost r‘function is defined as follows. Every player ieUis as'sociated with a

cost ¢;. The cost of any non—empty subset S CU of players is Zze 5 Ci and the cost
-of the empty set is 0..

2.3 1Budget-Balance and Efﬁciency

‘We now formally define two of our mechanism design objectives, budget-balance and

efficiency.
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) Definition 2.3.1 A mechanism M for the cost-sharing problem Cis (ﬁ, v)-budget-

' balanced if

’Y zeS ‘
for every outcome — 'seﬁ‘S, prices p, and, if -applicable, feasible solution with service
" cost CM(S ) — of the mechanism. _Recall from Section 2.1 that the cost of the solution
' produced by the mechanism'm,ay.not be optimal, and hence, in_génei"al Cu(S) #
C(S). :

.- A mechanism is céMpetitive in the sense of P4l and Tardos [68] if it is (I,7) |
budget-balancéd for some v > 1. A §- budget—balanced mechanism is, by definition,
B, ) budget- balanced. A no -deficit mechanism is B-budget-balanced for some 8 > 1.
A budget—balanced mechanism is 1- budget -balanced.

Remark 2.3.2 Our deﬁmtlon of budget balance 1ncludes an upper and a lower bound
on the total payment. The lower bourd assert that we would hke the mecha.msm to .
(approximately) recover the cost that it incurs, i.e., be budget-feasible. The upper
~ bound asserts that the mechanism should not end up with a‘budget surpIus, a sec-
ondary requirement that obviates the need to deternﬁne how to expend the surplus.

For the most part we shall focus on no-deficit mechanisms.

Remark 2.3.3 Most previous works on approximately budget-balanced cdst-sharing '
mechanisms déﬁne ﬁ-budgét—bala.n(ie to mean (1, §)-budget-balance rather than (3, 1)-
‘budget-balance. For the cost—shé.ring mechanisms that we study, a mechanism meet-
ing ‘one definition can be modified to satisfy the other by scaling its prices accordingly,
and thus the two definitions are in some sense equivalent. In this thesis, we adopt
the definition that is more convenient for stating and proving efficiency guarantees.

All our results have obvious analOgé for the alternative definition.

'Remark 2.3.4 There are two reasons to study approximate budget-balancé.. The
first, is the impossibility result discussed in Section 3.1, which states that there are
no efficient, no-deficit, truthful mechanisms. So, it is interesting to relax the cost-

recovery constraint to see how efficiency improves. The second is the impossibility
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results from [45], which identify several non-trivial, interesting cost-sharing problems
that do not permit any budget-balanced Moulin mechanisms. (Pnor to our work, this

was the only framework for designing approx1mately budget- balanced mechamsms )

Given a mechanism M, the socz‘al welfare from servicing a set T,‘ _W(T),'is'deﬁn_e_d
as the difference between value generated by servicing the set v(T) = 3;p v and

the cost incurred Cys. Given valuations, the optimal social welfare W* is
max (v(S) - C(95))

ThlS quantity is independent of any concrete mechanism. We shall often use S * to de— '

- note an element of the set argmaxgc (v(S) C(9)). See Chapter 3, and specifically
Section 3.2.3, for the definition of apprbxifhate efﬁmency

_ | Asymptotlc Notatlon Some of our approximation bounds use standard asymp- v

- totic notation. Here f(n) = O(g(n)), f(n) = Q(g(n)), and f(n) = o(g(n )) means

that lim, . f(n)/g(n) is bounded above by a positive constant, bounded below by |

" a pos1t1ve constant, and equal to zero, respectlvely

24 P-rivé_nte Inférmation and Incentive Cofhpati-
- bility |

We implicitly impose two natural constraints on all our mechanisms. First, a mech-
anism satisfies no positive transfers if it never pays players, i.e., prices are always
nonnegative. A mechanism is individually rational (or synonymOusly, satisfies volun- -
tary participation), if truthful players derive non-negative utility from participation.
‘Without the individual ra,tionality,constraints, players may sometimes prefer to not
participate once the Quteome is known, which is undesirable. For truthful, direct:
revelation mechanisms these requirements together imply: if the serviced set is S,
‘then p; = 0 for players i ¢ S and p; < b; for. players 1€ S.

We now define our 1ncent1ve compatibility constraints. Asis standard Wwe assume

that every player aims to maximize the quasilinear utility function u;(S, p;) = v; - z; —
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p;, where z; = 1if 4 € S and z; = 0if ¢ ¢ S. Our incentive-compatibility constraint is
the well-known strategyproof condition, stating that tru‘thful' bidding is a dominant

strategy for every player. A

Definition 2.4.1 (Strategyproofness) A mechanism is strategyproof (SP) or truth-
ful if for every player i, every bid vector b with b; = v;, and every bid vector b with
b, = b; for all j # 1, u;(S,pi) = u;i(S’, p), where (S, p) and (S, p') denote the outputs

of the mechanism for the bid vectors b and b’, respectively.

Some of our mechanisms will also satisfy stronger incentive compatibility con-

- straints.

Definition 2./4.2' (Groupstrategyproofness) A mechanism is groupstrategyproof
(GSP) if for every subset of players S C U, bid vectors b, ¥, such that b; = v; for
i € S and b = b; for all i ¢ S, we have that if there exists a player ¢ € S such that
“ui(S, ps) < uwi(S', pi), then there exists a player j € S such that u;(S, p;) > ui (S, p});
here (S, p) and (5',p’) denote the outputs of the mechanism for the bid vectors b and

b, resp_ectively.

Definition 2.4.3 (Weak Groupstrategyproofness) A mechanism is weakly group-
strategyproof (WGSP) if for every subset of players S C U, bid vectors b, ¥, such that
b =wiforie S and b, = b; for all i ¢ S, we have that if there exists a player
i € S such that ui(S,p;) < wi(S',p}), then there exists a player j € S such that
uj(S, p;) = ui(S',p}); here (S,p) and (S',p’) denote the outputs of the mechanism for
the bid vectors b and ¥, respectively. -

Informally, a mechanism is groupstrategyproof [63] if no coordinated false bid by

a subset of players can ever strictly increase the utility of one of its members with-
out strictly decreasing. the utility of some other member; transfers between coalition
members are not allowed. Informally, a mechanism is weakly groupstrategyproof [26)]
" if no coordinated false bid by a subset of players can ever sfrictly increase the utility
of every one of its members. Thus, in a WGSP mechanism, every dev1at1ng coalition

~ has at least one 1nd1fferent member

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9 | CHAPTER 2. PRELIMINARIES

Note that GSP implies WGSP, and WGSP implies SP, h‘owerfer the converse does
not generally hold. For example VCG mechanisms (Sectlon 2.4. 1) are SP, but typi-
cally not WGSP And acychc mechanisms (Chapter 6) are WGSP, but not in general
GSP. ‘

We now mention two charactenzatlons of truthful mechanisms. The first is a-
payment centric view that we use in Sectlon 8.2.-The forward direction is trivial, for .

| _the reverse consult eg. [60]

Propos'iti‘on 2.4.4 Define property II bf a mechanism as follows: For everyi € U .

“and bid vector b_; for players other than i, there is a threshold ;(b_;) such that: (i z)

“if © bids more than t;(b-;), then it receives service at pmce t:(b_s); (i) if i bids less
~ than t; (b)), then it does not receive sermce o

| Then, M is.a truthful cost-sharmg mechanism that satzsﬁes voluntary partzczpatzon '

T wzth the player set U zf and only zf it satzsﬁes property 1.

“The vsecon'd is an ess,entially, equiva‘.lent “allocation eentric view that we use in
‘Section 8.1. See Archer and Tardos [6] for a proof.. An mechanism is monotone if for
| every player i and fixed bids b_; of the other players, if player i receives service with
a bid bz, then it also receives service for a bld b > b;. A mechanism is a threshold

mechamsm if for every player i and ﬁxed set of bids b_; of the other players it charges

“every winning player ¢ the minimum b_1d that wins it service.

Propos1t10n 2 4.5 A mechanism is truthful and satisfies voluntary partzczpatzon if

and only if it is a monotone, threshold mechanism.

Randomization makes a brief appearance in Chapter 8. A randomized mechanism

is, by deﬁnition, a probability distribution over deterministic mechanisms. Such a
mechanism is universally truthful if every meehanism in its support is truthful. Such

a mechanism is truthful in expectation if no player can ever strictly increase its ezpected

* utility by misreporting its valuation. Every universally truthful mechanism is truthful )

in expectation, but the converse need not hold.
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'2.4.1 VCG Mechanisms

" The well;known Vickrey-’Clarke-Groves (VCG) mechanism is a truthful and efficient
» mechanism, applicable to several mechanism design settings We define it in the
= - context of cost-sharing (following Moulin and Shenker [63]). Given a proﬁle v of
o bldS the mechanism allocates service to the set S* that maximizes social welfare. q
" Each player 3 is charged h;(v_;) — (Z jes\(iy Ui C(S* )) 'Intultlvely the mechanism
is truthful because the prices align the global objective (somal welfare) with each
player s ut1l1ty function—so the player should bid truthfully to maximize utlhty, up
to a term h;(v_;) that is 1ndependent of player i’s bid. ,
An 1mportant type of VCG mechanism is the VCG mechanism with Clarke ‘tax,
‘where the functions h; are defined to be the optimal social welfare without player i (al-
ternatively with player #’s value set to zero). As discussed in Moulin and Shenker [63],
 this mechanism is truthful' efficient, and also satisfies no positive trahsfers and yol—.
untary part1c1pat1on ‘in fact it is the unlque such mechamsm Unfortunately, as

v dlscussed in Chapter 3, 1t has a large budget deficit.

2.5 Cost-‘Sharing 'Methods |

The mechamsm demgn frameworks we study, ie., acychc mechamsms and Moulin

mechanisms, localize the problem spec1ﬁc aspects into a pricing oracle called a cost-‘i o

sharing method. A cost-sharing method x is a function that assigns a non—negatlve ’
cost share x(i, S) for every subset S C U of players and every player ies.

For cost functions induced by combiriatorial optimiZatlori, problems' (such as Ex- |
“amples 2.2.7 and 2.2.8), a cost- sharing' method outputs both cost shares and a feasible
solution for the optimization problem 1nduced by S. A-cost-sharing method is (ﬂ, v)-

budget balanced for a cost function C and parameters 3, > 1 if

- Cy(S)

2L <3 x(i.5) < - C(S), @3

i€S

* where C,(S) is the cost of the feasible solution produced by the method X- As usual,
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._ ﬂ Budget balance is short for (3,1)- budget-balance and such methiods are also called
| no- deﬁczt Mouhn mechanisms (Chapter 4) ‘require cost-sharmg methods that are

cross—monotomc 1n order to be SP

Deﬁﬁition 2.5.1 A cost-sharing methed is cross- monotonic if 'the’costl share of a
player only increases as other players are removed for all. S'C T C U and i€ S’ o
x(3,8) = x(3,T). ’ ' ‘

Here is an example that illustrates the deﬁnitions in this section.

' Exa.mple 2.5.2.('Shepley and Sequential_Coét-Sharing) Consider an instance

- of fixed-tree multicast (Example 2.2_.8) with tree T and -player set U = { L,2,...,n}.

" Two 1- budget—balanced cost-sharing methods are as follows. 'In the 'sequential Cost—
sharing method xseq, given a subset S C U, each player iesS pays the full cost of
“each edge of its (umque) path to the root of T that is not used by a player of S Wlth
v_lower index. In the Shapley method Xsh» each player 1€eS pays a “fair share”. of each

of the edges in its path — ¢./ne for an edge e of cost Ce; where n. denotes the number.

of players of S usmg edge € to the reach the root of T. ‘Since the amount a player»
pays for each edge in its path can only increase as other players are removed from S,

both of these rnethods are cross-monotomc
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| Chapter | 3
'.Quantifying Inefﬁeiency

~In this chapter we discuss why efficiency loss arises in truthful, approximately budget-
}balanced mechanlsms and introduce our approx1mat10n based approach to measuring

efﬁc1ency Joss.

3 1 A Motlvatmg Imp0331b111ty Result

Recall our desiderata from Chapter 1. Are there eﬂiment no—deﬁmt truthful mecha-

nisms?- Here i 1s an example that shows that in general the answer is negatwe

Example 3.1.1 Consider the excludab_le pﬁbhc good cost-sharing preblem ('Exam~
 ple 2.2;12) with n. > ‘fl,-pla;yefs.- Fix any truthful, efficient mechanism. - Recall that
every truthful, ind_i‘)idually-fatienal' mechanism must offer a bid—independent take-it-
 or-leave it price in the sense of Proposition 2.4.4. Fix a player i € 1...n. Suppose -
‘that the sum of the valuations of all the players other than 4 (3, v;) is strictly
larger than one. What take-it-or-leave-it. price does the mechanism offer player ¢?
For the mechanism to be optimally efﬁment the player % should be serviced if it has
any strictly positive valuatlon So it must be offered a price of 0. | -
- Now consider the valuatlon proﬁle 1+%€,...,1+ € for some posmve €. As the
mechamsm is efficient, it services all the players, and incurs a cost of 1. But, by the

“above ergument, the mechanism does not collect any reifenue, and thus has arbitrarily

25
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26 o CHAPTER 3. QUANTIFYING INEFFICIENCY

~ bad deficit.

What just h'appened? When we insist ‘on a truthful, efficient, budget—balanced
mechanism, we are really asking if the prices can play two different roles simultane-
| ously. Can they help incentii/ize‘ )a.n efficient allocation while recovering cost? The
above example shows that the umque prlces that support the efficient allocat1on do
not in general recover cost.
| " For readers familiar with the mechanism deelgn literature, here is a slicker way to
see where this impossibility comes from. Reeall that eifery direct revelation mecha-
v_ nism consists of an allocation rule and a payment rule. Arguably, the central result of
'Single-parameter mechanism design (see for instance Myerson [65] or Archer and Tar- .
_dos [6]) states that the allocation rule of a truthful mechanism determines its payment
’fun‘ctierl up to certain bid-independent terms. When we insist on voluntary participa-
t1on these b1d—1ndependent terms are uniformly zero. Consequently, there is-aunique - i
L efﬁc1ent mechanism that satisfies voluntary participation (Moulm and Shenker [63],
o Propos1t1on 3 proves this uniqueness result from first principles). This happens to
~ be the VCG mechanism with Clarke tax (Section 2.4.1). Unfortunately, this mech-
anism happens to have arbitrarily bad budget balance, even for simple cost-sharing -
problems such as the excludable public good cost- sharing problem. This mechanism
charges a player only 1f it is p1vota,l—a. player is pivotal if reducing its valuatlon to
zero changes the allocation of at least one of the other players. For the excludable
public good cost-sharing problem, when' every player has a value larger than the cost
of the good, no player is pivotal. (Our .e)'(ample above confirms this phenomenon.)
~ Finally, recell that the excludable public good cost-sharing pr,oblemv‘is an insta',n’cer
ef all the cost-sharing problems listed in the previous chapter other than the additive
cost-sharing problem. So, the impossibility result applies to rnany inteiesting cost-

sharing problem families.

3.2 How to Quantify Inefﬁci‘e‘ncy? |

How should we proceed?
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3.2.1  Approximation

Impossibility results are common in optimization. Motivated by conditional impossi-
bility results like Cook’s Theorem [23], as well as information-theoretic lower bounds
in restricted models of computation like online [16] and streaming algorithms [64],
~algorithm designers are accustomed to devising heuristics and proving worst-case
guarantees about them using approximation measures. This approach can also be -
applied to cost-sharing mechanism design to quantify the inevitable efficiency loss in
incentive-compatible, budget-balanced cost-sharing mechanisms. As worst-case ap-
prox1mat10n measures are rarely used in economics, this research direction has not

been pursued prev1ously

- 3.2.2 The O_bvious Approach Does Not Work

Several definitions of approximate efficiency are possible Arguably, the most natural
requlrement is to insist that a mechanism always computes an outcome S that isa
p-approximation of the social welfare: W(S) > p- W(S*), where S* is the econom-
' ieally efficient solution. Unfortunately, Feigenbaum et al. [32] shattered any hope
for such a guarantee: For the excludable public good cost-sharing problem, for ev-
ery '7, B = 1and B, y-budget-balanced incentive-compatible mechanism, there is a
valuation profile such that the efficient solution has strictly positive welfare but the
‘ " mechanism produces the enipty outcome (with Z€ero welfare). Thus every mechanism,
no matter how intuitively “good” or “bad”, is a 0-approximation algonthm for the
social welfare objective. This 1napprox1mab111ty result is characterlstlc of mixed-sign

objective functions such as the social welfare

3.2.3 Our Approach, and Its Interpretatiohs

We must therefore measure efﬁciency loss in a different way. Our basic efficiency
guarantees have the following form, for a parameter p > 0 and a mechanism for the

cost-sharing problem C: for every valuation profile,

W(S)-W(S)<p-C(S), (31
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" where S is the output of the mechanism and S* is an efficient outcome. In this case,

we call the mechanism p-approzimate.

. 'We have chosen to present this efficiency guarantee in terms of additive welfare
loss, but it is robust and admits several diﬁ”ereht interpretations For example, the
‘ bound in (3.1) 1mphes a relative approximation guarantee for a different formulation
of economic efficiency. Precisely, deﬁne.t_he social cost m(S) of an outcome S to be
the cost ir'lcurred by" the mechanism plus the sum of the ezcluded valuations (i-e.,
opportunity cost):” : o f |
- ©(S)=CS) +v(U\S). (32
'S1nce soc1al cost and soc1al welfare are related by the affine transformation 7(S) =
. —,W(S )+v(U), minimizing the social cost is ordinally equivalent to maximizing the so-
cial Welfare The two objective functions are not, of course, equivalent from an'approx—'
_1mat10n perspective. Indeed, whlle the 1mp0381b111ty result in Fe1genbaum et al. [32]

precludes any relative approx1mat10n of the social welfare, every p- approa:zmate cost— |

o shamng mechamsm also (p+1)- approxzmates the social cost. Such non—approx1mat1on-‘ ey

preserving transformatmns are common in apphcatlons with mixed-sign objective
functions, including pr1ze—collect1ng combinatorial opt1m1zat1on problems (e.g. [10])

and discrete maximum-likelihood problems (eg. [54])

- A second interpretation of the bound in (3.1) is motivated by the examples used
in the impossibility result in [32]. These examples are intuitively difficult because the
- optimal outceme S* has large cost C(S*) and value v(S*) only slightly larger than
C(S*), leaving the mechanism with no “margin for error”. Can we obtain a relative
approximation of welfare when the value :of an optimal outcome is bounded awaly
from its cost? To formalize this question, we say that an outcome S is h-sepamted if . |
W(S) = n-C(S) or, equiualently, if v(S) > (p+1)-C(S). The punchline, proved via
~a simple ealculation, is this: if a mechanism is p-approximate, then p is the sepdrdtz’on
threshold beyond which non-trivial tl;elfare approzimation is possible. ‘Precisely, ap
approximate mechanism exﬁracts at least a (1 — p/n) fraction of the- optimal welfare

‘ when the optimal outcome is n-separated.
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3.2.4 Justifying our Approach

We next establish the robustness of such an appreximatidn bound by demonstrating

its consequences for alternative definitions of approximate economic efficiency.

Not all definitions of approximate efﬁcieney provide meaningful information for
cost-sharing mechamsm design. As noted in Section 3.2, for each ,8, ~ > 1 there are
simple cost—sharlng problems such that no incentive-compatible, ,B - budget balanced
‘mechanism obtains a non-zero fraction of the optimal welfare [32]. Thus, if we insist
'_ on adopting a relative approxrmatlon measure — by far the ‘most -ubiquitous kind
‘across theoretical computer science — we must either change the obJectlve function

or restrict the allowable instances. We explore these two approaches in turn.

What is the “smallest perturbatidn” of the welfare objective that admits non-
tr1v1al approxrmatlon results? A minimal requlrement for a- credlble reformulation is '
‘ordinal equivalence — for a fixed cost-sharmg functlon and valuatlon profile, a subset

S shpuld be “better” than a subset T if and only if S has higher welfare than 7. Thls
requirement suggests either mé.xinﬁzing f (W(S )) for a strictly increasing fnnction f or
:mini’mizing f(W(8)) for a strictly decreasing function f. Affine functions are in some
‘sense the “least distorting” candidate functlons f, and for relatlve approx1mat10n. -
guarantees there is no loss of generality in cons1der1ng only (1) m1n1m1z1ng -W(S)+
- 9(C,v) = C(S) — v(S) + g(C,v), where the additive term 9(C,v) is positive and
1ndependent of S; and (2) maximizing v(S) — C(S) + h(C,v) for a positive additive
term h(C,v). Since costs and valuations already occur posn;lvely in (1) and (2),
respectively, we take g to be independent of C and h to be independent of v. The-
- examples in [32] are strong enough to imply that no non-trivial relative approximation
s possible for these objectives unless g(C’ v) > v(S’*) and h(C,v) > C(S*). To avoid
the awkwardness of referencmg the optimal solution i in the objective function 1tself
we take g(C,v) = v(U) and h(C,v) = C(U), leading to the objectives of minimizing

social cost:

min#(S) = ~W(S) +o(U) = C(S) +v(U\ 5); S 33)

SCU
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and mazimizing social reward:

rglaxR( )= W(S) + C(U) =v(S) + [C(U) = C(9)]. | (3.4)

These answers to,vou'r 'initialb Question »con‘form to previous approaches to approxi-
mating mixed-sign objective functions in other application domains, including prize-
collecting combinatorial optlmlzatlon (e.g. [10]) and mammum—llkellhood inference
g [4). | o
Simple algebra shows that an eﬁieiehcy guarantee of the form (3.1) iinplies relative

approximation guarantees for the social cost and social reward objectives.

Prop051t10n 3.2.1 (From Addltlve to Relatlve Approx1mat10n) If Misa p-

approzimate mechanism for a cost—sharmg problem C; then assuming truthful bids:
(a) M isa(p+ 1)-approa’¢imatz’on algorithm for minimizing social cost; and“ o
. ( b) Misal /(p+ 1)-appfozimation algorithm for mazimizing social reward. |

The guarantees in Proposition 3.2.1 hold even if the constants ¢(C,v) and h(C,v) in
the deﬁmtlons of social cost (3.3) and somal rewa;rd (3.4) are reduced to 'v(S*) and
C (S*) respectwely

A second approach to efficiency guarantees is to seek a relative approx1mat10n of
welfare for the widest class of problems possible. The 1mposs1b1hty result from [32]
‘applies to the excludable. public good cost‘s'ha,ring problem which is an instance of
almost all other problem families (recall Figure 2.1). So, restrlctlng only the cost
function is in general umnterestmg for non-trivial relative welfare guarantees.

We instead study ‘promise problems” in which the value served by an optimal
solution is bounded away from its service cost. Recall from the Introduction that an
outcome S is n-separated for a parameter n > 0 if W(S). > - C(S). Call a valuation
profile n-separated if there is an n-separated efficient outcome. Slmple algebra implies

the following.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3. NOTES | . 31

Proposition 3.2.2 (From Additive Approximation to Promise Pfoblems) IfM
is a p-approzimate mechanism for a cost-sharing problem C, then, assuming truth-
ful bids, M is a (1- "3) -approzimation algomthm for social welfare for n- sepamted

valuation proﬁles

- Thus the approximation factor p is the separatlon threshold beyond Wthh the mech-
anism is guaranteed to approximate the social welfare.. ,

Fmally, recall that our critique of the social welfare objective was rooted in the fact
that it fails to differentiate between “better” and “worse” cost-sharing mechanisms. -
Does the approximation framework detailed in this section suffer the same flaw?

' The answer is “no”: the approximation factors (in the sense of (3.1)) of different |
. mechanisms for a problem can vary widely (Example 2.2.12 and Proposition 4.2. 12),
and the best-achievable- approximation factor is different, for different types of cost- -

sharlng problems (Sectlon 5.1 and Theorem 5. 3 10).

3.3 Notes
3.3.1 Beyond Impossibility: A Bayesian Approach

Dropping the voluntary participation constraint makes the 1mp0381b111ty result go
~ away—there is an efficient, truthful, no-deficit mechanism (VCG with a large bid-
independent tax). However, arguably, the voluntary participation constraint is vital:
Suppose that the valuation distribufions of the players are known to the mechanism.
Then, there is a mechanism that is efficient, truthful, -budget-balanced in expectation
over the valuation distributions (ex-anto budget-balanced), and that satisfies volun-
‘tary participation in expectation over the valuation distributions (ex-ante voluntary
participation). ' o
We start from the basic VCG mechanism. For every bid vector v, every pla.yér Jjis
paid an amount Ej 4ijes Vi~ C(S*) to align its utility to tho globél objective (social
welfare); here S* is the set that maximizes social welfare. So, each player enjoys an
expected utility equal to E[Y;.s. v; — C(S*)], where the expectations are over the

~valuations. The mechanism suffers an expected deficit of E[(n — 1) - DjeseVi— M
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(5 )+ C(S7).

As this mechamsm optimlzes social welfare, we have that E[ZzES‘ v;) > > E[C(S*)].
So the expected deficit and the expected surplus are both non-negative. Introducing
an additional bld-mdependent tax for each player leaves the mechanism efficient and

' truthful. Each player can be charged an additional amount (n —1)/n-E[} ;g v; —
C (S ], resultmg in ex-ante budget-balance, ex-ante Voluntary participation.

'Can we improve on this? &’ Aspremont, Gerard-Varet [24] propose mechanism
Wthh is efficient, Baye51an incentive compatible (truthtelhng maximizes expected
'utlhty where the expectatlon is over the other players’ valuations) and satisfies the

' property that the payments sum to zero; this needs an assumption that the players
valuatlons are dlstributed 1ndependently As in VCG the idea is to pay each player an
amount that, in expectatwn over other players’ val_ues, ahgns its utility with the wel- |
(fare objective, yielding bayesian incentive_compatibility. Call this payment to player
i, Xi(v;). Now, each ‘player is charged further'ameuht > Xi(vj)- These additional
payments balance the budget, and do not violate bayesian incentive compatibility as. -

B they are b1d-1ndependent (the terms X; (v,) are in expectatlon over the other players’

valuatlons)

' Can we instead get the payments to sum to the cost of the efficient solution, C(S*)?
The problem is that the quantity C (S*) depends on the players’ bids. Followmg the
above paragraph we could achieve ex-ante budget-balance, i.e. recover E[C(S*)], a

. bid 1ndependent quantity. However, this glves us a result weaker than the one above
- based on VCG..
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Chaptet 4
Moulin Meéhén/isms

Until 'receritly almost ia‘ll known approximately budg§t¥ba1anced cost—sharing mech- -

- anisms 'wevrevMoulin‘mechanis'ms [11, 17, 37, 39, 45, 47, 48, 51, 55, 56, 68]. As
,Sectiioﬁk 4.1 revievsrrs_,v Mouli'n'vmechanisms are aSce;_nding- auctions that consist of a
problem-independent ‘protocol tbgether with a problerh—dependent- pricing oracle (i.e..

- cost-sharing méthod).' Section 4.2 characterizes the efficiency loss of Moulin mech-
anisms in terms of a combinatorial property of the cost-sharing method, called its -
summability. ‘In the next chaptef we use this characterization to identify optimal

- Moulin mechanisms for a wide variety of Cost—sh'aring‘ proble'ms'. Section 4.3 summa-
- rizes the results of our analysis and compares the har‘dness of various cost-sharing

problems. Section 4.4 shows how we can trade éost—recbvery'fbr increased efﬁciency.

4.1 Moulin Mechanisms

, VWe first review M_ou'lz‘ﬂ mechanisms. A Moulin mechanism is driven by a cross-
monotonic cost-sharing method (recall Section 2.5)—a function x that assigns a non-
negative cost share x(3,S) for every subset S C U of players and every player i € S. |

Given a cross-monotonic cost-sharing method x for a cost function C, we obtam

- the correspondlng Moulin mechamsm by s1mulat1ng an iterative ascending auctlon

with the method x suggestmg prices for the remaining players_ at each iteration.

33
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Deﬁnitiori 4.1.1 ‘(-Mo,ulin Mechanisms) Let U be a universe of players and x a
cross-monotonic cost~sha,ring method defined on U. The Moulin mechanism M(x)

 induced by x is the following.
1. Collect a bid b; from each player : € U.
2. Initialize S := U.

3. If b; > (4, S) for every i € S , then halt. Output the set S, the feasible solution
constructed by X, and charge each player i € S the price p; = x(4, S).

4. Leti*€Shea player with b {-x(i*; S)..
5. Set S:=S \ {z*} and return to Step 3.

The crossfmonotOnicify constraint ensures that the:sirnulated auction is ascending,
in the sense that the prices offered to a player progressively increase with time. This
| ‘im_plies that the outcome of a Moulin mechanism is uniquely defined, independent of
the choices made in Step 4. Also, the Moulin mechanism M (x) cle’arly‘inherits the
budget-balance factors of the cost-shanng method x. Fmally, Moulin [62] proved the

followmg

Theorem 4.1.2 (Stréte‘gyproofness of Moulin Mechanisms [62]) If x is a cross-
monotonic cost-sharing method, then- the corresponding Moulin mechanism M(x) is

stmtegypmof

‘ Theorem 4.1.2reduces the problem of designing an strategyproof (Deﬁmtlon 2.4.1), |
(B,7)- budget balanced (Definition 2.3. 1) cost-sharing mechanism to that of designing
a cross-monotonic, (3,7)-budget-balanced cost-sharing method (see. Section 2.5 for

definitions).

Remark 4.1.3 Moulin mechanisms also setisfy a stronger notion of incent‘ive com-
patlblhty called groupstmtegyproofness (62, 63], which states that every coordinated
set of false bids by a coalition should decrease the utrhty of some player in the coalition

- (or should have no effect).
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By Theorem 4.1.2, the sequential and Shapley: cost-sharing methods of Exam-
“ple 2.5.2 induce strategyproof and fully budget-balanced mechanisms for ﬁxed—treev
multicast cost- sharing problems The 1mposs1b111ty result discussed’ in Sectron 3.1
implies that neither mechanism can be fully efficient. We conclude the sect1on with

- concrete examples demonstrating this.-

Exémple 4.1.4 Recall the excludable public good cost-sharing problem (Example 2.2.12).
For a valuation profile v, the efficient outcome is U if v(U) > 1 and 0 otherwise. The

| ‘ldea is towdeterminel “Worst-case Valuations” for the Moulin mechanisms M(Xseq)
“and M (x,») induced by the. sequential and Shapley cost-sharing methods (recall Sec-
tion 2.5), respectwely We do this by setting the valuations of players to be as large

" as possible, subJect to the constralnt that the mechamsm termma’ces with the empty |

outcome

, Fix a small pos1t1ve number e. If all players have Valuatlon 1 —€ and bid truth— ._
’fully, then M (xseq) outputs the empty outcome. If player ¢ has valuatmn 1/t — € .
for 4 E {1 2 n} and players bid truthfully, then M (xsn) outputs the empty out-
© come. These examples show (for arb1trarlly small €)-that the first mechanism is no -
better than ~ (n—1)- apprommate while the second is no better than = (H, — 1)-
approximate (in the sense of Equatlon (3.1)), where H, Z 1/i denotes the nth

Ha.rmonlc number

4.2 Summability Characterizes Approximate Effi-
ciency

" This section proves that the summability of a cost-sharing method characterizes the

approximate efficiency of the corresponding Moulin mechanism. After Section 4.2.1

defines summability, Section 4.2.2 proves that it upper bounds approximate efficiency

and Section 4.2.3 explores the senses in which this bound is tight.
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4.2.1 Summability
IntuitiVély, summability quantifies the efficiency loss from the overly aggreésive re-
- moval of players by a Moulin mechanism. We motivate the formal definition via

a géneralization of Example 2.2.12, which strongly suggests that summability lower

bounds the approximate efficiency of a Moulin mechanism.

Example 4.2.1v(Generic Lower Bound on Efficiency Loss) Let x be a Cross- i
monotonic costesharing method for the cost function C, defined orn’ the universe U.
~Assume for simplicity that the method ‘only assigns positive cost shares: x(z,S) > 0
for all S C UandieS. Pick an ordering o of the players of U and a subset S. Let’
"Lg denote the £th player and Sg the first ¢ players of S Wlth respect too and define /

the parameter og o by
ISI

0 = Cts)ZX(Ze,Se) N )

In ot}her-\ words, we start With' the empty set, add players of S one-by-one according =
to o, and consider the éost share of the £th player when it is initially added. The
' parameter as(, is the factor by which the sum of these cost shares overestlmates the

| ~cost C(S) of serving all of the players. |

We claim that the Moulin mechanism M (x) is no better than (as,o—1)-approximate
for C. To see this, define the valuation v, of the £th player of S (accordihg to o) to
be x(i¢, S¢) — €, where € > 0 is arbitrarily small‘ Give players of U \ S zero valua-
tions. The Mouhn mechanism" M (x) will output the empty set. The optimal welfare
is bounded below by v(S) = C(8) = as, - C(S) ~ C(S) = (ase — 1) - C(S). Since

valuations outside S are zero, there is an efficient outcome S* C S. Further, C is |
non-decreasing, and hence the welfare loss of M (x) on this valuation profile is at least

(asqs—1)-C(S*).

The summability of a cost-sharing method is then defined as the worst-case ratio

of the form (4.1) over choices of sets S and orderings o.

Definition 4.2.2 (Summability) Let C and x be a cost function and a cost-sharing

method, respectively, defined on a common universe U of n players. The method x
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v is a-summable for C for a function « : {0,1,2,...,n} — R* if- :
3 xtis 5) < a(ls)- o(s Y @y

e_
for every ordering o of U and every set S C U, where S and 7, denote the set of the

first £ players of S and the £th player of S (with respect to &), respectively.

-Remark 4.2.3 We deﬁ'ne sﬁmmability as a function rather than a scalar in order
to parametrize our efficiency guarantees by the number k of players served in an
efficient outcome (which can be much smaller than the universe size). For example, in

‘ Chapter 5 Sections 5.1 and 5.3 we establish summability bounds of the form a()S)) £
His and o|S]) = O(log |S|) for all S C U, which will lead to Moulin mechanisms

: _that are ’Hk —1and O(log k)- apprommate respectively.-

4.2.2 Efﬁciency Guarantees

The central result of this section is the following efficiency guarantee for Moulin

mechanisms derived from .cost—sharing methods with bounded summability.

Theorem 4.2.4 (Summability Upper Bounds Approxirhate Efficiency) LetC
be a cost function de/ﬁn’ed on a universe U and x a CTossjmonotonz'c, _nb-deﬁci:t, Q-
summable cost-sharing method for C. Then M(x) is an (a(k)—1)-approzimate mech-

anism, where k 1is the size of an efficient outcome.
. /’

Pfopoéitions 3.2.1 and 3.2.2 immediately give the following corollaries.

" Corollary 4.2.5 Let C be a cost function defined on a universe U and X a cross-

monotonic, no-deficit, c-summable cost-sharing method for C. Then M(x) is:
(a) an a(k)-approzimation algorithm for minimizing the social cost (3.2);
(b) a 1/a(k)-approzimation algorithm for mazimizing the social reward;'

(c) a [1 = (a(k) — 1)/n}-approzimation algorithm for mazimizing welfare for n-

sepamted valuation profiles.
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We emphasize that Theorem 424 is completelyv problem-independent. Together
~ with Definition 4.2.2, it distills the problen'l-ispeciﬁc aspect of simultaneously achiev-
| ing good budgetébalan(ie and efficiency in Moulin meehanisms: designing a cross-
. monotonic, approximately budget-balanced coSt-sharing method with small summa- .
| "bilil:y. The generality of Theorem 4.2.4 is evident from its application to identify
~optimal Moulin mechanisms for various cost-sharing problems (Section 4. 3) and-lt"o o
quantifiable trade-offs between budget-balance. and economic efficiency (Section 4.4).
We now bu1ld up to a proof of Theorem 4.2.4. Fix a cost function C defined
on a universe U, a valuation proﬁle v, and an a—summable and a no-deficit cross-
" monotonic cost- sharing method for C. Let o denote the reversal of the order in' which
A,the mechanism M (x) deletes players (in- some fixed trajectory) with players in the
| ', final output set SM ordered arbltrarlly among the first |SM | positions. .
" A érucial tool in our proof is the followmg potentzal function ®,, which we define
for each subset S C U as - o '

24(8) = U\s +Zx(ie,5'z) - (43)
o byper S
where for every £ € {1,2,...,|5 [}, :Se denotes the first £ players of S and i, the ¢th
vplayer of S according to o. : ,
The ordering o and the potential function ®, are defined to ensure that the
.potential function value decreases with each iteration in our fixed trajectory of M ().

We use this fact in the next lerrlma. '

Lemma 4.2.6 If SM is the final oatput of M(x) and S* is an efficient outcome for

a valuation profile v, then
®,(SM N S5*) < B,(S*).

Proof: The idea is to delete players from S* in the same order as M (x) to obﬁain
- the set SM N S*. More precisely, order the players i1, i, . . . ,im of 5*\ SM according
to their deletion by M(x), with player ilv deleted first. This ordering is consistent
with o. For a player i; € S*\ SM, let S; denote the set of players from which it
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 was removed by M(x), and let S; denote S*\ {21, i] 1}- Note that S; > S; for
every j. By the deﬁmtlon of M(x), the valuation v; of player i; is less than x (%5, S; i)-
Cross-monotonicity of x then implies that vj < x(%5, 4 J) for every player i; € S*\ SM.

Using the definition of ®,, we have

CB(5) = Bo(S5) > BalS3) >+ > By(Sipr) = Do(SM N1 5.

Also by deﬁnltlon summablhty (4 2) bounds the distance between the potentlal

. functlon (4. 3) and the social cost (3:2) in the following sense.
| : Lemma' 4.2,? For.epery subset"S cU,
®,(S) VS WU\ ) + a(l‘Svl)v' c(s). o
'We are I}ow prepared to pl;ove ’i‘hec)rem 4.2.4. -

Proof of Theorem 4.2.4: Fix a universe U, a cost function‘ C, and a set. v of truthful

bids. Let S* be an efficient outcome. Let x be an a-summable, no-deficit, cross- -

monotonic cost-sharing method for C and S the output of the corresponding Moulin
mechanism M (x) "for_t‘he profile v. Define the player ordering o and the‘lpotential‘ _

- function ®, as in (4.3). We can then derive

WU\ SM)+C(SM) < w(U\SM)+ T X 8M)

ieSM :
< U(U\sM)+v(sM\S*)+ > x(G,5M)
iESMNG*
< a(SMﬂS'*)
< 3,(5) _
< WU\ S+ allS) - (s,

where the first inequality follows from the no-deficit condition (2.3), the second from

the fact that x(i, SM) < v; for every i € SM, the third from the cross-monotonicity
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of X, the fourth from Lemma 4.2. 6, and the fifth from Lemma 4.2.7. Rearranglng - |

“terms then proves the theorem I

) Remarlc 4.2.8 When bthe method x is the Shapley cost-sharing method (see‘Sec-
tion 5.1); our definition (4.3) of the potential function ®, essentlally coincides with

; that of Hart and Mas—Colell [41] for cooperatwe games.

Remark 4}.2.9 The results of this section can be interpreted as efficiency guarantees
for the nonCooperatiVe par'ticipation games studied by Monderer and Shapley [63]
and Moulin [62] For example, Corollary 4.2. 5(a) implies that for the social cost
objective (3.3), tlle “strong price of ana’rchy’ [4] in such a game is at most the

| summablhty of the underlymg cost-sharlng method.

- ;4.2.'3“_: Matching _Lower Bounds

o _ We now discuss the senses in whlch the bound in Theorem 4.2.4 is tlght The argument' o
in Example 421 1mpl1es the followmg lower bound for strictly positive cost-shanng
* methods. ) ’ '

Prop031t10n 4. 2 10 (Summablllty Lower Bounds Approx1mate Eﬁ'ic1ency I)
Let X be a cross- -monotonic cost-shamng method for a cost-sharing problem C with uni-
verse U that is everywhere positive cmd at least a-summable. Then M (x) is no better

, thah (a(k) — 1)—approa§ilnate, where k is the size of an efficient outcome.

The assumption that all cost shares are 'positive is éimilar to the “strong consumer
sovereignty” assumptlon in Moulin [62], which states that each player has w1nn1ng
and losmg bids for every fixed set of bids of the other players
For technical reasons, summability need not lower bound the approx1mate ef-
ficiency of cost-sharlng methods that can employ zero cost shares. To informally
. illustrate the issue, consider a cost~shering problem with universe U = {1,2,...,n}
and two cost-sharing methods X1, X2 defined for the restriction ‘of' this problem to
U \ {1}, where the summability of x, is much larger than that of X1. Define y on U
by setting cost shares equals to those of x; for sets that include the first player and
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-

equal to thosev of xo for sets that do not; the first player always receives a zero cost

share. The summability of | X is as large as that of x, but the Moulin mechanism o
(X) will never delete the first player and will therefore only. assign cost shares ac- |

cording to the method pe! that has small summability. Thus the summability of x is

strictly larger than the approx1ma,te efficiency of the induced Moulin mechanism.

There is nevertheless & variant of Propos1t10n 4.2.10 for non-positive cost—sharmg

methods. To state it, note that a Moulin mechamsm M(x) for a cost-sharing problem

E naturally induces a Mouhn mechamsm for each induced sub-universe U’ of U (v1a the

restr1ct10n of x to this set U’). We say that a Moulin mechanism M(x) is strongly

- p- approxzmate if every induced ‘mechanism is p—apprommate for the correspondmg

‘ induced cost- sharing problem. The proof of Theorem 4 2. 4 extends drrectly to this

‘ 'notlon of strong approx1matlon

Corollary 4.2.11 Let C be a cost function defined on a universe U and x a cross-
monotom'c, no- deﬁcz’t a-summable cost-sharing method for C.  Then M(x) is a
strongly (a(k) — 1)-approzimate mechamsm, where k is the size of an efficient out-

come

Summability is a valid lower- bound for strong approx1mate efﬁaency, even for

cost sharing methods that use zero cost shares.

-PrOposition 4 2.12 (Sumrnability Lovrer Bounds Approximate vEfﬁciency IT)
Letx bea cross-monotonic cost-shamng method for a cost-sharing problem C' wzth uni-
o verse U that s at least a-summable. Then M (X) is no better than strongly( (k ) 1)-

appro:mmate where k is the size of an ejﬁczent outcome

Proof Sketch: Choose k, a set S with |S| = k and an ordermg of the players of S so
that 35 X(u, S¢) > a(k)-C(S), where S; and 4, are defined in the usual way. Obtain
R from S by discarding players with x (3¢, S¢) = 0. Since Y is cross-monotonic and C
is nondecreasing, the induced ordering on R satisfies Ze-r x(ie, Re) > a(k) - C(R)
‘with all cost shares positive. Mimicking Example 4.2.1 in the problem induced by R,
the welfare loss of the induced Moulin mechanism is at least (a(k) — 1) - C(R*), where

R* denotes an optimal outcome to this induced problem. W
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The construction in Example 4.2.1 also demonstrates the tlghtness of the alterna—

tive guarantees in Corollary 4.2. 5

" Proposition 4;2.13 Let x be a cross-monotonic cost-sharing method for a cost-
- sharing problem C with universe U that is everywhere positive and at least a-summable.
Then: ’ ' | | .

( a) M(x ) zs no better than an a(k)- approxzmatzon algomthm for minimizing social

cost

(1 b) M ( ) is no better than a 1 /a(k) -approximation algomthm for maammzzmg soczal

re'ward

(c) there are (a(k) - 1)—sepamted 'ua,luatzon profiles for whzch M(x) obtains 2ero

welfare

-Similar_results apply for non-positive cost-sharing methods and ‘:‘strong”' versions of

these three types of efficiency guarantees.

4.3 g Aﬁplicatiohs of the Summability Framework

Theorem 424 and Proposmons 4.2.10 and 4. 2.12 show that summability of the cost-
“sharing method X characterizes (i.e., lower and upper bounds) the efficiency loss of

© the Moulin mechamsm,, M(x). In the next chapter we identify optimal Moulin mech-
- anisms for various cost-sharing problem families (see Section 2.2 for the definitions of
these families).- That is, for a specific cost-sharing pi‘oblem family, we establish lower
bounds on the summability attainable by any no-deficit, cross-monotonic cost-sharing
method, and we identify cost-sharing methods that match this lower bound up to a
"constant factor. The table below summarizes our results. All the results are worst
o ’case with respect to the valuation profile and the cost function in the problem family;

k is the size of the optimally efficient solution and recall that Hy ~ Ink.
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Problem Optimal Worst Case | ~ Optimal mechanism
, Efficiency Loss S '
~ Marginal Cost 1 (below) : | Trivial
| Excludable Public Good | Hj — 1 (_Seétion 5.1) ~ Shapley [63]
" Fixed Tree Multicast | H;—1 (Section5.1) |~ Shapley [63]
Submodular Cost My — 1 (Section 5.1) | : Shapley [63]
Metric UFL | ©(logk) (Section 52) | 'Pal and Tardos [68]
Steiner Tree | ©(log?k) (Section 5.3) | .~ Jain and Vazirani,[48]
Steiner Forest | ©(log?k) (Section 5.4) | Kénemann, Leonardi and Schifer [55]
SSRoB | O(log? k) (Section 55) Gupta, Srinivasan and Tardos [39].

. Marginal Cost cost-sharing problems admit a Moulin mechanism. that is truthful,
budget-balanced and efficient—the (obviously cross-monotonic and budget balanced) -
~ cost-sharing method always offers each player a price equal to its margmal cost ¢;. In-
contrast the excludable public good cost-sharing problem, which models pure fixed
cost, only admits a ©(log k)-approximate no-deficit mechamsm the optimal Moulin
mechanlsm uses the Shapley value cost-sharing method. This result extends to all

submodular cost—sharmg problems including fixed tree multicast problems.

‘ It is now tempting to think of pure fixed cost and pure marginal cost as two

: ‘extremes, and extrapolate that all cost-sharing problems admit O (log k)-approximate

Moulin méchanisms via the Shapley_ value cost-sharing method. In fact, the proof of
- Proposition 2 from Moulin and Shenker [63] essentially shows that 4f the Shapley
“value cost-sharing method is crbsé—monotonic for a cost-sharing problem, then it has

optimal summability, and the resulting Moulin mechanism is O(Iog k)-approximate.
* The fly in the ointment is that the Shapley valﬁe cost-sharing method is not in general

cross-monotonic for non-submodular cost-sharing problems.

Metric facility location problems admit a O(log k) approximate Moulin' mecha-
nism via the cost-sharing method of Pal and Tardos [68]. Steiner tree cost-sharing
problems, and their generalizations (Steiner forest and SSRoB) only admit O(log® k)-

approximate Moulin mechanisms.
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’See>Section.4.5;2 for further applications of this summability framework to other

coSt—shai'ing problems. In particular, there exist cost-sharing probléms do not admit
" any O(polylog(k))—approximate Moulin mechanisms, a fact that motivates the search
- for better mechanism design frameworks such as a,‘cyclic‘ mechanisms (Chapter 6).

In conclusion, if we define fhe complexity of‘"a‘ problem family by the optimal
worsti'-éas‘e approximation of efficiency achievable by a Moulin mechanism (recall Sec-
tion 1.4.3), problem families fall into four classes. There are those with ©(1) com-

- plexity like edge-cover [45] and marginal cost. Others have ©(log k) complexity like
metric UFL and submodular cost. Some have @(log k) complex1ty like Steiner tree, |
Steiner forest, SSRoB. and MRoB. Flnally, there are those W1th Q(poly( )) complexity

like Vertex cover and Set cover

44 Budget-Balance vs. .ECOnomicEfﬁciency Trade- |

' No-deficit Moulin mechanisms. are inefficient because of their overzealous removal
of players that cannot pay their cost sharé (cf., Examples 2.2.12 and 4.2.1). This
~ suggests a'poséible trade-off between budget-balance and economic efficiency: if we
relax the requirement that the prices charged cover the cost incurred, then a Moulin
* mechanism can employ smaller cost shares and reduce the worst-case efficiency loss -
- from regrettable player deletions.“This section extends the efﬁéienéy guarantees of
Section 4.2 to mechanisms that need not cover the incurred cost, and uses these
exténsions to quantify the trade-off between budget-balance and ecoﬁomvic efficiency
in Moulin mechanisms. In particular, we show that relaxing budge_t—balance permits
mechanisms with strictly better efficiency guarantees than those pbssiblé for no-deficit
Moulin mechanisms. | _ ‘
Recall that a Moulin mechanism is (8, )-budget-balanced if the sum of the prices
charged is at least 1/7 and at most 3 times the 1ncurred service cost. ‘When v > 1,
Moulin mechanisms can suffer efficiency loss from the unjustified service of play-

ers with low valuations. (See Example 4.4.4 below.) For this reason, an efficiency
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guarantee for a (3,7)-budget-balanced Moulin mechanism must reference both the
pa.rameter v and the summablhty of its underlying cost-sharing method We prov1de o

such a guarantee next

_']_f‘heorerh 4.4.1 Let C be a cost function defined on a universe U and x a cross-
monotonic, (3;7)-budget-balanced, a-summable cost-sharing method for C. Let SM-
and S* denote the outcome chosen by M(x) and an optimal outcome, respectively, for -

a valudtion profile v. Then,
W(S") = W(SM) < (aI§7)) ~ 1+ By = 1) - C(SY) + (v = 1) - u(S¥ \ §7).
Pfobf - Define an ordéring oonU and a potential function @, ‘ae in the prob‘f of

Theorem 42.4: By followmg the steps in that proof and usmg ‘the ([3, ) budget—

balance of X, we obtain . y

: ’v(U,\,‘S’,MHC(sM) SR CACRRRD DL

. . ieSM . A
< 'v(U\SM) +- v(SM \ S+ Z x(5,8M)
. iesMns ’
< @,(SMNSY)+ (v ) (SM\S*)+(7— 1) Z x(@, "' N S)
‘ ’ k ieSMNS*
(S B(ST) A+ (v - 1)-o(S%\ §) + (v = ) - C(S")

< (@SN +BY= 1) C(S) +0(U\ ST+ (v = 1) - v(SM\ 5°).
'Rearranging terms proves the theoreni. u

Like Theorem 4;2.4, the gtiarantee on additive welfare loss in Theorem 4.4.1 can
be interpreted in several different ways. - We mention only the cleanest such interpre-

tation, in terms of mihimizing the social cost objective (3.2).

- Corollary 4.4.2 Let C be a cost function defined on a un'z'z)erse U and x a cross-
monotonic, (B,7)-budget-balanced, a-summable cost-sharing method for C. Then
M(x) is a (max{a(k) + B(y = 1),7v})- approxzmatwn algorithm for the social cost

“objective, where k is the size of an efficient outcome.
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We can use Theorem 4.4.1 and 'Corollary 4.4.2 to trade cost-recovery for increased
efficiency. For example, an easy conseqilent:e of the upper bound on sumrhability of
Shapley cost-shares from Section 5.1 is that 'for a submodular cost-sharing problem
with n players, dividing the cOrresponding Shapley cost shares by an /F, factor f

 yields a (1, v/H,)-budget-balanced and: /H,-summable cost- sharmg method.
' Corollary 4.4. 2 1mphes the followmg guarantee for the induced Moulm mechamsm

(the scaled Shapley mechamsm)

Corollary 4.4.3 For every n-player submodular cost—sharmg problem, the scaled Shap-
ley mechanism is (1,/Hy)- budget—balanced and @ (2\/ - 1)- approxzmatzon algo-

rithm for the social cost ob]ectwe

The eﬂ‘lclency guarantee in Corollary 443 is better than ‘t’l_le_ best . possible for
no-deficit Moulin mechanismé ( see Section 5. 1) There are analogous improvements .
o posmble for the other cost sharing problems, also via scallng the no-deficit cost- sharmg '
| method with the optimal summablhty . "
, Corollary 4.4.3 is optimal in the following senses. Flrst a s1mple example shows
| that a Moulin mechanism that is no better than (B, v)-budget-balanced is no better

than a y-approximation algorithm for the social cost objective.

- Example 4.4.4 Let x be a cross-monotonic cost-sharing rhethod for a cost function -
C defined on a universe U, and suppose that x is no better than (8, 7)-l)udget—

' balanced for C- By definition, there is a subset S C U of players with ;¢ x(4,5) <
C(S)/v. Give each player i« € S the valuation x(%,S) and other players zero val-
uations. With this Valuation prbﬁle the Moulin mechanism M(x) outputs a set
containing all of the players of S, with soc1al cost at least C (S) The optimal social

- cost is at most that of the empty set, which i is at most C(S)/~. |

Second, the lower bound proofs in Section 5.1 and Theorem 5.3.10 extend easily
to show that all (3, v)-budget-balanced Moulin mechanisms for the excludable public
good and the Steiner tree cost-sharing problems are Q((log k)/7)- and Q((log? k) /7)-
approximation algorlthms for the social cost, respectively. Thus no Moulin mecha-

nism, no matter how poor its budget-balance, obtains an o(y/log k)-approximation of
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the social cost for submodular or UFL cost-shering\problems or an o(log k)’-appfoximation :

- of the socia.l cost for Steiher tree, Steiner Forest of SSRoB cQst—shaIing problems.

4.5 Notes
4.5.1 Prior Work on the Efficiency of Moulin Mechanisms
kThe sole previous work oh qliam_;ifying efficiency loss in no-deficit cost-sharing mech- -
anisms is Moulin and Shenker [63], which studies submodular cost-sharing problems.

- Their results successfully rank different no-deficit mechanisms for an arbitrary but
fixed submodular cost-sharing problem according to worst-case efficiency loss (see
also Section 5.1). However, it is not obvious how to use their efficiency loss measure
to make comparisons between different cost-sharing problems Addltlonally, the ap-
proach in [63] has not yet been extended beyond: submodular cost- sharing problems

and many problems studied in the computer science - hterature fall outmde of this
~ class [11 17, 37, 39, 45, 47, 48, 51, 55 56, 68] '

| 4.5.'2 | 'Other App”lications of the Summability Framework
We mention some a,p‘p’licetions of the summability based framework for measuring the
efficiency loss of Moulin mechanisms besides the ones mentioned in Section 4.3. All

of the results are worst—case approx1mat10n bounds over valuatlon profiles and cost

functions in the problem family; & i is the size of the optlmally efﬁc1ent solutlon

Problem Summability Bounds Paper

Identical Machines O(logk) . See Brenner and Schéfer [17]
Related Machines |  ©(logk), | See Bleischwitz and Schoppmann [15]
Prize Collecting - O(log?k) ‘ - See Gupta et al. [37]
Steiner Forest - - o
MRoB - O(log?k) - | See Roughgarden and Sundararajan [71]
Vertex Cover (kY3 »See. Immorlica et al. [45]
Set Cover ' QWVE) See Immorlica et al. [45]
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Brenner and Schéfer [17] identify an optimal mechanism for scheduling identical
machines. Bleischwitz and Schoppmann [15] generalizes this to related machines.
Gupta et al. [37] and Roughgarden and Sundararajan [71] identify optimal mecha-
nisms for two generalizations of the Steiner tree cost-sharing problem. Immorlica
et al. [45] in conjunction with Theorem 4.2.4 'shows that not all subadditive cost
functions admit Moulin mechémism with polylog approximate eﬂiciency: There are
no o(k'/?)-budget balanced Moulin mechanism for Vertex cover, or o(vk)-budget
balanced Moulin mechanism for set-cover [45]. Further, an easy consequence of cross-
monotoriicity is that the budget-balance factor is a lower bound on isummability and .
hence by Theorém 4.2.4 these lower bounds apply to the efficiency approximations

achievable for these cost—‘sha,ring problems.

4.5.3 Groupstrategyproofness

- Recall from Section 2.4 the definition of groupstrategyproofness. As mentioned vin Re- =
fnark 4.1.3, Moulin mechanisms are groupstrategyproof. In'_fact, the converse is‘almost |
true: Theorem 4.2 from Immorlica et al. [45] states that the only groupstrategyproof .
mechanisms that satisfy an additional continuity condition and a strong version of
consumer sovereignty (i.e. every player has a winning and losing bid, no matter what
the bids of the other players), are Moulin mechanisms. Alternéti\iely, Theorem 2

~ from Moulin [62] (also Proposition 1 from Moulin and Shenker [63]) states that the
only groupstrategyproof, budget-balanced, voluntary mechanisms that satisfy an ad-

ditional natural technical condition (consumer sovereignty) are Moulin mechanisms.

4.5.4 Multiple Levels of Sérvicev

Most of the literature on Moulin mechanisms focuses on a binary notion of service.
A notable exception is Bleischwitz and Schoppmann [14], which generalizes Moulin
mechanisms to settings with multiple levels of service, and applies it to generalizations
of the UFL and Steiner tree cost-sharing. problems where players demand redundancy
~in corinectivity; they quantify efﬁciency‘loss of the mechanisms they propose using a

géneralization of our summability framework.
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Chapter 5
~ Summability Bounds

- Theorem 4. 2.4 and Propos1t10ns 4.2.10 and 4.2.12 from the previous chapter show that ‘

summablllty of the cost-shanng method X cha,ractenzes (lower bounds and upper

~ bounds) the efficiency loss of the Moulin mechanism, M (x ). In this chapter we »;

| "1dent1fy optlmal Moulin mechamsms for various cost-sharmg problem families (recall
~ Section 22) That is, for a specific cost- sharmg problem family, we establish lower ._
bounds on the summability attainable by any no-deficit, cross-monotonic cost—sharmg o
method. We then identify cost-sharing methods tbat match this lower bound, up to
~ constant factors. ' I
' Sectlon 5.1 studies submodular cost- sharlng problems (Example 2.2.2), Sectlon 5.2
studies metric UFL problems (Example 2.2.4), Section 5.3 studies Steiner tree prob-
‘lems (Example 2.2.7), Section 5.4 studies Steiner forest problems (Examiple 2.2.9) and
' Section 5.5 studies SSRoB problems (Example 2.2.10).

5.1 Submodular Cost-Sharing Problems

We show how existing results of Moulin and Shenker [63] imply appfoxiniation bounds
for submodular cost-sharing problems, and also derive identical bounds us1ng the
summablhty approach of Section 4.2. ' ‘ |

‘We first recall a mechanism based on a generalization of the Shapley method X,y
described in Example 2.5.2. Let C be a submodular cost function (recall (2.2))

- 49
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defined on a player set U. The Shapley cost share xsp(%,S) of player ¢ in the set S o

s deﬁned as follows. For a permutation o of the players of S, let A, (i) denote the

-increase C(A U {z}) C(A) in cost due to 4 arrival, where A C S is the set of

players that precede ¢ in 0. The Shapley cost share Xsh (%, S) is then the expected

~ value of A,(3); where the expectation is over the (uniform at random) choice of o-

~ As is well khown ahd easily checked, Shapley cost shares are 1-budget-balanced, and

are cross—monotomc when the function C is submodular. The correspondlng Moulin
mechanism M (xsh) is called the Shapley mechamsm for C [63].

' Mouhn and Shenker [63 Proposition 2] proved that, for every submodular cost

_functlon C deﬁned ona umverse Uofn players the correspondlng Shapley mechanism

minimizes the worst-case (over valuation profiles) additive welfare loss, over all 1-

budget-balanced Moulin mechanisms. Precisely, they showed that thls Worst -case -

welfare loss compared to an efficient solution, is at least

Z (|S|__1)l(n lSD'C(S)—-C’(U) B :. g (51)

- ScU

for every 1-budget 'balanced’ Moulin mechanism, with equality holdihg for the Shapley
mechanism. Since C(S) < C(U) for every S C U, the worst -case welfare loss for the

Shapley mechamsm is at most

'."".“‘n'“s—u—sz-- | |
o3 (1) ﬁf”ﬁ -ew=cw (Zha

1S|=1 |S|=1
= (.~ 1)-C(U),

~ and thus this mechanism is at most (Hn —'1)—.approximate for every submodular
cost- sharlng problem. Since C(S) = C(U) for every non-empty set S C U in the ex-
cludable public good problem (Example 2.2.12), it prov1des a matching lower bound: _
“there is a submodular cost- sharmg problem for which every 1-budget- balanced Mouhn
. mechanism is no better than ('Hn — 1)-approximate.
These bounds can also be derived from summability arguments, and in the process

: extended to all no-deficit (not necessarily 1-budget-balanced) Moulin mechanisms.
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~ The lower bound is again for the special case of an excludable public good with n
- players. For every Moulin mechanism M () induced by a cross-monotonic, no-deficit
cost-sharing method Y, we can ’inductively. order the players 1,2,...,n such that-
x (4, '{71, i+1,...,n}) > 1/(n—i+1) for every i. Defining valuations as in Example 4.2.1 '
then shows ﬁhat M(x) is no better than (H, — 1)-approximate. Formally we have: |

| Proposition 5.1.1 For every 8 > 1, no ﬂ—budg'et—lbalanced Moulin mechanism is
better than (Hy, — 1)-approzimate for the excludable public good cost-sharing problem,
where k is the size of an efficient Qutcbme. Here Hp = 1+1/24...1/m is the mth

harmonic number.

‘To obtain an upper bound of (Hj, — 1) for the approximation factor of the Shapley
‘mec'ha.nis‘m, where k is the numbér of players served in an optimal solution, fix a
- submodular crovst function C with players U, with x., the corresponding Shapley
costlSha,ring method. By Definition 4.2.2 and Theorem 4.2.4, we only need to show .

that

S xlin 8 <Hg-CS) (5.2)

=1
for every S C U and ordering o of U, where Sé and 1, are defined in the usual way. A
remarkable result of Hart and Mas-Colell [41, Footnote 7], a variant of which is also-
used in [63] to establish (5.1), implies that the left-hand side of (5.2) is independent of

. the ordéring induced by o on the players of S. (This can also be established directly
by a counting argument.) Choosing an ordering of the players of S uniformly at
random, the facts that C is nondecreasing and x,, is 1-budget-balanced imply that
Elxsn(ie; Se)] = E[C(Se)]/¢ < C(S)/£ for each ¢. Summing over all £ and using
the linearity of expectation shows that the expected value under a random .ordering
(and hencg the value under every ordering) of the left-hand side of (5.2) is at most

H,s) - C(S), completing the argument.

Remark 5.1.2 While the approximation bound of Hy, — 1 is tight for an excludable
public good, both of the derivations above can obviously be sharpened for particular

cost functions. For example, for the cost function C(S) = |S|* with d € (0,1] and n -
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| large, the Shapley mechanism remains optimal and is roughly. ( — 1)-approximate.

See Brenner and Schafer [17] for a related dlscussmn

Remark 5.1.3 We note in passing that Shapley cost shares are generally hard to
co'mpﬁte, in myriad senées, even for monotone and submodular. cost functions [8].
The following randémized variant of the Shapley cosﬁ—sharin_g method is polynomial-
 time computable cross-monotonic with probability 1, and arbitrarily close to 'Hk-‘
summable with high probablhty choose in advance a sufficiently large polynomial
number of player permutations uniformly at random, and estimate every expecta—
tion of the form E[A,(i)] by the average value of A, (i) over the randomly chosen

permutations.

5. 2 Metrlc Fac111ty Locatlon Cost Sharmg Prob-

lems

In thls sectlon we 1dent1fy an- optimal Moulin mechanism for metric uncapacitated
facility locatlon (UFL) cost-sharing problem defined by Example 2.2.4. We seek a
no-deficit Moulin mechanism for UFL with the best—poss1ble approximate efficiency.
Section 5.2.1 describes the previously proposed P4l and Tardos [68] mechamsm for
the UFL cost—sha,nng problem. Section 5.2.2 bounds the efficiency of this mechanism

and shows that this mechanism is optimal, up to constants. o

5.2.1 The PT UFL Mechanism

P4l and Tardos [68] showed that every UFL cost function admits a 3-budget-balanced
, (in“ the sense of Section 2.3) cross-monotonic cost-sharing method xpr- ‘We call this

the PT method, and the induced Moulin mechanism the PT mechanism. Immorlica

et al. [45] shows that no cross-monotonic cost sharing methods can be (3 — €)-budget-

balanced, for any € > 0. ‘ o

" Given an instance of the UFL cost—sharlng problem deﬁned by players U, facilities

F w1th opening costs f, and a metric ¢ on UU F'| the corresponding PT cost-sharing
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method xpr is defined as follows. Fix an arbitrary subset S cU of_ players. First,

~ there is a notion of time, which is initially 0 and increases at a uniform rate. At a
time ¢ > 0, we associate with each piayer 1 € S a ball of radius ¢t with center ¢, where
distances are with respect to the given metric c; a ball centered at player z'}withv radius
7 is defined as the set of facilities at a distance at most r from 7. Once a ball includes
~ a facility ¢ € F, the sUbSequ_em; gl_'owtb of this ball contributes toward “filling” this

' facility Once these cOhtributiOns equal the facility’s opening cost fg, we declare the-
fac111ty q to be full Pre01se1y, fac111ty q becomes full at the tlme t? deﬁned by the
equation : : _ o

Zmax{O 79— c(q, )} fq _ : (5.3)
: s o S

The PT cost share xpr(i,S) of a playe'r i in S, as defined by [68], is t‘he" length of
time during which there is no full facility in player 4’s ball. We multiply these cost-
Shares by a factor 3 to ensure that the cost of the constructed SQlution is recovered._
Proofs from [68] along with .this scaling. show ‘tha't the PT cost-sharing method is -

3—budget—belanced, and cross-monotone.

5.2.2 The PT mechanism is O(log k)-approximate

In this sectioﬁ we- ‘bound the worst- -case efficiency of the PT mechanism. We start

by identifying a lower bound. We first note that the excludable public good cost-
_ sharing problem defined by Example 2.2.12 is an instance of a UFL cost-sharing
. problem. There is s1ng1e fac111ty ¢ with opening cost 1 and the metric ¢(g, ) is 0 for

all ¢ € U. Thus, by Propo'sition 5.1.1 every no-deficit Moulin mechanism is at least

"Hk—approximate; The main result of this section is that the PT mechanism matches

this lower bound' up to a constant'factor Recall that Hk ~ In k)

Theorem 5.2.1 The PT mechanism is O(log k)- approxzmate for every UFL cost-

sharing problem, where k is the size of an efficient outcome

By Theorem 4.2.4 it suffices to show that PT cost-shares are O(log k)-summable
(Definition 4.2.2). This will follow from Lemma 5.2.3, which shows that single-facility

" . instances sopply' worst-case examples for the summability- of the PT cost-sharing
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kmethod, and Lemma 5.2.4, which bounds the summabﬂity of single-facility ihst_ances_.
We bulld up towards the proof of Lemma 5.2.3. We establish that increasing distances.

between demands and facilities can only increase PT cost shares.

Lemma 5.2.2 Let T and I’ denote two z‘nstqncés of uncapacitated facility location
with the same player set U, facility sets F, and"facilz'ty opening costs f. Assume that
the metric ¢ on UUF of'lthe_'seco.nd instance dominates the first, in that ¢/(i, 7)==
c(,7) for every i,5 € UU F. Let XPT and Xpr be the PT cost-sharing methods
corresponding to I and I’ respectwely Then XPT(Z S) > xpT(z S) for e'uery set
S C U and playeri € S.

Proof le aset SC U. Fll‘St equa.tlon (5.3) immediately implies that facilities can |
only become full later in the instance 7’ than in T. Second, note that the PT cost
share of a play‘er z €Sis defined as thrice the earliest time af which a full facility lies
in player i’s ball. It follows that PT cost shares for Z' can only be larger than those.
for 7. W L

This monotonicity property allows us to argue that in worst-case UFL instances,

_players are partitioned into non-interacting groups, each clustered around one facility.

- Lemma 5.2.3 For any monotone functz'dn o:{0,1,2,...n} — R*, if the PT cost-
sharing method is a-summable for all single faczlzty UFL cost functions, then it is

Q- summable for every UFL cost functzon

Proof: Fix an arbitrary UFL cost function C°, given by a player set U, a facility set
" F, facility opening costs f, and a metric ¢ on U U F. Suppose that single facility
instances are a-summable. .\We must show for an arbltrary set S C U an arbitrary -

| ordering o of the players i in S that:

S|

3 xor(ie St) < a(|S)) - C°(S)
£=1 ‘

- Here S, and i, denote the set of the first Z players and the fth player of S in the

ordermg o, respectively..
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Fix an optimal solution to the facility location instance induced by the players in
' S Let F* denote the facilifies opened by this solution,' and let S9 denote the players
of S assigned to the facility ¢ € F* in this solution. This solution has cost

Sy =>" (fﬁz (i, Q>
- geF* - i€eSeT
We obtain the instance Z! fx_‘oin‘_IQ by modifying distances as.follows. If a player: €
S is assigned to the facility g € F* inlt.he’ fixed optimal solution to the instance induced
by S, thén set c!(i,q) = O(i. q). All other distances between players and facilities are
- set to a sufﬁmently large number. Let C! denote the cost functlon correspondlng to
7! and Xbp the correspondmg PT cost-sharing. method By constructlon CI(S )
. C’O(S) Lemma 5.2. 2 implies that '

i |S| L : : NP
ZXPT(% Se) 2 ZXPT t; SZ) - Sy
=1 S o

Thﬁs’ it suffices to prove the claim that Z‘zsll\ Xpr(ie, Se) < a(|S]) - CH(S) o

" The instance T 1s essentlally a collectlon of independent smgle—famhty instances.
To make this prec1se for a fa.c1hty g€ F*, let 71 denote the facﬂlty locatlon instance
with player set 59, facﬂlty set {q}, openlng cost fq, and with dlstances 1nher1ted from
Z;. Let C? and x% PT denote the corresponding cost function and PT cost sharlng

method respectlvely By constructlon we have

01(5) 3 C" (S9). . (55)
qu* . : ‘
Further, our definition of the distances in Z 1 ensures that the PT éost share Xl(;ig,:‘Se)
for a player 4, € S%is a function only of the set of players of S? that precede 7, in
the ordering o. (Only players of S9 contribute to the ﬁlling of facility g.) Because of

this, we have . :
’ ISt . |59

Y 68 = S xS, (56)
: e=1‘ - qu‘ p=1 v
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where 'S] and ip denote the first p players and the pth player of Sq, respectively,
accordmg too. .
Fmally, as PT cost- shares are by assumptlon a-summable for every single fac1l1ty' '

" instance, and because o is non—decreasmg, for every ¢ € F* we have that

189
prT<zp,SQ)<a<|sn cq<sq> 6D

p=1

Equations (5.5), (5.6), (‘5.7)Aeasily prove the clai‘m. u

“We can now focus our attention on single facility instances. The next lemma,

‘ bounds the summab1hty of the PT cost—sharmg method on such instances.

_Lernma 5.2.4 The PT c_ost-sham'ng method is 3 - 'Hk-summable for every sz'ngle fa-
cility UFL cost-funciton. Here My, = 1+1/2+...1/m is the mth harmonic number.

Proof' Consider an arbitrary facility location problem with a single facility ¢ and
a player set U. Let fq denote the opemng cost for q and c(z q) denote the dlstance
between the player ¢ and the fac1hty q. For a set S of players, let c(S q) denote the sum
" of the distances of the demands in the set S to the fac111ty g:- (S, q) EzeS ¢(, q)
Because there is only one facility, we have C (8) = fy +¢(S, q) for every S C U. |
Fix an arbitrary ordering o of the players in U and a subset S CU. Let Sg be
the ﬁrst ¢ players of S in the order1ng and 2, the ¢th player By Deﬁmtron 4.2.2, we

need to show that - s

© X Xer(ie5) < Hig - CLS) 68
=1 .

‘Fixanfe€ {1,2,...,|S|} and con51der the run of the PT algorithm on the set Sl |
Recall from the definition of PT cost shares that there is a time ¢ at which the fac1l1ty

q becomes full. There are two cases. If c(ig, q) > t, then we have that:

.(ie-,Se)=3'C(’i£;‘f1) | o (5.9)

ThlS is because, by the time g lies in player i¢’s ball, it is already full. If c(ig, q) <'t,
then the PT cost share xpr (i, S¢) is 3- t——by the time facility ¢ is full, it already lies
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~in player i¢’s ball.

" In the latter case, the growth of player 7,’s ball contributes toward filling the
facility ¢ during the time interVal [e(z, ) t]. Since ¢ is the only- facility and it is
not full during this time, the cost shares of all of the players in S, are accumula,tmg

) durmg this time. All but c(i,q) of the increase in the cost share of a player i € Sp_;
" during this time must contribute toward the ﬁlhng of facility ¢q. Thus,

[t — é(ie, q)] + Z {t - c(ie, q) — c(z ‘1)] <fe

 1€Sp_1
Rewriting,

'LES[-]

| : | t—c(ze, )< - (fq Z c(i,q)). ) i ” (510)

, Comblmng Equatlons (5 9) and (5.10), we can bound the. PT cost share xpr(ie, Se)
of player i by : Lo :

C\IC}G

xprlie, S)) < 3 cie, q) + (fq 3 c(i,q))-
: ‘ 1€Sp-1 '

Surrlming over all £ € {1,2,...,|S|} then gives

- 18  |3| - : .
;XPT(¢£,32.> <) 3-c(’z'e,q)+% Lot S c(i,g))}

=1 ‘ iGSg_l .
ISl 15| : SIS\
= Z + Z 3 c(ie, q 1+ Z
£=1 p—e+1
- 1|
< 3-Hg- fq+zc(zl>Q)
= 3-H-C(S),

completing the prodf of (5.8) and hence the lemma. W
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Though we are primarily interested in studying,_the worst-case appr‘oximationf of :
efﬁciency over facility location instances, we point out that when facility opening
~ costs are zero, ‘we have an instance of a marginal cost cost- sharmg problem (Exam—
‘ple 2. 2 13), for which we have a truthful budget-balanced, optlmally efficient mecha-”
" nism (recall Section 4.3). On the ﬂlp side, Proposition 5.1.1 shows that the worst—case,;

_ efﬁc1ency is achleved by a single facility mstance with zero connetion costs

| :‘5 3 Stelner Tree Cost Sharlng Problems |

This section uses the summablhty framework of Sectlon 4.2 to prove matching upper - '
and lower bounds on the best- posmble approximate eﬁimency of no-deficit Moulin
mechanisms for Stemer tree cost-sharing problems (Example 2.2.7). Both the upper
and lewer bounds are much me_re ‘intricate than "those' for submedular or UFL cost-

sharing problems. Section 5.3.1 reviews a mechanism of Jain and Vazirani [47], and

- Section 5.3.2 proves that this mechamsm is O(log? k)-approximate for all Stemer -

tree problems. Sectlon 9.3.3 proves that this mechanism is optimally approx1mately» |

~ efficient (up to constant factors). ‘

5.3.1 The JV _Steiner_ Tree Mechanism
Recall that a Steiner -tree cosﬁ-sharing problem (Example 2.2.7) is defined via an
| undirected graph G = (V, E) with nonnegati{re edge costs, a root vertex ¢, and a
set U of players that inhabit the vertices of G. The cost C(S) of a subset S cCU
is defined as the cost of an optimal Steiner tree of G that spans S U {t}. Such cost
functions are not generally submodular, and the corresponding Shapley cost-sharing -
methods are not gene‘rally cross-monotonic. Several researchers have designed 2-
budget-balaneed and cross-monotonic Steiner tree cost-sharing methods ‘[47, 48, 55|,
‘and no cross-monotonic method can have better budget-balance [45, 55]. We work
with the first of these, designed by Jain and Vazirani [47]. |
Put su‘ccihctly,‘ the JV cost-sharing méthod xsv for a Steiner tree problem is

defined by equally sharing the dual_ growth that occurs in Edmonds’s primal-dual
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branching algorithm [29]. In mbre detail, this method works as follows. - ‘

~ First, given a subset S C U, form a complete directed graph H =.(VH, AH) The
vertices Vi are t and the vertices of G that contain at least one player of S. The =
cost ¢y, of an arc (u, w) of H equals the length of a minimum-cost u-w pafh in G.
(Since G is undirected, arcs (u, w) and‘(w,' u) of H have equal cost.) We then define
both a feasible Steiner tree and cost shares using Edmonds’s algorithm, as follows.
Initialize a timer to time 7 = 0 and increase time at a uniform rate. Initialize a
'Subset FC AH to @. At every moment in time, the aigdrithm increases at unit rate
a variable y4 for every weakly connected component A of (Vy, F) other than the one

containing the root t. When an j__nequality of the form

Zf YaS Cuw
ACVi :ueAwgA o

first holds W‘ithvv equality; the CO_rresporiding arc (u,w) is added to K and_'t'he'alvgo- '
rithm continues. (When this occurs. for several inequalitie's Simultaneously, all of the .
corresponding arcs are added.) When the algorithm .terininates, the graph (Vy, F)
contains a. diréctéd path from every vertex to the fbot t. To obtain a subgraph ,6f G
that spans t and the players of S, select an arbitrary branching B (a spanning tree -
directed toward t) of (Vy, F) and output the union of the minimum-cost pathbs- of G
* that correspond to the arcs of B. To obtain cost shares, let u; denote the vertex of Vi

~ at which player i resides and set ' '

' 7R Ya
BRI )

where k(A) is the population of S in A. Equivalently, cost shares can be defined in
tandem with the above algorithm: whenever a variable y4 is increased, this increase
is distributed equally among the cost shares of the players of S contained in A. |
Jain and Vazirani [47] proved that the method v is cross-monotonic and 2-
budget-balanced in the sense of the inequalities (2.3). The next propos'ition summa-
rizes the additional properties of the JV cost-sharing method that are important for

,boundirig its summa‘bility.‘ To state them, we say that a player ¢ € S is active at time
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7 in Edmonds’s algorithm if it is 'not, in the same weakly connected component as the
root ¢ at time 7. The activity time of a player is the latest moment in time at which
it is active. The notatlon dg(z 7) refers to the minimum cost of an i-j path in the '

graph G.

" Proposition 5.3.1 Let G =(V,E) be a Steiner tree instance with root t and player
set S ) | ' " '

(a) While player i is active in Edmonds S algorzthm and -belongs to a component '
‘ wzth m—1 other ( actwe) players it accumulates an instantaneous cost share of
The ﬁnal JV cost share for player i equals the mtegml of its znstantaneous‘ o

cost share up. to its actzmty tzme

( b) The activity time of a player i€S in E'dmonds s algomthm is at most the length
. of a shortest it path in G.

(c) For every pazr 1 _7 € S, by the tzme dg(’l j) in- Edmonds S algonthm players i

and j are zn the same weakly connected component

Proposﬂuon 5.3.1 follows easily from the deﬁmtlon of Edmonds S algonthm and the

. JV cost shares

. 5.3.2 The JV Mechanism is O(log? k)-Approximate
'The'ymain' result in this section is that, for every Steinef tree cost;sharing prob-

- lem, the Moulin mechanlsm induced by the correspondmg JV method is O(log k) ,

approx1mate

Theorem 5.3.2 There are constants a,b > 0 such that the following statement holds:
for ebefy Steiner tree cost-sharing problem, the Moulin mechanism induced by the
: correspondzng JV method is (a log’ k + b) approxzmate where k is the size of an

efficient. outcome
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Next we discuss our high-level proof approach. By Theorem 4.2.4, it suffices to

show that
! 19|

ZXJV(Ze,Se)—O(IOg |S|) ( )

=1

for every Steiner tree problem C with JV method XJv, every subset S of players,'
and every ordering of the players (where i, and S; are defined in the usual way).
The challenge in proving this stems from the adversarial ordenng of the players (cf.,
Example 5.3.9 below). Our proof of Theorem 5.3.2 resolves this dlfﬁculty with the

" following three-step approach. First, we bulld a tree T on the player set, with the
same root as the given Steiner tree problem, that intuitively “inverts” an arbitrary
ordering so that players closer _r;o the root in T appear earlier in the ordering than
their descendants. We pay a price for this inversion: the sum ‘of the edge costs _ofT

is O(log|S|) times the cost of an optimal Steiner tree.

In the second step we define “artificial cost shares” for the players. These cost
shares will approximate the JV cost shares of players in G, but 1t will also be stréighte
- forward to upper bound their sum. More precisely, we define the -artificial cost share
of the ith player (according to the given adversarial ordering) as-its Sha.pley‘ cost
share in the tree T, assuming that precisely the first ¢ players'are present. By in-
equality (5.2), the sum of these artificial cost shares is at most 'H| s} times the sum of
' the edge costs of T, Whlch in turn is O(log?|S]) times the cost of an optimal Stemer‘
tree in G. ’

In the third step, we .prove that Shapley cost shares in T approximate JV cost
shares in G: for every player, the former is at least a constant fraction of the latter.
We feel that this final step is by far the most surprising, as it relates two sets of cost
shares that are defined by different methods as well as in different graphs. This final
step uses properties of both the JV dual growth process and the edge cost structure
in the tree T'. | |

We now supply the details. Fix a Steiner tree cost-sharing problem with uni-
verse U, graph G = (V, E) with edge costs ¢, and root vertex ¢ € V. We begin with
the construction of the tree T, given a subset S C U of players and an ordering o of

the players. The tree T will contain a root vertex to that corresponds to ¢, and will
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~ contain one additional vertex for each player in S. We refer to a non-root node of T
and to the corresponding player of S in G interchangeably. |
Eaeh vertex ¢ # to of T will be associated with a fadiue r; that serves distinct
purposes in the tree T and the original graph G. First, the edge from 7 to its parent
in T will have cost ;. Second r; will denote the radius of a ball B; in the gréph G
~centered at the player 3. These balls Wln be used to determlne ancestor—descendant '
relatlonshlps in T. o '
We initialize the tree T to contain enly the roet vertex.to'._ We give ty a ra.diu_s of
400, and the ball B,, of t, is defined as the entire player Set S. We then add players of
‘ 'S to the tree T’ one—by—one in the order prescrlbed by . When adding a new player
i, we consider all of the balls of previously added players that contain 4. If nothlng' ,
else, the ball By, contains i. Among all such balls, let B be one of minimum radius
T F1rst we a,dd the node i to the tree T by making ¢ a child of j: Second, we define -
- the radius r; as follows If j = to, then r; is half the shortest-path dlstance between _
" the root ¢ and the player ¢ in the graph G. If j # to, then we deﬁne = Ti/2. Th1rd
~ we set the cost of the edge (4,7) in T to be this radius T; Fmally, we deﬁne the ball
B of player i to be the players of S that lie within distance 7; of ¢ in the ‘graph: G.
‘See Figure 5.1 for : an 1nstance of this constructlon ‘ :
- To begin, we record some 81mple relatlons between shortest path dlstances inT
and in G.

Lemma 5.3.3 Let i,] be a pdz'r of vertices in T and Fi; the unique i-j path in T. -
(a) The cost of P; is at most four times the cost of its most ezpensive edge.

(b) The cost of P is at least de(i,7)/2.
‘ Proof Sketch: Edge costs in T' decrease by factors of 2 along every root-leaf path )

If P,; contains at most one edge incident to tp, then the sum of the edge costs of B
is at most twice the cost of its most expensive edge. Otherwise P,-j comprises two
paths of this type and its cost is at most four times that of its most expensive edge.
| Partl (b) holds for players i, j that are adjacent in T" by the definition of the tree
~ construction. To extend the inequality to a longer path F;;, sum over its constituent

edges and use the Triangle Inequality of shortest-path distances in G. B
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. Figure 5.1: Proof of Theorem 5.3.2: the construction of the tree T (Figs. B and C)
from the graph G (Fig. A) and ordering o = a, b, ¢ of the players. Fig. B depicts T
after players a and b have been considered, and Fig. A shows the balls corresponding
to these players. ' : :
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Now let OPT denote the cost of a minimum-cost Steiner tree in G that spans SU
{t} We next give a series of three lemmas, culminating in a proof that the sum of the
costs of the edges of T exceeds OPT by an O(log|S]|) factor. The first. lemma states
that two edges of the tree T that have roughly equal cost correspond to well—separated

players in the g;raph G it follows easily from the way we construct T.

Lemma 5 3.4 Suppose (41, 31) and (’lz, ]2) are edges of T, directed toward the root

to, 'wzth costs ¢; and cz, respectwely If o <cs< 2¢1, then dg(iy,i2) > >c.

We next show how to use Lemma 5.3.4 to upper bound the number of edges of T

‘ Wlth cost in'a glven range.

Lemma 5.3.5 For every v > 1, the number of edges of T that have cost m the
" interval [OPT /v, 2OPT/1/) is at most 2v.

o Proof: Fix v > 1 and suppose that g edges of T have cost at least OPT /v and less

| than ZOPT/ v. Lemma 5.3.4 implies that there is a set AcC S of g players that are |

o rnutue,lly far apart in G dg(,7) > OPT /v for every pair 1,7 of distinct players of
" “Consider an optimalj_Steiner tree T* in G that spans S U {t} (with cost OPT).
Order ‘tvhe players of A= {7,1, ..., 14} according to a pre-order traversal of T™ (sﬁarting

~ from the root, say). As is well known, we can -deuble every edge of T* and decompose
 the resulting m‘ultigraph into a collection of paths that connect pairs of adja'cent
players (mcludmg i1 and 44). This proves that ZJ - dg(zj, ij+1) < 20PT, where ig41
vrefers to player 7,. - Thus dg(z],z,H) < ZOPT/q for some ] € {1, 2 . ,q}. Since . .
"kdg(z Z)>OPT/I/ for everyz ‘€A g<2v. ' o

We now combine Lemma 5.3.5 with a groupmg argument to upper bound the sum

of the edge costs in the tree T'.
| Lemma‘ 5.3.6 The sum of the costs of the edges in T is at most (4log, |S| +5)-OPT.

Proof: First, note that every edge cost in T is bounded above by the d.istance dg(i,t)
in G between the root ¢t and some player 7 of S. Since every such distance is a lower
bound on OPT, every edge of T has cost at most OPT.
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Next, let k = ISI and consider the edges with cost in the interval [2{OPT/k, 2+ OPT/k)
for some i € {0,1,. [log2 k|}. By Lemma 5.3.5, there are at most k/ 9i~1 edgesin -
this group. The sum of the edge costs in each of the [log, k] groups is therefore at
most 40PT. Since T has k+1 vertices, it has k edges, and thus the total cost of the

- edges not in any of these groups — each of which has cost less than OPT/ k—is at

most OPT. Summing over all of the edges proves the lemma. W

Next let xZ, (%, S¢) denote the Shapley cost share of the £th player (in the given
‘ ordermg 0) in the fixed-tree multlcast instance correspondmg to the tree T and the set
- Sp of the first £ players accordmg to 0. Since fixed-tree multicast cost—sha,rmg prob-
lems are submodular (Example 2.2.8), 1nequallty (5.2) and Lemma 5.3.6 immediately

give the followmg upper bound on the sum of these Shapley cost shares.

| Lemma 5.3.7 Let i denote the {th pla'yer and Sg the ﬁrst A players of S according

to o, respectwely Then

IS|
D Xanlie, Se) < (ln S1+1)- (4 logz S1+5)- OPT.
e_
~ Finally, we show that the JV cest share of a'player in G is at most a corlstant_'
factor times its Shapley cost share in T. This is the step of the proof of Theorem 5.3.2
where we use specific properties of the JV cost-sharing method (Proposition 5.3.1).

' Lemma 5.3.8 Let i, denote the £th player and S the first £ players of S according
to o, respectively. For every £ € {1,2,...,|S|}, ' |

Xav (ie, Se) < 8- X3, (ie Se)-

Proof: Fix £ € {1,2,...,|S|} and let ey, es,. .., €, denote the sequence of edges in the
ie-to path in T. Let c; denote the cost of edge e;. Let A; C S; denote the players'
of S; whose path to to in T' contains the edge e;. Let m; denotethe number |A]| of

- such players. ' R
Our tree construction ensures that children of i, correspond only to. players sub-

sequent to i, in the ordering ¢, and no such players are in S;. Thus A; = {i,}, and
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of course A; C --- C A, C 5. First, observe that

a Cj o o | |
Xsh(% Sz) = ]Zl m; o | (5.11)
Next, fix j € {2, 3;.. ‘s p} and cdnsider a i)layer 1€ A 'distinct from 7,. Since the edge
€; separates players ¢ and %, from to in T, the most expensive edge on the 4,3 path P
~in T has cost at most ¢;_;. By Lemma 5.3.3(a), the path P has cost at most 4cJ 1.
By Lemma 5.3.3(b), the distance dg(is, i) between the players in G is at most 807_1.
By Proposition 5.3.1(c), the players i, and i are in a common connect’ed'c'.omponent_
by the time 8c;_; in the execution of Edmonds’s algorithm that defines the JV cost
E .s,hare ‘X;]V (ig, Se). Crucially, it follows that if player Zg is active at a time subsequent
to 8¢;_; in this execﬁtion, then its Weakly,eonnected component at this time does
“not contain the root ¢t and contains at least the m', (active). players of A;. Similarly,
Lemma 5.3.3 and Proposition 5. 3. 1(b) 1mply that player %, is inactive by the time 8c,. “

Comblnlng these observatlons with Proposmon 5.3. l(a) we obtaln

S,) < [ C’“ ' (5.12
Xav( Ze, e) Z me - (5.12)
8c, 1 ) m; o -

where we are 1nterpret1ng co as 0. Comparmg equahty (5.11) and 1nequa11ty (5. 12)

proves the lemma. W

. ‘Theorem 5.3. 2 now follows 1mmed1ately from Lemma 5.3. 7 Lemma 5.3.8, andv
Theorem 4. 2 4. :

°5.3.3 Every Moulin Mechanism is Q(log? ,k)-App‘rolximatev

| This section proves that the JV mechanism is an optimdl» Moulin mechanism for
Steiner tree cost-sharing problems, in the sense that every no—deﬁcit mechanism for
such problems is- Q(log k)-approximate, where k is the size of an efficient outcome.
To motivate our proof of this result, we begin with an example showmg that our

analysis of the JV mechanism is tight up to constant factors.
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“ Example 5. 3.9 We construct a Steiner tree instance (Flgure 5.2) in rounds by iter-
atively bisecting an edge of cost 1 as follows. Initially we place the root ¢ at one end
of the edge and v/n n players at the other end of the edge. (Thmk of n as a large power
of 4.) In the second round, we bisect the edge with a new vertex in the middle and
add /n further players co-located at this vertex. In round j, we bisect the existing

- 2771 edge segments and, for each new nede we add \/n new ce—loceted players. The
construction concludes when there are n players, a.fter @(log n) rounds.

Order the players in the same order in which they were added during the construc--
tion; break ties among players added in the same round arbitrarily. This defines n
successive Steiner tree instances. Consider the cost share of the most recently added
player of one of these instances. The JV cost-shé,ring’ method satisfies the following
property: if a player is co-located with i — 1 other players (all added earlier) and is
distance ¢ away from the nearest npn—co—located player that was added in an earlier -

_round, then its cost share in this instance is (c/i). Because of this, the sum of the
cost shares of players added in the jth round of the above construction is Q(leg‘n).
Since there are Q(logn) rounds, the sum of all of these successive cost shares is
Q(log? n). Since the minimum-cost Steiner tree of the full instance has cost 1 and the
JV cost-sharing method is positive in this instance, Proposition 4.2.10 implies .tha.»t

the induced Moulin mechanism is Q(log? n)—approximate.

-The main result of this section is a compara,ble lower bound for every 0(1) budget-

balanced Moulin mechanism.

Theorem 5.3.10 There is a constant ¢ > 0 such that, for every coﬁstant g > 1;

every B-budget-balanced Moulin mechanism for Steiner tree cost-sharing problems is

no better than strongly (clog” k)- appro:mmate where k is the number of players served :

in an optimal outcome.

Theorem 5.3.10 implies that Steiner tree cost-sharing problems are fundamentally

~ more difficult for Moulin mechanisms than submodular cost-sharing problems’ (cf.,
- Section 5.1).

‘We now outline the proof of Theorem 5.3.10. At the highest level our goal is to

‘exhibit a (large) network‘ G such that every O(1)-budget-balanced Steiner tree Moulin
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0P Si--Sis. .
1/4L ty...t;,
i/z. ' ) tl3 see t16

3/4¢ to...ty

1e t...t,

Figure 5.2: The bad example for n = 16. One terminal from every terminal pair, the
s;’s, are located at one end of the path Every other node is labeled with the distance

~ from the end with the s;’s and the group of terminals located at that node. Terminals
are numbered consistent with the order induced by the ‘c_onstructlon sequence.

Flgure 5 3: Network G2 in the proof of Theorem 5. 3 10, w1th m = 3. All edges have
length 1 /4 - :

mecha,nism behaves like the JV mechanisxh ih Example 5. 3 9 on some subnetwork ef G.

F1x values for the parameters £ and B, where k is a power of 4. Let m be an
- integer with m > 8,8\/_ (2ﬁ)‘/_ We construct a sequence of networks, culm1nat1ng
in G. The network Gy consists of a set V; of two nodes connected by an edge of cost 1.
One of these is the root ¢. The player set U is vk players that are co-located at the
non-root node. For j > 0, we obtain the network G; from Gj_; by replacmg each
edge (u,w) of G w1th m 1nterna.lly disjoint two—hop paths between u and w. See
Figure 5.3. The cost of each of these 2m edges is half of the cost of the edge (u w) |
Thus every edge in G has cost 277. ‘ ’
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‘Let V; denote the vertices of G; that are not also present in G;_;. We augment
the umverse by placmg \/E new co—located players at each vertex of Vj; call each of
 these groups a j-group and denote the union of them by U;. The final network G is ‘_
then G,, where p = (log, k)/2. Let V = VyU---UV, and U = UyU- - -UU, denote the
corresponding vertex and player sets. Let C denote the corresponding Steiner tree 1
cost function. | | o
A linein G’ is a subgraph defined 1nduct1vely as follows. The only hne in Go is all
of Gg. Each line L;_; of G’ -1 glves rise to a set of m? lines in Gj, each obtained by
replacing each edge of LJ 1 by one of the m two-hop paths to which it- corresponds'
in G;. Every line in the network G; has 27 vertices other than the root, 2/ edges, and '
unit total cost In Gp, \/_ players inhabit each of the 27 = \/E non-root vertices on.
" aline. , ' ' o
‘Now ﬁx an arbltrary cross—monotonlc [3 budget balanced Steiner tree cost- sharing
method X Our plan is to 1dent1fy a line of G, ‘and an. orderlng of the players on this
~ line such that x behaves like the JV. cost—sharlng method in Example 5.3.9. We .

'construct th1s line 1terat1vely via the followmg key technical lemma.

B Lemma 5‘.3.11 Let S C U bea su'bset of players that lies on a line in Gp, includes
_‘at least one ‘player‘ of Uo,. and incl_ﬂdes at least one. plqyer each from a pair u,w of
vertices that are adjacent in G;_;. Let Al, ..., A, denote the j-groups that correspond
to the edge (u w). Then for some group A, its playe'rs can be ordered i1y .., 05 SO
that . SR |
(e, S U i, L)) > ?7 | | (5.13)

‘ fof everyé € {1,,2,...,\/15}.

. Before provmg Lemma 5.3.11, we use it to prove Theorem 5.3.10 by inductively
constructmg player sets S, ..., S, and orderings oy, . ap with the following prop-

‘erties.

1) For every j € {0,1,2,...,p}, S; corresponds to the vk - 27 players occupying
j COTLE v :

someline L; of G;.

(2 or‘~ is an ordering of S; that orders the vk players of each of its j-groups A
7 J : , '
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consecutlvely and in a way that (5 13) holds with S equal to the predecessors

ofA in 0j..

For the base case, set Sp = Up. Since x is no-deficit, the players of Sy can be ordered
i, .'..,i\'/; S0 that: X(ig, {i1,.- ", %e}) 2'0({2'1,...,2'4})/8 = 1/¢ for every ¢ Let o
- denote this ordering of So o ’ ' ’

 For the 1nduct1ve step, let- L;_; be the line of G;_; corresponding to S;_;, and

con51der the edges of Lj_; in an arbltrary order. Each such edge gives rise to m

J- groups, applying Lemma 5.3.11 with S equal to the players already chosenr(i’n this
» ‘and previous steps), one of these j-groups can be ordered so that (5.13) holds. Add an

_arbitra‘rysuch group to the player set, ordered after all previously chosen players and -

50 that (5.13) holds. After all of the edges of L have been processed; we obtain a

player set S; and ordering o; of them that satisfy the inductive invariants (1) and (2)

Now cons1der the sum Ze-l x(%¢, S¢), where ze and Sy denote the £th player and

_the ﬁrst 4 players of S, with respect to oy, respectlvely For J >0, the 2J 14 groups

of S, each. contnbute at least

fz 2
~4 4

to thls sum; the 0-group S, also contributes at least &, Thus the sum 22—1 x (¢, Sp)
is at least ' ‘ o

oy, (ok)/2 ' |

a7y Z 2i=1.977 >clog k= (clog k) - C(S)

for a constant ¢ > 0 that is independent of k. This, combined with Proposition 4.2.12,
completes the proof of Theorem 5.3.10.

To conclude, we provide a proof of Lemma 5.3.11.

Proof of Lemma 5.3.11: Let A},..., Al denote the j-groups corresponding to the
~edge (u,w) of Gj_; and set X' = U2, Al. The proof plan is to inductively identify

subcollections of these j-groups such that inequality (5.13) holds for an iricreasing
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. number of the players in the remamlng j-groups. Toward this “endy, call .Vav set Al
‘ Ielzgzblelf R . o
. o ‘2—.'/‘ S
zx(i,‘SUXl) > o (514)
‘ ‘ 7 . _ i€A} . ‘ ‘ ‘ v
Every 1- ehglble group contams a player i for Wthh x(z SuXx 1) > 9-i / 4\/_
Our key clalm is that at least m/ 2B groups are 1-eligible. We prove this claim via
~an. averagmg argument that rehes on the: 8- budget balance and cross—monotonlclty .
of :x. - Precisely, reindex the 1- ehglble groups A}, .. A1 and let Y1 denote their -
union.- An optimal Steiner tree spanning 'S UY! consists of a line through S and one
o group of Y1, plus g—1 “spokes attachmg the rest of the groups to either u.or w. -
- Thus c(S UYl) = 1+ (q 1)2 =, Smce X is cross-monotonic and ﬁ-budget balanced'», v
' we have . -
> xG, soxl) < 3 xG, soyl) <,8(1+( —-1)279).
. iesuyt, desuyl o R TR

'_TSince (514) fa.ils for ineligible groups, and there at most ‘m _sueh groups, -

| Z x(z SUX1)<-7%

ieX 1\Y1
- On the other hand, since C’(S U'XI) =14+ (m-— 1)2"j and X'is‘ no-deficit, _
, Z x(z SUXI) > 1+(m— 1)2_J
z€SUX1 o
Combining these three inequaIit’ies and' rearrarrging gives the constraint

§1”__23_l m

=4 B~ 25
where the ;second inequality hold_s because m is sufﬁciently large.
Now we iterate the process. In more detail, obtain A2 from each 1-eligible group
Al by removing a player 4 for which x(4, S U X1) > 277/ 4vk. (Such a player must
exist by 1-eligibility.) Let X? denote the union of these sets. Such a set A? is 2-eligible
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if
Z x5 SUX 2) > 2T
zeA2 .
‘ Every 2—ehg1ble j-group contains a pla.yer 4 for which x(, S UX? > 93 /4(\/— - 1)
. Argulng as above, at least a 1/ 2,3 fractlon of the sets A? are 2-eligible. |
Iteratlng this procedure and remdexmg the ehglble groups after each iteration, we
inductively obta_m a collection of dls_Jomtvsets AhL Ah for each h € {1, 2 S VEk k}
“with the following properties: ' V '

(1) gn > m/(26)";

(2 ) for eech re {1 ., qn}, A contams a player in such that x( ,SuU Xh) >
2~ 7/4(\/_ h+1) where Xh—UA,, :

~ (8) for each re{l,. ',Qh} and ‘h > '1 Al = Ah-l'\' {;h-l}‘

Since m is sufﬁmently large N 1. By propertles 2) and (3) and cross—monoton1c1ty ‘
-~ of X the group Al that corresponds to A‘/— satlsﬁes the requlrements of the lemma.
m o

5.4 Steiner Forest Cost—shar‘ing Problems

In this section we identify an optimal Moulin mechanism for the Steiner forest cost-
sharing problem defined in Example 2.2.9. We seek an no—deﬁcit‘Moulin‘ mecha-
nism for this problem with the best-possible approximate efficiency. Section 5.4.1
 describes the previodsly proposed Konemann, Leonardi and Schéfer mechanism [55].

Section 5.4.2 bounds the efficiency of this mechanism and proves that it is optinial;

5.4.1 The KLS Cost-Sharing Method

We describe the.vKLS cost-sharing method, due to Kénemann, Leonardi and Schéfer [55];
|it is a cross-monotonic, 2- budget balanced cost-sharing method for every Steiner forest
cost funct1on and no cross-monotonic method can have better budget—balance [45, 55]

B We call the induced Moulin mechanism the KLS mechamsm
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The KLS cost-sharing method modifies the primal-dual Steiner forest algorithms
of Agrawal, Klein and Ravi [3] and Goemans and Williamson [35] in a novei’_-way to
ensure‘cross-vmonotonicity., The method takes as input- a graph G = (V, E) with edge

“costs and a set of players S, where each player i € S is identified with a source-sink
~ pair (s;,%). It outputs a feasible Steiner forest (a subgraph containing an sz—t path'
for all ¢ € S ) and a cost share for each player. ’

The Stelner forest and cost shares are deﬁned in tandem via the followmg prlmal-
dual algorithm, which we describe as a process over time. Primal variables correspond
to edges and dual variables correspond to subsets of nodes in the graph. The algorlthm
maintains an acychc set F of edges (1n1t1ally empty) and a set of feasible dual varlables
’{yA} (initially zero). By feasible, we mean that for every edge e € E, the sum .
of the dual variables ), g ccs4) Y4 corresponding to sets A that contain exactly
one endpoint of e is at most the edge cost ce; this is the dual packing constraint
correspondmg to the edge e. - ‘ o

The algorithm proceeds by umformly raising the values of active dual variables,
which correspond to a subset of the connected components of the current subgraph -

- (V, F). We define the activity criterion soon. These variables are increased until an
edgee becomes tight, in the sense that the dual packing inequality corresponding to e
holds with equality. At this poinﬁ the edge e is added to the set F and the set of
actlve dual variables is updated The algorithm continues in this way until no active
dual variables remain. ‘ _ ,

A key definition in [55], which determines the active dual variables, is that of the
‘death time of a termlnal The death time of both s; and ¢; is deﬁned as half of the
length of a shortest s;-t; path. The actlve dual variables at time 7 with respect to
the subgraph (V, F) are then deﬁned as the variables y4 such that A is a connected
component of (V, F) containing at least one terminal with a death time larger than
7. Intuitively, the death times of S; end t; are defined as the smallest value that
ensures s;-t; connectivity in the final output of the above primal-dual algorithm,
while conservatively ignoring the contributions of other source-sink pairs.

Cost shares for the players of S are defined using the dual variables as follows. At

each instant, the increase in an active dual variable is split equally among the active
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terminals 1n the corresponding connected compoh'ent-.- The cost share of a terminal is
then defined as the total cost that lt’ac(:umulates over time. The KLS cost shares of a

- player, as described by [55] is simply the sum of the cost-shares of the corresponding

- terminals. We muliply these cost-shares by a factor of 4 to ensure that the cost of -
the constructed solution is recovered R ' ‘ '

- Results from [55] immediately show that these cost shares are cross-monotonic; |

- with the scaling, their sum is at least the ‘cost of the'constructed Steiner forest and
is at most twice the cost of,ari optimal Steiner forest. Furtkher‘, by weak duality, the -

cost of the constructed Steiner forest is at most .twiCe that of an optimal solution.

5.4 2 The KLS Mechamsm Is O(log k) Approx1mate

We now analyze the efﬁmency of the KLS mechamsm The main result of th1s sect1on

s the followmg

:Theorém 5.4.1 Th‘e KLS }nechaﬁism is O(log? k)-approzimate for every Steiner for-

est cost-sha'rz'ng‘ p‘roblcm‘ where k is:th‘e size of an efficient outcome

, Recall from Section 5. 3 3 that every O(l) budget- balanced Moulin mechanlsm is
Q(log k)-approximate, and ‘that Steiner tree cost functions are instances of Steiner
forest cost functions (one terminal from every terminal pair is located at a fixed
node called the root). The KLS mechanism is thus an optimal O (1)-budget- balanced

‘Moulin mechanism, up to constant factors.

Overview of the Proof of Theorem 5.4.1

7 The pi‘oof of the theorem is technical and so we start by pfovlding an overview. By
Theorem 4.2.4 it suffices to show that the KLS cost-sharing method is is O(log? k)-
summable. By the definition of summablhty (Definition 4.2.2), we need to analyze
the followmg procedure. Given an arbltrary Steiner forest instance and an arbitrary
ordering of the players (source-smk pairs), we add the players-to the instance one-by-
one, according to the given ordleringT Each time we add a new player, we compute

its KLS cost share in the instance induced by the set of players added thus‘far. The
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key questioh is: by how much can the sum of these successive cost shares exceed the
cost of servicing all of the players? o ,

The problem has an online ﬂavor as we add players one-by-one. However, rather
than bounding the cost of the online solution as is typical in online analysis, we are
interested in the sum of cost shares. - . ’ |
- 'Our, analysis proceeds in two steps. The first step is motivated by the difficulty

in directly bounding the above ‘successive cost shares in a general network. The -
idea of this step is to réplé.ce the given network by a forest with cost at most an
O(logk) times that of an optimal Steiner forest. The construction resembles that of
an online Steiner tree using the standard greedy strategy [44]. However, to facilitate
our charging argument in the second step, we require that each tree of this forest be
‘an ultfametrié—i.e., all root-leaf paths have equal length.

The goal of the first step is also reminiscent of probabilistic tree embeddings (see |
eg. [9, 30]) However we cannot apply such an embédding as a black box. The
‘reason is that our cha,rging‘ argument in the second‘s_tep.requires structure beyond
the low distortion guarantee—it also needs the distances 1n the ultrametric to be
tightly éoupled with the dual growth process used to define the KLS cost-shares.

~ In the second step, we demonstrate how to charge the k successive KLS cost shares
to the ultrametrics constructed in the first step. Loosely speaking, we show how
subtrees in each ultrametfic correspond to active components during the execution
~of the primal-dual valgo’rith_m that defines the KLS cosf shares. Our charging scheme
charges each point of each ultrametric O(log k) times, proving an O(logzbk) bouhd on
the sﬁmmability of the KLS cost-sharing method. ,

- While portions of this argument are similar to that used in Section 5.3.2 to upper
bound the summability of the Jain-Vazirani (JV) Steiner tree cost-sharing method,
the refined ultrametric structure and the charging argument in this section are new.
One reason we require the ultrametric structure is that the primal-dual algorithm un-
derlying the KLS mechanism determines cost shares using fixed “death times”, rather
than via the component structure in the dual growth process as in JV, where a player
becomes inactive once it belongs to the root’s component. While crucial for cross-

monotonicity of the KLS cost-sharing method, this property can cause a terminal to
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aceumulate a cost share beyqnd the point at Which it is connected to its mate, and it is

* not obvious how to bound this additional accumulation. The example below exhibits
“a Steiner. tree problem instance for which the summablllty of the KLS method is an

- Q(logn) factor times larger than that. of the Jain-Vazirani method: Nonetheless we
prove in this section that the KLS method is always O(log? k)-summable, matching

- the (tight)_ Worst-case bbund for the Jain-Vazirani method Stez'ner tree cost functions.

‘ Example 5.4.2 Our 1nstance consists of n-+ 1 pomts on the unit line. The root. lies
at point 0. The ith point in the ordering lies at distance z/n from 0. Let o be the
identity permutation. Recall that in the Jv prlmal-dual algorlthm, a player becomes
inactive once it belongs to vthe root’s cemponent.v For every successive instance, this

- , happens at time O(1/n) for every player in the instance. Then, the ith successive JV

cost share in this instance is O(1/n); The JV cost- shanng method has summability
0(1) in this example. '

- On the other hand, consider the KLS cost share of the ith termlnal w1th death time

z/2n Until time 1/2n, the cost share increases at a rate of 1. At time 1/2n, all_ the

i nodes preCeding and including the ith one, ferm a single eomponent'. Thereafter,

 for every jb < i, from time j/2n to (j 4+ 1)/2n, there are i — j active nodes in i’s

. component (all these nodes have death times of at least (5 + 1)/2n, and therefore,

its cost share goes up at a rate of 1/(i — j). The net cost share of the sth terminal -
is ©((logi)/n). The KLS cost- sharmg method therefore has summablhty @(log n)in

- this example

" Building the Forest

We now describe the first step of our analysis of Theorem 5.4.1. We define a pro-
~ cedure that takes as input a Steiner forest instance G = (V, E) with edge costs, an
(adversarial) ordering o of the source-sink pairs (s;,%1), ..., (S, tx) and constructs a
forest F', defined on the terminals, that has cost O(Iog k) times that of a minimum-
c}ostv’ Steiner forest, as well as other structure useful in the second step of the analysis.
While the following description will be algorithmi_e, we emphasize that this construc-

tion is purely for the purposes of analyzing the summability of the KLS cost-sharing
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method.

Consider an optlmal solution to the given Stelner forest instance. Our forest F |
will have one tree for each connected component of thls optlmal solution. We will
construct. these trees 1ndependently of each other, so we can restrict our description
to a single component T of the optimal Steirier forest. ‘Let A* denote the terminals
spanned by T*. The vertex set of the tree T' that we construct will ‘contain all the

. terminals in A* as well as some auxﬂlary vertlces

We now describe the{Construction of T. Figure 5.4 depicts the construction for
a simple graph with threé_termina,lvpairs. The orderin‘_g d = (‘sl,tl),‘_,-.‘.', (8%, tx) on
source-sink pairs induces an ordering sy, %1, 2,3, . . sk,. t;; on the terminaIs and also
an ordering of A*. We construct T by adding termma.ls in A* to it in this order.
When a terminal is con81dered ‘we attach it to the exxstlng tree and endow it with }
a radius. The ball of a termma,l: ¢ with radius r is defined as the terminals of A*
at distance at most r frdm z in the given graph G. To start the ‘construction, \{Ne
introduce an auxiliary root zo and create an edge eo between o and z, the first
' termmal of length Doz, Where Dppge is half the largest distance (accordlng to the
graph G) between any two terminals of A*. We call this edge €o the backbone edge ‘

,We endow the termxnal zy with a ball of infinite radlus

. Now consider some subsequent terminal z. Among all of the previously added
termlnals whose ball conta.ms x, we define the terminal y with the minimum radius
to be the parent of z and write p(z) = y- If y has finite radius—i.e., is not the ﬁrst ,
termlnal of A* with respect to o—then we define z’s radius 7, to be half of its parent’s
radius. Otherwise; we define the radius r, to be half of the shortest-path 'distarice
between z and y in G. To attach z to the tree T, consider the path from y to zo in 7.
‘We connect z to the point along this path at a distance r, from y, poss1bly creating
a new internal node. The backbone edge and the definition of Dj,,, ensure that this
is always possible. Call this point v(z). The length of the edge between v(z) and z is

" defined to be r,. Note that the le'aves of T' are in bijective correspondence with the
terminals A* allowing us to refer to a leaf of the tree by its correspondlng termlnal

_ See Figure 5 4 for an instance of the tree construction.
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51,8,

R T W
Figure 5.4: An' instance ‘of the tree construction with' three _terminal-pairs -
.(s1,%1), (82, %2), (83,t3). The construction ordering o is (sl,t1,32,t2,s3,t3) Figure .
(a) shows the graph G which is also the tree T*. Figure (b) shows the ultrametrlc N
tree T'; the edge (zo,t;) is the backbone edge »

~ Some useful prbperties of the tre'e‘:T':
We establish propertles of the tree T useful in the charglng argument of the second'

step of the proof. We first show that the tree T is an ultrametrlc

Lemma 5'.4.3 The tree T is an ultmmetric, with all root-leaf paths having length
Dmam- . ‘ ‘

Proof: The lemma statement is an invariant of the con_structioh process. It is trivially
‘true after the first step of the treé construction as the tree consists of a_sihgle'e‘dge,
the backbone edge with lengtﬂ Dinaz. When a new terminal z is added to the tree T,

the distance from the interior node v(z) to = equals the dlstance from v(z) to the

. parent p(z) of z, maintaining_ the invariant. M

“Next, we relate distances between pairs of leaves of the tree T to dlstances between
, the corresponsing terminals in the graph. For every two terminals z y in A*, let _
dr(z,y) and dg(z,y) denote the distances between z and y in the tree T and in the »

- graph G, respectively. The next lemma follows immediatély from the construction.
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Lemma 5.4.4 For every terminalx € A* with parent p(z), dr(z,p(z)) 2 do(z, p(z))-

Proof: By construction, dr(z,p(z)) = 2ry = Tp(), which is at least dg(z, p(z)) as o
is in p(z)’s ball. W - ' '

- We now approximately extend Lemma 5.4.4 to every pair of terminals z,y € A*.
Lemma 5.4.5 For every pair z,y € A* of terminals in T, dp(z,y) Zldg(ac, y)/5.

The idea of the proof is to consider a walk Way between z and y in T and relate fhe, ‘
length of this walk, £, to both dr(z,y) and dg(z,y). Pfecisely‘, fix z,y € A* and
coﬁSider the (unique) path P,, between z and y in the tree T. Label eé,ch internal
-node v(z) by the parent of z. The length of this path is dr(z,y). To construct the
Walk Wey, consider the sequence Sxy of vertices that the path sz visits; apart from
z.and y, all of these are internal nodes of T. Obtain a sequence S’ of terminals from
Szy by replacing the 1nternal nodes of Sgy by their label values (termlnals) and then

removing duplicates. Obtain the walk Way in T by visiting the terminal nodes in Sy

in order, along the umque paths in T that connect consecutive nodes. The walk me o

‘ ,contams Py, as a subgraph, and can be decomposed 1nto Ppy and a set of mrcults
each of which starts and ends at an internal node of Py, visiting the terminal node -
corresponding to the label of the mternal node along the way. Figure 5.5 shows the
walk W,, and the path P,, for z = s, and y = £, for the tree T from Figure 5.4. The

proof of Lemma 5.4.5 is an easy consequence of following two lemmas.
Lemma 5.4.6 For every pair z,y € A* of terminals in T, £y, > da(z,y).

Proof: Every pair of consecutive nodes in the s‘equence Sy, share a parent-child re-
lationship. Apply'i'ng Lemma 5.4.4 and the triangle inequality completes the proof.
= ‘ _ -

- Lemma 5.4.7 For every pair 2,y € A* of terminals in T, dr(z,y) > £;4/5.

Proof: The proof is by a charging argument. Recall that the walk W, contains Pmy
as a subgraph, and can be decomposed into P,, and a set of circuits, each of which
starts and ends at an internal node of P, visiting the termmal node which labels

the internal node along the way. (See Figure 5.5.)
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R . . ‘ SRR - et

Figure 5.5: The walk me and the path ny for z = s5 and y =t for the tree T from "
. Flgure 5 4 The termlnals s3,t3 from Flgure 5.4 are not shown. '

We wﬂl charge the length of the circuits to the segments"of sz the_.t precede them 3
~in the walk. More precisely we will show that the circuit has a length at most four
~ times that of the. segment of P,,,.y we charge it to, and hence the length of the walk
- Wy is at most ﬁve times the length of path Py, provmg the lemma.

»Con51der a circuit of Woey rooted at the internal point v(z)and v151t1ng‘the terminal
p(z) The Iength of the circuit is at most 2r,, while the length of the segment of Py,
immediately preceding v(z) is at least 7, /2 (r, minus the radius of any of 2’s children).
Thus,’ the circuit is at most four time_s the length of the‘ segment'of P, we cherge it

to. B

I8

Bounding the size of the tree T:

In this section we estabhsh the following bound the size of the tree T in terms of the. '

optlmal tree T*.

Lemma 5.4.8 The sum of the costs of the edges in T' is O(logk) - c(T*) o
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We mention two lemmas that culminate in the proof. Both lemmas have direct
'analogous to ones used to bound the summablhty of the JV cost-sharing method.
The first lemma sta.tes that terminals that have edges ofa comparable length in the

tree T must.be well separated in the graph G. The proof follows that of Lemma, 5.3.4.

‘ Lemma 5.4. 9 Consider two terminals T, and z, with edges x, y1 and Z2,Y2 of length
¢ and cp in the tree T such that cr < ¢ and ¢/ < 2. Then dg(zy,22) > c1

The second lemma uses the above lemma to prove an upper bound on the number of
‘edges of the tree T that can have a comparable length The proof is identical to that
of Lemma 5.3. 5 ST ‘

o Lemma 5.4.10 For any -y 2 > 1, the. number of edges of T that have cost in the mnge
- (T [, 2c(T*)/7] zs at most 2. '

- We now complete the proof of Lemma 5.4.8.
Proof of Lemma 5.4.8: The proof follows by sortmg the edges of T into b1ns and :
‘bounding the sum of the edge lengths in every bin. Suppose that:A* has m players
of S. First, we cla1m that every edge cost in T is at most c(T*). Our construction
~ ensures that every edge cost is at ‘most Doz On the other hand, as T* spans all of
_ the terminals of A*, its cost is at least Dynqsz-
“Now consider edges with cost in the interval (2% (T*) /m, 2’+1c(T*) / m] for some
i€ {0,1,...,logym]}. By Lemma 5.4.10, there are at most m/2"~' edges in this
group. The sum of the edge costs in each of the O(logm) possible groups is therefore
~ at most 4c(T*) Fmally, since T has at most 2m edges the total contribution of edges
- with cost at most ¢(T*) / m is at most 2c(T*) Summing over all groups of edges and

noting that m < k proves the lemma. B

The Charging Argument

We are now ready to bound the‘summability of the KLS c_ost-sharihg method. Our
charging argument will proceed independently for each ultrametric constructed in-

Section 5.4.2; we will fix one such ultrametric 7', spanning a set A* of terminals.
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For technical reaSons we henceforth use a version of the tree T sealed up by
‘a factor 10. ‘Lemmas 5.4.3 and 5.4.8 continue to hold while Lemma 5 4.5 can be -

" restated as follows:
Lemma 5.4.11 For eve'ry pair T,y € A*in T, d_q‘(:z‘:,y') < %dT(m,y);

- We now commence the charginga.rgument . 'Let z, and A; denote the fth terminal
and the first ¢ termlnals of A, respectlvely, with respect. to the ordering 1nduced
by o. We aim to charge the KLS cost share XKLS (xg,Ag) of a terminal z, € A* to

- points of the tree T._ (A technical detail: since matched pairs of terminals appear
‘ consecutively in the ordering induced by d,'the set A, contains only matched pairs of <
| termmals plus p0351b1y an orphaned source s;. In either case, XKLS (o, Ae) denotes -
‘the KLS cost share ass1gned to the terminal 2, in the Stemer forest instance 1nduced‘
by all of the players with at least one terminal in the set Ag ) -
| The chargmg proceeds as follows. Let P, be the unlque path in T from Zptoxg, and
con81der the pr1ma1-dua1 algorithm that determmes the KLS cost share xK Ls (z¢, Ag). |
At each moment 1n time 7 up to the death time of T, the terminal’s cost share
increases at a p081t1ve rate, equal to the i inverse of the number of active terminals in
Zg's component at time 7. For each such time 7, we charge this (margmal) 1ncrement
in z,’s cost-share to the point ge(7) which is at distance 7 from z, along the path Pg.
~ Since every leaf-root path of T has length at least Do, (Lemma 5.'4.11)—half of
‘the largest distance between two terminals of A*—and since D, is at least the death
time of every terminal of A*, this"procedure fully charges the sum 'Ze xKL5(xp, Ag)
- of the KLS cost shares to T.

Fix a point g of T. Only termlnals in the subtree of T rooted at g charge part -
of their cost share to g. By the ultrametric property (Lemma 5.4.3), all of these
termlnals are'equldlstant from the point g in T’; let this common distance be 7,. Such |
a terminal charges part of its cost share to g if and only if its death time is at least 7,;
let B denote these terminals. We first show that at time 7y the terminals of B NAg are
in the same component and hence must share the increase in the actrve dual variable.
corresponding to this compoenent; we then use this to show that for every point g

of the tree T, the sum of the (marginal) charges to g by the terminals of A* is only
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O(log k). |

J Lemma 5.4.12 Suppose xp € B. Then at time T, in the Tun of the primal-dual |
algomthm that defines the KLS cost share XKLS (24, Ag), al‘l.th"e terminals of A, N B

are in the same component as Ty..

Proof: Fixz € (A; N B) \ {z.}. As z and x, lie at ‘distance 74 from the point ginT,
dr(z, :Ee) < 27,. Lemma 5.4.5 then implies that dg(a:,_:tg) < 7,. Now, as z, 1 € B, the |
death times of xg and are'both at least 7,5, and in particular the terminal z is active
at time Tg- As de(z, ) < 74, even ignoring' the Contributions of other t‘errninarls the
) components containing. 7. and z must merge by time 7, in the run of the prlmal dual
algorlthm that deﬁnes the KLS cost share x Ls(xg, Ag) u - |

Lemma 5.4.13 For every pomt g of T the total margmal charge to g is at most
. 2 HIBI where H; = E,<3 1/i denotes the Jth Harmonic number. -~

' Proof Since the KLS cost-sharing method sphts the increase in value of an active
: dual variable equally among the-active terminals contamed in the correspondm g com-
ponent, Lemma 5.4.12 implies that the margmal charge to the pomt g by the terminal
Te € B is at most 2/|B N A, which is at most 2/| A . Summing over the contri-
butions of the termmals in B, the total amount charged to thls point is at most

2- El<l<| a 171, ‘which is 2 - ’HA*, provmg the lemma. W

Theorem 5.4.1 now: follows ea.sﬂy from Lemmas 5. 4.8 and 5. 4 13 and summlng

-over all of the components of the optlmal solutlon

5.5 SSROB COst-Shaﬁng Problems

In this section we identify an optimal Moulin mechanism for the SSRoB cost-sharing
problem defined in Example 2.2.10. We seek an O(1)-budget-balanced Moulin mech-
anism for this problem with the best-possible approximate efficiency. -.Section'5.5..1
. describes a mechanism, independently proposed by Gupta Srinivasan and Tardos [39] -
and Leonardi and Schifer [56]. Section 5.5.2 bounds the efficiency of this mechanism

and argues that the mechanism is optimal.
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5.5.1 The GST cost-sharing method

- Gupta, Srinivasan, and Tardos [39] and Leonardi and Schéfer [56] 'independently

~ designed the following O(l)-budget-.balanced cross-monotonic cost-sharing method for
SSRoB, which we call the GST method. Given an SSRoB cost function and a set S C
U of players, we use the randomlzed algonthm of [40] to produce a fea51ble solutlon
This algorithm first chooses a random subset D C Sby addmg each player i€ Sto
D independently with probability 1 /M . Second, it compu_tes an approximate Stemer
tree spanning D U {t} using, for exarhple, the 2—approxime,te MST heuristic .[73], and
buys infinite cepacity on all of the edges of this tree. Third, for each player i ¢ D,
it rents one unit of capacity for e_icclusive use by ¢ on a shortest path from its vertex
to the closest vertex in D U {t}. This defines a feasible solution with probability 1,
and the expected cost of this solutlon is at most 4 times that of an optlmal solution
to the SSRoB instance 1nduced by S [40].

We now discuss the cost shares. The GST cost—sharmg method uses JV cost

shares (Sectlon 5.3) for the Steiner tree problem as a bulldmg block. These cost-
‘shares are cross—monotomc and 2- budget-balanced for any mstance of the Steiner
tree cost- sha,rlng problem. ' ' |
The GST cost share Xasr(i,S) is defined as the sum of two terms xbuy(z S) and
Xrent(4,,S) which represent the cost shares of a player i € § with respect to the bought.
and rented edges respectively. Xbuy (%, S) and Xrent(4, S) are the expected values of two
random variables B(i,S) and R(i, S) defined over the the random choice of the set
D in the above algorithm. R(i,S) equals the length of the shortest path used to
connect i to a vertex in D U {t} if i-¢ D and is 0 otherwise. B(3,S) equals M times
~ the Jairi-‘Vazirani cost share x v (i, D) of i with respect to the Steiner tree instance
- defined by G, ¢, t, and the players Difi "e D, and is 0 otherwise. For fixed coin
tosses of the above randomized algorithm, for any player i, note that at most one of
B(z S) or R(i,.S) is non-zero. | |
For fixed coin tosses, the cost-sharing method induced by the set of random vari-
ables B(i, S) for all S C U and i € §'is the JV cost-sharing method on an instance
of the Steiner tree problem and is therefore cross-monotonic, while the cost-sharing
method induced by the set of random variables R(,S) for all S C U and i € S are
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cross-monotonic because renting costs fall as the set S and hence the set D expands.
GST cost-shares are thus cross-monotone as they are the weighted (by probabﬂities
- induced by the random choice of set D) sum of cross-monotone cost-sharing meth-
‘ods. Results from [39, 56] imply that the GST cost-shares are 4-budget-balanced.
We call the Moulin mechamsm mduced by the GST cost-sharing method the GST

'mechamsm
5.5.2 The GST Mechanism is O(log? k)-approximate
‘The main result of ;th‘s section boun_de the efficiency loss of the GST mechanism.

Theorem 5.5.1 The GST mechanzsm is O(log? k)- appro:mmate for every S’SRoB’

cost-sharing problem where k is the number of players n an eﬁ‘iczent solutzon

,The SSRoB cost-,sha,ring’ problem reduces to the Steiner tree cost~sharing problem o

when M = 1, and Section 5.3.3 shows that every O(1)- budget-balanced Moulin mech- -

anism for Steiner tree "cost—sharing problem is Q(log k)- -approximate. This matches

~ the upper bound from Theorem 5.5.1 and argues this GST ‘mechanism is an opti-

mal O(1)-budget-balanced Moulin mechanism. We now discuss the proof of Theo-
rem 5.5.1. |

- By Theorem 4. 2.4, it suﬁices to show that GST cost shares are O(log k)- summable.

Mirroring several recent analyses of sampling algorlthms for rent- or-buy problems [40,

38], our analysis proceeds in two steps. First we show that the summability of Xrens

| is at most a constant factor times that of Xbuy- Second, we directly upper bound

the summability of Xbuy- The first step will follow from a property of JV cost shares

called strictness.

Lemma 5.5.2 (strictness) For every Steiner tree instance, Jor every set S C U
and player i € S, the JV cost share of a player is at least half the distance between i
and the nearest node in the set S\ {i} U {t}.

We now use strictness to-bound Xyen: in terms of Xbuy-
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Lemma 5.5.3 LetC bea SSRoB cost function. For everyS CU,i€8, xrent(z S) <
o2 Xy (8, S)-

., Proof Fix a set S’ C.U and i € S arbitrarily. Reca.ll the descrlptlon of GST cost
shares from Section 5.5.1. Condztlon on the membershlp of all the players of S \ {7}
in the set D. Let DU(S\ {z}) . Define R(4, S) and B(i, S) as in the definition
of GST cost shares. - - . . .

Player 4 will be included in the set D with probability 1/M, in which case its
conditional cost share will be 2M - x v (i, D' U {i}), where x,v (i, D'U {i}) is player
#’s JV cost share in’ ‘the Steiner tree cost—shanng problem 1nduced by the players of
D'y {i}. Player i is excluded from the random sample D with probablhty (1—-1/M),
o in whlch case its condltlonal cost share equals the dlstance between i and the nearest '
| . player in the set D' U {t}. ‘
By Lemma 5.5.2, E[R(i,S)|D'] <2-(1—- l/M)E[B(z S)|D’] Takmg expectatlons

to remove the cond1t1on1ng on D' proves the lemma. W

We now show that for every SSRoB cost functlon the. correspondlng cost-sharing

‘ method Xouy is O(log k) summable. This Wlll complete the proof of Theorem 5.5.1.

'Lemma 5.5.4 Let C’ be a SSRoB cost function and Xpyy the first term of the corre-
»spondmg GST cost-sharing method. Then Xpyy is O(log? k) summable for C.

Proof: Condition on the random choice of the set D C S. Let OPTp denote:the'cost
of the optimal steiner tree for the terminals DU {t}. A result of Gupta, Kumar, and
Roughgarden [40], based on earlier work by Karger and Minkoff [50], implies that
‘M times the expectation (over D) of OPTD is at most the cost C(S) of an optimal
SSRoB solution.

As JV cost shares are O(log? k) summable for all Steiner tree cost functlons (Sec— |

tion 5.3)
,, S|

3 xov e 5 < O(log? Ic) . OPT5 < O(log* k) - C(S) (5.15)

=1 _
for every ordering o of D, where Sg and 7, denote the set of the first £ players of D and
the £th player of S (with respect to ), respectively. Taking expectations to remove
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the conditioning on D and recalling the definition of x4, completes the‘ proof. W

R_emark 5.5.5 MRoB cOst—shé.ring pfoblems (Example 2.2.11) also admit O(l)-budget— '
balanced, O(logz.’k)‘-qpproxima,te Moulin. mechanisms. See Roughgarden and Sun-

“dararajan [71] for details.
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Chapter 6
Acy(i‘lié, \Mecuhani_,sms

. Hav1ng identified opt1mal Moulin mechamsms for various cost—shanng problems we
NOW propose an alternative framework called acyclic mechamsms L1ke Moulin mech—

" anisms, acychc mechamsms are ascendmg auctions based on cost- sharmg methods
- However, acycllc mechanisms can employ a wider class of cost-sharing methods—the
cost- sharmg methods need not be cross—monotomc Section 6.1 discusses how acyclic
mechamsms get around the lack of cross-monotonmlty Section 6.2 deﬁnes acychcv
mechanisms formally. Section 6.3 establishes the truthfulness _of_ acyclic mechanisms.
The next chapter identifies the two benefits of acyclic mechanisms. First, it is
easier to bdeSign acyclic mechanisms than Moulin mechanisms:‘ many classical c.ombi-‘
natorial algorithms (based on the primal-dual method) naturally induce a non-Moulin
acyclic mechanism with good performance guarantees. Secbnd,. .fof important classes
of cost-sharing problems, there exist acyclic mechanisms that have exponentia.lly bet-
ter economic efﬁciency éompé,red to the best Moulin mechanisms. Section 6.4 sum-

marizes these efficiency improvements.

6.1 Circumventing Non-crossmonotonicity

“Recall from Chapter 4 that a Moulin mechanism can be viewed as a simulation of
an iterative ascending auction, with the prices that are simultaneously offered to the

remaining players at each iteration governed by the underlying cost-sharing method.

88
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Cross-'monotohicity of the cost-éharing method ensures that the sequence of prices
offered to a player is nerldec'rea'sing, which in turn_' implies that the mechanism  is
~ truthful. Conversely, non-cross-monotonic cost-sharing ‘methods result in iterative
' auctions that need not be ascendmg, and the correspondmg mechanisms are generally
not truthful. _ ' '

In an acyclic mechamsm in each iteration of the simulated iterative a.uctlon prices -
are offered to the remaining players according to a demgner—spemﬁed order. If each
remaining player accepts the price offered to it, then‘ the mechanism: halts, and the
remaining players are served at the prices offered in the final iteration. If some player
refuses to pay the price it is offered, then the iteration termirrates imrriediately, th‘:is

player is-removed for the rest of the auction, and the next iteration ‘begi'ns with the ‘
a remainirig players. Thus, a player need not be foered a price in every iterdtien. _
' 'Qrderirig the offers to the remaining players permits the construction of triit_hful ,

| _ ‘mechanisms from non-cross-monotonic cost-sharing methods. -Intuitively, the early
termination of an iteration conceals subsequent prlces from the players If aborted

iterations correlate approprlately with fallures of Cross-m onotomclty, then the simu-

lated iterative auction is ascending in the followmg sense: whenever an offer i 1s made - -

to a player, it is at least as large as every offer made in prev1ous 1terat10ns This -~

property is sufﬁment for truthfulness As we will see, many prlmal dual algorlthms
naturally induce a cost- sha,rmg method that is not cross-monotonic but possesses

premsely this type of correlation.

6.2 Deﬁnitibns |

To define an acyclic mechanism for a cost function C and a universe U, we require
both a cost-sharing method x and an offer function 7. ‘An offer function specifies
" a nonnegative offer time 7(i,S) for every subset S C U and every player i € S.
These times specify the ordering in which the players of S should be offered a price,
with lower times corresponding to earlier of_fers, and equal times indicating simulta-
neous offers. A cost-sharing method ahd‘ an offer function induce a mechanism that

simulates an iterative auction in a natural, generic way:
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~ Definition 6.2.1 Let U be a universe of players, x a cost-sharing method defined
~on U, and 7 an offer function defined on U. The 'mechanism M(x,7) induced by x

and 7 is the following.
1. Collect a bid b; from each: player 1eU.
2. Inltlahze S U

3. If b; > x(i,S) for every i € S, then halt. Output the set S, the feasible solution
constructed by‘ x, and charge each player i € S the price p; = x(i, S).

4. Among all players i € S with b;h< x (%, S), let ¢* be one with minimum 7(1, S).
(Break ties arbitrarily.)

. 5 Set S := .S \ {z } and return to Step 3

‘Remark 6.2.2 The deﬁnltlon of the mechanism M (x, T) depends only on the order-
~ing of the offer times, and not on their numerical values. We work with real-valued R
offer times rather than abstract orderings because such times arise natura.lly in prlmal- -

~dual algorlthms '

' Remark 6.2.3 Forevery universe U and cost-sharing method , the Moulin mech-
anism induced by X is equivalent to the mechamsm induced by x and the 1dentlcally

Zero offer function.

~ As foreshadowed in the previous Sectibn, ‘the mechanism 'induced'by a cost-sharing »

method and an offer functiOn' will be truthful only if all failures of cross-monotonicity

are suppressed by the offer functlon We formalize the required property next; we

prove that it is sufficient for truthfulness in Sectlon 6.3..
- Let 7 be an offer function defined on a universe U. For a subset S C U and a
. player i € S, let L(z S), E(4,S), and G’(z S) denote the players of S' with offer t1me
- 7(-, S) strictly less than, equal to, and strictly greater than that of 4, respectlvely.

| Definition 6.2.4 Let x and T be a cost-sharing method and an offer function, re- -
spectively, defined on a universe U. The function 7 is walid for x if the ‘following" two

-properties hold for every subset S C U and player i € S:
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(a) ‘x(z','S \T) = x(¢, S) for every subse£ TC G(?’, S); |
‘ (b) x(,S\T) > x(i, S) for Qvefy subset T _C_ G(,S)U (‘E(i, S\ {z}) :

In Definition 6.2.4, a player’s cost share must remain fixed as players with subse-
- quent offer times are removed, and it can only increase with the deletion of player§

with eqﬁal offer times. The deletion of a'playe‘r with an-earlier offer time imposes

no constraints, as such a deletion terminates the iteration and suppresses the values .

of subsequent cost shares. Also, we impose no explicit constraints on how the offer

function 7 changes between consecutive iterations.

Example 6.2.5 Consider the universe U = {z,y} and the non-cross-monotonic -

cost’-sharing method x defined by x(, {z,y}) = 1 and x(z, {x,y}) = x(y, {y}) <
| x(z,{z}) = 1/2. Let 7, and 7, denote offer functions sdtisfying T.(z, {z,y}) <
7e(y,{z,y}) and 7,(y,{z,9}) < n(z,{z,y}), respeétively. Then 7, is valid for x

while 7, is not.

Definition 6.2.6 An acyclic mechanism is a mechanism M ( X 7) induced by a cost-

sharing method x and an offer function 7 that is valid for X-

Remark 6.2.7 Acyclic mechanisms are strictly more general than Moulin mecha-
nisms. For example, all sequential mechanisms (see [62]), in which players are exoge-
nously ordered and successively offered service at the current marginal cost, are easily
‘implementable as acyclic mechanisms. These mechanisms are fully budget-balanced
and are not generally Moulin mechanisms. Sequential mechanisms are not immedi-
ately useful for our purposes, however, as they have poor efficiency and computational

complexity properties.

Definition 6.2.4 is easy to satisfy in several applications. Looking ahead, Chapter 7
shows that several well-known algorithms naturally induce a cost-sharing method and
an offer function that is valid for it. In all of our applications, the cost share (i, S) of
‘a player corresponds to part of a dual solution to the optimization problem induced

by S, and the offer time 7(¢, S) is the time at which player i is “deactivated” by a
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prim‘al-dual algorithm. For example, in UFL (Example 2.2.4), there is a_onéto—ohe

v correspdndence b‘etweeh players and dual variables.

Remark 6.2.8 We use the term “acyclic” to.reflect the fact that the.,offervfunctioh >
‘of an acyclic mechanism orders the »re'mair‘ling players in a way that conceals the
‘non-croés—monotonicﬂity of the underlying cost-sharing method. In particular, Deﬁ-
bmtlon 6.2.4 1mphes that for every subset S of players, the following directed graph
| acyclic: -the vertices are the players of S, and the arc (3, ]) is included if and only
-if x (7, 3\ {i}) < x(4,S). This consequence of Definition 6.2.4 is reminiscent of but

~ different from the notion of “semi-cross-monotonicity” introduced in [45].

»6 3 Propertles of Acycllc Mechanlsms

.'The followmg basm propertles of acycllc mechanlsms are. 1mmed1ate

4

Propo'sit'iona 6.3'.1 Let X and T be a~cos't-sham'ng method-and an offer function de-

. fined on the um'verse U ,fand M(x,7) the induced mecham’sm. ‘
( a) For every bid 'uector b, the mechanism M (X, T) halts within |U | iterations.
| (b) Ifx and T run in polynomml time, then so.does M(X,T) |
(c) If X is ,8~budget—balqnced with rgspect to a cost function C, then so is M (x, 7).
(d ) Thevm‘echanism vM (x,7) satz‘sﬁes no positive tmnsfers and individual rationality.

The rest of this section studies the mcentlve—compatlblhty propertles of acychc :
mechamsms Our key lemma states that the prices offered to a player can only
increase during the execution of an acyclic mechanism. To make this precise, we say
that player i is offered the price p in iteration j of an acyclic mechanism M (x, ) if the
following conditions hold: first, if S is the set of players remalmng at the begmmng '
of the jth iteration, then ¢ € S; second, if a player i* is chosen for deletion in this
iteration, then T(Z S) < 7(4*,5); third, the price p is the cost share x(i, S).
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We first prove a preliminary result, stating that the price offered to a player by
an acyclic mechanism is fixed once a player with a subsequent offer time is offered a

price.

' »Lemma 6> 3.2 Suppose. en acyclic mechanism M (x,7) oﬁers prices to players j and
iin an iteration with remazmng players S, and 7(3,5) < T(z S). Then x(4,5) is the

. only price oﬁered to g in subsequent ztemtwns

Proof' Let b denote the bid vector and m the iteration with remaining players S.
We show that no player of L(z S) will ever be deleted; thus all removed. players lie
in G(5, 5), and the lemma follows from Definition 6.2.4(a).

We proceed by contradiction, and let-£ denote the first player of L(z, S) removed at

or after iteration m. Let rcs denote the players of S removed prior to £. Since £ was .

~removed, X(f S\T) > by. Since i was offered a price in iteration m and £ € L(i, S),
x(£,S) < be < x(£,S\ T). By our choice of £, T contains no players of L(i,S),
and hence T C G(¢, S). But Definition 6.2.4(a) then gives x(Z S) = x(é S\T), a

E contradlctlon ]

Corollary 6.3.3 If an acyclz'c mechanism M(x,T) offers a pm’ce to playeri when the
 remaining set of players is S, then M never deletes a player of L(z S)

‘ ‘Proof Let b denote the bid vector. Since i is offered a price when the remaining set
.» of players is S, x(_y, S) < b; for every j € L(3, S). Lemma 6.3.2 implies that every
player j € L(i, S) will be offered the same price x(j, S) 1n subsequent iterations, and

hence no such player will ever be deleted. W
We now show that acyclic 'mechanisms' only offer ascending sequences of prices.

Lemma 6.3.4 If an acyclic mechanism M(x,7) offers a playeri the price p} in some

“iteration and the price p? in a subsequent iteration, then p} < p?. .

Proof: Let S denote the remaining players in the earlier iteration, so p; = x(4,S).
‘Since 4 was offered a price in this iteration, Corollary 6.3.3 implies that no player

- of L(i,.S) will be deleted in this or subsequent iterations. The lemma now follows
from Deﬁmtlon 6.2. 4(b) [ | '
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Lemma 6.3.4 implies that aoyclic mechanisms are strategypfoof. ,

- Theorem 6.3.5Y’Every acyclic me‘chanism 18 s’trategyproof. |

. | Slnce we generahze Theorem 6.3.5 in Theorem 6.3.8 below, we omit its short proof
The. next example shows that mechanisms mduced by mvahd offer functions are

not generally truthful

- Example 6.3.6 Deﬁne U, X and Ty as in Example 6.2. 5 The mechanlsm M (x,’ry)_
induced by x and Ty is not strategyproof ‘To see this, suppose that vy = 3/4 and
b, =1 /4 If player y bids truthfully, it is not served and receives zero utility. If it

“bids at least 1, however, it is served at the prlce 1 / 2 and receives pos1t1ve utlhty

Rec_ell from Remark 4.1.3 that Moulin mechanisms are groupstrategypro.of (GSP).

The next"example shows that acyclic mechani‘sms need not be GSP.

' ,Example 6.3. 7 Deﬁne U, x, and Ta as in Example 6.2. 5 Since 7, is valid for Y, the“
“acyclic mechanism M (x, Tz) is strategyproof It is not GSP, however. To see this,
set ”x,‘ 1/2and v, =1. In every possible execution of M (X, Tx), Player z receives
zero utility. The coalition {z,y} can manipulate the mechanism by bidding b =0
‘and by, = 1; player x obtains the same utility as with truthful blddlng, and player y

obtams strxctly more.

- We conclude this section by proving that acyclic mec_hanisms are weakly group-
strategyproof (recall Section 2.4), and thus nearly match the incentive-compatibility.

guarantee of Moulin mechanisms.

" Theorem 6.3.8. Every acyclic mechanism is weakly groupstrategyproof (WGSP).

Proof: Let M(x, ) be an acyclic mechanism defined on the universe U. Recall from
Chapter 2 that a mechanism is WGSP if no coordinated false bid by a coalition of
players can strictly increase the utility of every player in the coalition. Fix a coalition
T C U, a valuation v; and a bid b; for every player i € T, and bids b_¢ for the players
not in T'. Let &y and Sb denote the_e)tecntions of M for the bid vectors (vr, b_r_f) and
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(bT, b_1), respectively. Let (S,p) and (5", p) denote the outcomes of these executions.
We claim that u;(S,p) > > u;(S’,p") for some i € T
" There are three cases. First, if no player of T is deleted in &, or Sb, then these .
~ executions termlnate with identical outcomes (S, p) and (S',p), and the claim holds.
Second, if some player i € T is deleted in Eb, then u;(S', p /) = 0. Since u;(S,p) > 0
by the individual rationality of M(x, ) (Proposition 6.3. l(d)) the claim holds. For
" the ﬁnal case, assume that T' C S"and T € S, and let i be the first player of T
~ deleted in &,, say in the jth iteration; obviously, u,(S p) = 0. The executlons &
and &, are identical up to their jth iterations, and i is offered the same prlce p; 1n
- both executions. Since 7 is deleted in Evs P} > ;. By Lemma 6.3. 4, . >pl > v
" Thus ul(S’ , p) <0= u,(S p) completlng the proof n ' ‘ .
Remark 6.3. 9 The proof of Theorem 6.3.8 1mmed1ately 1mphes an incentive-c ompatlblhty
guarantee somewhat stronger than WGSP for every acyclic mechanlsm every devi-
ation by a coalition that strictly increases the utility of one of its members either

) decreases the utility, of orvpr'events service to another member (cf; , Example_6.3.7). :

Remark 6.3.10 Not all WGSP mechamsms are a.cychc see Juarez [49] For exam-
ple, the followmg mechanism for two players i is WGSP but not acyclic: offer serv1ce'
~ to the first player at a ﬁxed price, and to the second at a price that is a strictly
increasing function of the first player’s bid. The key point is that acyclic mechanisms
- are based on cost-sharing methods—mechanisms based on cost- sharing methods sat-
isfy the property that for every bid vector, the allocation determmes the prlces This

- condition is violated by the mechamsm in this example. o
Characterlzmg the class of WGSP mechamsrns and its relatlonshlp to acychc

mechamsms is an 1nterest1ng direction for future research.

6.4 | Acyclic"mechanisms: Summary of Applications

As the following table summafizes’, acyclic mechanisms yield exponentially superior |

budget-balance and efficiency compared to the best Moulin mechanisms for set cover.
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and vertex cover cost-sharing problems. For UFL coSt-Sharing problems, acyclic mech-
- anisms achieve better budget-balance than that achievable by Moulin mechanisms.
All of these mechanisms have polynomial time implementations. See Chapter 7 for
details. The Moulin lower bounds are discussed in Section 4.5.2. Recall that k'is
| the size of the optimal solution, n is the size of the universe of players, and all of the
results are worst case bounds w1th respect to valuation profiles and problem instances

of the problem family.

Problem Moulin lower bounds Acyclic upper bounds
Vertex Cover | o, 8=Q(k3) | a=0(ogk), =2

Set Cover o, f= Q(VE) a, B = O(lognlogk)
Metric UFL | a= Q(log k),B=3 |a= O(ldg k), B =1.61

If we drop the requirement of a computationally 'éfﬁcient implementation, Bleis-

: chwitz et al. [12] show that there is an acyclic mechanism that is perfectly budget-

" balanced and O(log k)-approximate for all subadditive cost-sharing p’roblerhs ('recall’
o from Figuré 2.1 that this all thé cost-sharing problems we study in this thesis are sub-
| additive). This mechanism is based on the egalitarian cost-sharing method of Datta
and Ray [28], and is similar in spirit to the DMV mechanism for NMUFL cost-sharing’
problems from Chapter 7. Section 8.1 identifies a nonfacyclic , no-deficit mechanism -
that is O(log k)- approXimdté for an even wider class of cost-sharing problems—those

- that have monotone cost- funct10ns—~however though this mechamsm is no—deﬁc1t it

is not budget—balanced it is SP but not WGSP. '

6 5 Notes

6.5.1 Acyc1c1ty

Moulin [62] defines a class of cost-sharing mechanisms called incremental cost-sharing
' méchanisms, which are acyclic. The idea is to arrange players in a sequen(ie_and check
if a player is willing to pay its marginal cost-share. (This paper also defines Gener-

~ alized incremental cost-sharing methods that vary the offer sequence based on which
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previous offers were accepted or rejected, just like some of our acy‘lic'mechax;isms.)'
-These ‘mechanisms apply to ooét;sharing problems with multiple levels. of service,
are strategyproof and budget-balanced. However, they have poor efficiency for the
cost-sharing problems we study. o
Bleischwitz et al. [13] propose non-Moulin mechanisms for symmetrlc subadditive
costs that are groupstrategyproof but improve on the best budget balance achievable -
by Mouhn mechanisms. The mechamsms they propose use deletlon priorities just as
acyclic mechamsms do, but use only two prlorltles and two pnces and are apphcable |

only to symmetnc cost functlons
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Chapter 7
':Acycllc Mechamsms V1a

B ‘APrlmal-Dual

This chapter démohstrates how several well-known primal dual algorithﬁls riatufally :
1nduce acyclic mechanisms. All of these algorlthms were designed prior to the de-
velopment. of Mouhn mechanisms, but since the cost- sharlng methods lnduced by
these algorlthms a_re not cross-monotonic, they could not be used _to con_struct such™
mechanisms | | ' ' ’

Sectlon 7.1 gives a_ self—contamed account of two pr1ma1—dual algorlthms shows
how each 1nduces a cost-sharlng method and an offer functlon in a natural way, and
" notes that these cost sharing methods are not cross—monotomc Section 7.2 proves -
 that these cost-sharing methods are valid (Definition 6.2.4). Section 7.3 proves that .

the: meéhanisfns inducéd by these cost-sharing methods match or, in most cases, .

improve upon the best approximation guaranteés possible for Moulin mechanisms.

. 1 Primal-Dual Algorithms and Cost Sharmg
Methods

Good Moulin and acy.clio mechanisms dépend on good‘cost—sharing methods-fuhotions

that take as input a subset S of players, and output both a feasible solution for the

98
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optimiza,tionvproblem induced by S and cost shares for the players that approiimately
cover the cost of this sohition. This goal is strongly reminiscent of that achieved by
prz'mal-dual algorithms—algorithms that output a feasible solution to an optimization
problem, as well as a “dual solution” that certifies the near;optimality. of the solution.
This parallel has already been exploited in the design of Moulin mechanisms (Chap-
ter 5), and We demonstrate that this connection is equally powerful in the design of |
. acyclic mechanisms. - o

This section describes two non—cross—monotohic cost-sharing methods for NMUFL
cost-sharing problems, induced by well-known primal-dual algorithms. Sections 7.2—
7.3.2 leverage these methods to design acyclic ‘mechanisms with good performance

guarantees, and in particular establish the upper bounds listed in Section 6.4. .

'7.1.1 The PD Mechanism for NMUFL Problems

Primal-dual alg:()rithms"lead'to cost;sh'aring methods in a generic way. Our first illus- ~
tration is a NMUFL algorithm that forms the basis of our 2-budget-balanced acyclic
" 'mechanism for_Vertex Cover problems. Consider a NMUFL problem (Example 2.2.3)
defined by a universe U, facilities'F , and facility and connection costs f and c, respec-
tively. A staris a pair (q,T'), where q € Fisa facility and T is a subset of demands.
~ The costf\c(q, T) of the star (g, T) is defined as f; + 3", (g, ). Let S(S) denote the
set of all stars involving only players of S. The following integer program is an exact
formulation of the NMUFL problem induced by a subset S C U of players:

Min Z | c(q, T)xgr

 @T)EBS)S)
subject to:
(IP(S)) | , Z T >1 forallie S
(¢.7)€S(S) :i€T
zqr € {0,1} for all (¢,T) € S(S).

- There is one decision variable per star (g, T), and setting a variable z4r = 1 should

be interpreted as opening the facility ¢ and assigning all of the demands of T to q.
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There is one constraint per player i of S, stating that at least one star containing ¢
must be selected. Every feasible solution of the NMUFL instance induced by S can

be mapped easily to a feasible solution of I P(S) of no greater cost, and conversely.

Replacing the last constraint of IP(S) by z,r > 0 for every star (¢,T) € C(S)

yields a linear programming relaxation. The dual linear program of this relaxation is

Max Z a;

ieS
subject to:
(D(9)) > @ <cq,T) for all (¢,T) € C(S)
i€T
o; >0 forallie S.

There is a one-to-one correspondence between the dual decision variables a; and
the players of S. By weak linear programming duality (see e.g. [21]), the objective
function value of every feasible solution o of D(S) provides a lower bound on the

objective function value of every feasible solution = of IP(S):

Zaig Z c(q, T)xqr. (7.1)

€S (9, T)eC(S)

Why are these mathematical programs useful for designing cost-sharing methods?
Suppose an algorithm is guaranteed to return feasible solutions z* and o* to IP(S)

and D(S), respectively, such that

Z c(q, T)xyr < B- Za;‘. (7.2)

(¢, T)eC(S) i€S

Interpret x* as a feasible solution to the NMUFL instance induced by S, and each
dual variable o scaled by a factor 8 as a cost share x(4,5). By inequalities (7.1)
and (7.2), this cost-sharing method x is f-budget-balanced. Thus, designing a j-
budget-balanced cost-sharing method reduces to designing a (B-approximation algo-
rithm with performance guarantee established via the primal-dual inequalities (7.1)

and (7.2). There are several broadly applicable algorithmic paradigms for designing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.1. PRIMAL-DUAL ALGORITHMS AND COST-SHARING METHODS - 101

1. Initialize a; = 0 foralli€ S, zgr =0 for all (g, T) € C’(HS), and the time ¢ to 0.
All players of S are active and unconnected. o '

2. While active players remain:

(a) Uniformly increase o; for every active player i € S, until Yierti=c(q,T)
for some star (g, T’) containing at least one active player. Increase t by the
same amount.

(b) Choose such a star (q, T) and let W denote the players already connectedv
to q. Set qu = (0 and Tqruw = ‘1. Deactivate and connect to g all of the
pla.yers of T

Figuvré.‘7.1: The PD algorithm for NMUFL.

| approximationvalgorithms of this type (see e.g. [73]).

Cost—bshiarir»lg methods ‘do not é,utomat'ically yield tru;th‘fulj ‘-COStéshariIig mecha-
nisms unless they satis'fy'additional constraints (cf., Definition 6.2.4). This motivates
~ concentrating on a particularly simple class of algorithms: pm’mal-dual “algorz'thm’s .

Roughly, .a primal-dual a.lgorlthm constructs feasible solutions to a (primal). opt1—
mization problem and the dual of its linear relaxation in tandem, maintaining in-
equalities (7.1) and (7.2) as invariants durmg its execution. Typically, the algorithm
: beglns with the all-zero primal and dual solutlons and prlmal feasibility is attained
only at termination.

F1gure 7.1 displays a primal-dual algorlthm for the NMUFL problem, whlch we call

the PD algorithm. (This algorithm is well known; see [43] and [73, Chapter 15].) A

the beginning of the algorithm, all dual variables are zero and all stars are unchosen.

" The algorithm also maintains a notion of time, initially zero. A player is active if it

~ is not contained in a chosen star, and nactive otherwise. In each iteration, the dual
variables «; of all active players are increased simultaneously at unit rate until the
dual constraint for some ﬁnchpsen star (g, T') becomes tight: >, . o = ¢(q,T). When
* such a star becomes tight, it is chosen and the active players of T are deactivated; tie.s
are broken in an a,rbvitbrary but consistent way. Such a star can be found in polynomial

time, even though there are an exponential number of stars (see [46]). As long as
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there is a feasible solutiQn with finite cost, the algorithm will terminate with such a -

solution. By Step 2a, it maintains dual feasibility as an invariant.

Lemma 7.1.1 '(PD Invariant) For every NMUFL instance, the PD algorithm ter- .
minates with feasible solutions to both the primal (the linear relazation of IP(S)) and
the dual D(S).

This primal-dual algorlthm induces a cost- sharmg method xpp for the glven '
- NMUFL problem: given a subset S C U, return the feasible NMUFL solution com-
puted by this algorithm, and set each cost share xpp(i, S) to the final v_alue of the
dual variable a; scaled by dyaz, Where dpge denotes't.h‘e maximlrm number’ of facilities
to Whlch a player can be assigned at finite cost. The important application of thls
mechanism is to Vertex Cover problems, for which oz = 2 (cf,, Figure 7. 2(b)).
The cost-sharing method xpp is not cross-monotonic, even in the special case
" of Vertex Cover cost-sharing problems, and.thus does not yleld a truthful Moulin

mechanism.

Example 7'.1.‘2 Consider the Vertex Cover cost-sharing problem shown in Figure 7.2(a),
with vertex weights as shown. This problem corresponds to the NMUFL instance
shown in: Figure 7. 2(b) Edges in the ﬁgﬁre represent zero connection .costs; non-
edges- represent infinite connection costs. ! |
We claim that xpD(C’, {B,C}) < xpp(C, {4, B C’}) which is a v101at10n of
‘cross-menofonicity. To compilte the cost share xpp(C, {4, B,C}), we execute the
primal-dual algorithm of Figure 7.1 with all three players present. At time 2, the
star (2,{A, B}) becomes tight and players A and B are deactivated. At time 4,
the star (3,{B,C}) becomes tight, C is deactivated, and algorithm terminates with
xpp(C, {4, B,C}) equal to 8 (recall the scaling by dmez = 2). If we remove player A
and execute the algorithm, the star (3,{B,C}) is the first to become tight, at
time t = 3. The algorrthm halts at this point Wlth‘XpD(C, {B, C}) = 6 which is
strictly less than xpp(C, {4, B,C}).

The primal-dual algorithm in Figure 7.1 also induces an offer function: set 7pp(%,S)

equal to the time at which player i is deactivated in Step 2b of the algorithm. We
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f=8

1
w =8 Cow=4 w=6 - w=8 \
OO0~ A) |
" ~(a) Vertex Cover problem ‘ " (b) Equivalent NMUFL problem

Figure 7.2: Example 7.1.2. The cost-sharing method xpp is not cross-monotonic.

call the mechanism M (xpp,Tpp) induced by xpp and TPD t‘he PD mechanisni Sec-
' tions 7.2-7. 3.2 establish that the PD mechanism is acychc and for Vertex Cover
problems, is 2- budget—ba.lanced (Deﬁmtlon 2.3. 1) and O(log k) apprommate (Equa—

. tion (3. 1)) '

.”Exa’mple' 7.1.3 In Example 7.1.2, XPb fails to be _ci"oss-monotonic because |
xpp(C,{B,C}) =6 <J-8 = xm-(;c, {4, B,C}).

" On the. other hand, TpD(A {A,B C}) = 2 <4= TpD(C’ {A B C}) in Words the
- -PD mechamsm offers player A its first-round price of 4 before ‘it offers player C
its first-round price of 8. Cross-monotonicity fails only Whén player A refuses this

price; in this case, the PD mechanism makes no ﬁrst-round offer to player C, thereby

suppressing the non—cross—monoton1c1ty

712 The-DMV Mechanism for NMUFL Problems

~ Next we “give a second NMUFL coSt-sharing method.that'léadé to a mechanism that
N ’outperforms the PD mechanism for general NMUFL and metric UFL problems (but
not for. Vertex 00ver problems). The method is again defined via a primal-dual
 algorithm f'or> the programs IP(S) and D(S) (Figure 7.3). See also Remark 71T
below ,fof a greedy interpretation of this ‘algorithm. ﬁ
' This algorithm differs from the PD algorithm primarily in its choice of the star (g, T")

in the main loop. First, only stars (g, T) entirely composed of active players T' are
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1. _Initialiie o;=0foralli €S,z ='Orfo’rv all (g, T) € C(S), and the time ¢ to 0.
- All players of S are active and unconnected, all facilities are closed. .,

2. While active players remain:

‘ (a) .Unxiformly increase a; for every active player i € S, until for some
star (g, T') of active players T" (i) g is closed and } ;. a; = ¢(q, T); or (ii)
g isopen and Y, ;= D (g, ) Increase ¢ by the same amount.

_(b) Choose such a star (q,T). Deactivate and connect to ¢ all of the players

of T. In case (i), open ¢ and set z,r = 1. In case (ii), let W denote the
players already connected to g, and set zgw = 0 and zgruw = 1.

- Figure 7.3: The DF algorithm for NMUFL.

eligible for Selectioh.' ‘Second, the selection criterion depends on whether or not the
) faqﬂity*‘q appears in a previously cho‘s_eh star. These rules are designed to main- =

tain the invariant thé,t the current primal and dual solutions have equal objective ,

| function value Primal-dual algorithms of this type are sometimes called dual fitting

algorzthms [46] SO we call thls algorithm the DF algomthm
Lemma 7 '.1'.4'(DF .Invvar‘iant) After each iteration of Step 2 of the DF algorz'thm;

Z c(q,T):i';T :,Zai’ |

(q,T)GC(S) . iel

where I denotes the current set of inactive players.

We omit the straightforward 1nduct1ve proof See also [43, 46] for alternatlve descnp—
tions of the DF algorlthm 1nclud1ng polynomlal-tlme implementations.

The DF algorithm only constrains dual variable growth in Step 2 via a strict subset .
of the dual constraints—stars comprising only active players—and the algorithm need
not maintain dual feas1b1hty However the dual variables suitably scaled do satisfy

~ dual fea31b1hty
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. Lemma 7.1.5 For every NMUFL instance, the DF algorithm terminates with a so-

lutzon (als) such that the solution scaled down by a factor H|U| is dual feasible.

Lemma 7.1.5 follows from the well-known dual-ﬁttlng analysis of the greedy Set Cover
algorithm (see [20 43] and {73, Chapter 13]). .
Like the PD algorithm, the DF algorlthm induces a cost-shafing method xpr and
. an offer function "TDFLZ Given a subset S C U, the method XpF returns theb feasible
solution computed by the DF algorithm for the NMUFL instance induced by S, and
cost shares equal to the dual variables. The offer time 7p F(z S) is defined as the time
at which player i is deactivated in Step 2b of the DF algorithm. We call the induced
mechanism M(xpr,7pr) the DM V mechanism, as special cases of this ‘mechanism
Were studied in [26]. Sections 7.2-7.3.2 prove acyclicity of and good performance'

guarantees for the DMV mechanism.

| vRemark 7.1.6 In Example 7. 1 2 xpr(C, {A B,C}) =6 while xpr(C, {B C}H=3.
" Thus x DF is ot cross-monotonic. Minor modifications to thls example show that xpr

also fails to be cross-monotonic in the special case of metric UFL problems. -

Remark 7.1.7 The DF algorithm can also be interpreted as a greedy algorithm [46].
Given a partial'solu_tion to a NMUFL instance, define the cost effectiveness of a
star (¢,T) as ¢(q,T)/|T| if ¢ is closed and as ) _,.r.c(q,%)/|T)| if ¢ is already open.
The main loop of the DF algorithm (Step 2) is equivalent to repeatedly choosing
the star of active players with smallest cost effectiveness. The dual varlable of each ,

participating player is set to the cost effectiveness of the star.

- Remark 7 .1.8 The DMV mechanism has an alternative description in which all of
the successive invocations of the underlying DF algorithm are combined into a single

one. In particular, the mechanisms in [26] are described in this way.

7.2 Acyclicity

We now prove that both mechanisms defined in Section 7.1 are acyclic.
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The proo‘fé of acyclicity for the PD and DMV NMUFL mechanisms are‘ess_entiallyy ,
the same. We begin_by»noting that cost shares and offer times are equal in the DF
‘method, and differ' only by a ﬁxéd scaling factor in the PD method.

Lemma 7. 2 1 For every NM UFL problem wzth umverse U, subset S C U, and‘,
player 1€ S

() xp0(6:5) = s %pp(z 5);
- (b) xpr(i,S) = TDF(ia S).

~ _‘Proof: In the PD é,lgorithm, e\)ery dual'v'arivable o; is increased af unit rate ffom
time 0 to the the time at which the corresponding player is deactivated, which by
deﬁnition is 7pp(3,S). Since xéD(i, S) is the final value of o; scal_}ed by a factor
dmaz, (a) follows. | | - |
» - By the same argument, after Step 2 of the DF algorlthm @ =1Tp r(i,5) for every - |
- ‘player i e S. Smce XDF(% S) is is the ﬁnal value of TDF(Z S) (b) follows. B

We can now prove that the PD mecham_sm is acycllc and hence, by Theorem ’6.3,8,: ‘

weakly groupstrategyproof (WGSP).

Théorem 7.2.2 The PD mechanism is acyclic.

Proof: Fix a NMUFL cost-sharing problem and let £(5) denoté the execution of
the PD algorithm on the NMUFL instance induced by a subset S C U of ‘pl'ay'ers ,
| Fix S C U and a player i € S. Let (g, A) denote the star chosen at time 7pp(i, S) in
£(S) that contains player i. ‘ _ ,
To establish Definition 6.2.4(a), choose T C G(i,8). Since the offer time ofa
player equals the earliest time at which a star containing it is chosen by the PD
algorithm, no star chosen in £(S) at or before time 7pp(i, S) includes a player of T
By induction on- the main loop, the executions £ (S) and £(S\T) are identical up to
and at the time ’TPD(Z S). As aresult, 7pp(i, S\T) = TpD(Z S). By Lemma 7.2. 1( ) |
xpp(i, S\ T) = XPD(z S):

The proof of Definition 6.2.4(b) is similar. Fix asubset T C G’(i_, SYU(E(:, S )\{z})

of players. The executions £(S) and £(S\T') are identical prior to the timé_TpD (2, 9).
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Thus 7pp (3, S\ T) > 7pp(%, S) and, by Lemma 7.2.1(a), xpp(:, S\ T) > xpp(3,5).
| |

An identical argument proves the acyclicity of the DMV mechanism.

Theorem 7.2.3 The DMV mechanism is acyclic.

7.3 Improved Approximation Guarantees

This section proves tight upper and lower bounds on the approximate budget-balance
(Section 7.3.1) and efficiency (Section 7.3.2) of the acyclic mechanisms defined in the

previous section.

7.3.1 Budget-Balance Guarantees

"This section shows how budget-balance guarantees for both of the mechanisms de-
fined in Section 7.1 follow easily from existing work in the approximation algorithms

literature.

The PD Mechanism for NMUFL and Vertex Cover Problems

We next show that the PD mechanism for NMUFL problems is d,,4,-budget-balanced,
where d,;,4, denotes the maximum number of facilities to which a player can be as-
signed at finite cost. Extending the well-known analysis of primal-dual Set Cover

algorithms implies the following guarantee for the PD algorithm.

Lemma 7.3.1 For every NMUFL instance, the PD algorithm computes a primal

solution {T;r}gm)ec(s) and a dual solution {of} }ics satisfying

Z (g, T)zgr < dmaz - Zaf.

(g, T)eC(S) €S

The intuition behind Lemma 7.3.1 is that every increase of a dual variable in the PD

algorithm only contributes to dual constraints of d,., different facilities, and thus
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" the primal cost will only exceed the sum of the dual variables by a d,,,, factor. The
details are essentially the same as those for Set Cover algorithms, which appear in
.Hochbaum [43] and Vazirani [73, Chapter 15].

In addition, the dual solution computed by the PD algorithm is feasible (Lemma 7.1.1),
and hence the computed primal and dual solutions satisfy weak duality (7 1). Asdis-
cussed in Section 7.1. 1, since the cost shares of the PD method are the dual variables
‘computed by the PD algorithm, scaled by a factor drmaz, budget balance of the PD

method and mechanism follow.

Theorem 7.3.2 For every NM UFL cost-sharing pmblem the. PD mechamsm 18 (dmaz)-
budget-balanced '

- For vertex. co_ver_; dmaz is 2. Recall that every Moulin mechanism for Vertex Cover.
problems is Q(|U|"/3)-budget-balanced [45]. Assuming the Unique Games Conjec-
ture [52], the budget-balance guarantee in Theorem 7.3.2 is the best possible for a

. polynomlal time mechanism for small values of dpas [53] |
| The PD mechamsm has poor budget-balance in NMUFL problems in whlch Aoz 1S
large. In these cases the DMV mechanism achieves a superior performance guarantee.

. In particular, the following lemma is obvious from Lemma 7.1.4.

Lemma 7.3.3 For every NMUFL instance, the_- DF algorithm oomputes a feasible

. primal solution {sz}(q,T)ec(S) and an (infeasible) dual solution {o}ies satisfying

Z c(g, T)x;T =_Za§* .

(¢.T)eC(S) €8

Also, by‘ Lemma 7.1.5, the dual solution computed by the DF algorithm is feasible
if all the dual variables are scaled by Hyy|. As Wlth Theorem 7.3.2, budget-balance
follows.

Theorem 7.3.4 ([26]) For every NMUFL cost-sharing problem wzth universe U, the
DMV mechanism is HIUI) budget-balanced
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Every Moulin mechanism for NMUFL problems is ©(+/[U])-budget-balanced [45].

" Under standard complexity assumptions, the budget-balance guarantee in TheO—
rem 7.3.4 is the best possible for polynomial-time NMUFL mechanisms [31].

The DMV mechanism can achieve radically better budget balance for the special

case of metric UFL problems Jain et al. [46] proved the followmg

Lemma 7.3.5 ([46]) For every metric UFL instance, the metric DF algorithm ter-
" minates with a dual feasible solution if al‘l the dual variables are scaled down by a
factor 1.861. L ‘

' Budget-balance of the DMV mechanism follows.

Theorem 7.3.6 ([26]) For every metric UFL cost—sharzng problem the metric DMV
mechamsm is (1. 861) budget—balanced -

No metric UFL Moulin mecha.msm is better than 3- budget—balanced [45]

Remark 7 3.7 The budget-balance guarantee in Theorem 7. 3.6 can be 1mproved , -

usmg a slightly different mechanism. Jain et al. [46] suggested a modlﬁcatlon of the
DF a,lgorlthm for metrlc UFL and proved that scaling its dual varlables by a factor ,,
of 1.61 is enough to recover dual fea31b1hty The proofs of Theorems 7.2.2 and 7.2.3
carry over to show that the mecha.msm induced by this refined algorithm is acyclic.

As in Theorem 7.3.6, this‘meehanism is 1.61-budget-balanced.

7.3.2 Efficiency Guarantees
This section proves matching upper and lower bounds on the approximate efficiency
achieved by the mechanisms defined in Section 7.1. We obtain efficiency guarantees

- for the PD and DMV mechanisms for NMUFL problems as a consequence of the

following'more general result.

Theorem 7.3.8 Let M(x,7) be a (B)- budget-balanced acyclzc mechamsm for a cost-

sharing problem C' with universe U such that:

(P1) for some constant 7y > 0 x(3, S) v-7(i,8) for all S CU and i € S;
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(P2) for every S C_I>U and T C S,

Zx(z s<p-0m). @3

Then, M (X, 7) is (8- My + ,3 - 1)- approa:zmate where k is the size of an optzmally

eﬁiczent solution.

| Property (Pl) states that offer times é,re :proportionalrtoicost shares. Propérty (P2)-
~ can be interpreted as a “stability” ‘property in the spirit of the core (see e.g. | [69]')
demandlng that each coahtlon T has no incentive to secede from the mechamsm and
seek service elsewhere at cost C(T)
| Theorem 7.3. 8 has 1mmedlate 1mphcat10ns for the PD and DMV mechamsms

_Corollary 7.3.9 For every NM UFL cost-sharing problem, thy‘e PD mechanism is
O(dumaz - log k)-approzimate, where dpq, is the largest number of facilities to which
o demand can be assigned at finite cost. Here k is the size of an optimally efficient

solution..

Prooﬁ To check condition (7.3), fix a NMUFL problem with universe U and sub-
sets T C S CU. Let xpp denote the PD cost-sharing method. The cost shares
{xpPp(3, S) }ies scaled down by a factor dpq: form a feasible solution to the dual pro-
gram D(S) of Section 7.1.1 (Lemma-7.1.1):. The subset of cost shares Axpo(3, S)}ier
‘scaled down by a factor dqs form a feasible solution to the dual program D(T).
Condition (7.3) follows from weak duality. ‘ _
The‘covrollé,ry is now immediate from Lemma 7.2.1(a), Theorem 7.3.2, and Theo- |

‘rem 7.3.8. B | .

~ For example, for Vertex Cover problems, the PD m_échariism is O(log k)-approximate.

Every Moulin mechahism for such problems is (k'/®)-approximate [45, 70].

Corbllary 7.3.10 For every NMUFL vcost-sharing problem, the DMV mechanism is
O(logn - log k')—"approximate. Here k 1is the size of an optimally ejﬁcz’éht solution, and

n s the size of the universe U.
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" Proof: Immediate from Lémma 7.1.5, Lemma 7.2.1(b)‘, Theorem 7;3‘.4,' and Theo-
rem 7.3.8. B ' ‘ ‘ -

Recall that every Moulin mechanism for NMUFL problems is £2(/n)-approximate (45,
70]. o o " | |

Remark 7.3.11 Analogous to the above ﬁheorém, the 1.861-budge€—balanced met- -
ric UFL mechanism (Theorem 7.3. 6) and it variant discussed in Remark 7.3.7 are

O(log k) approx1mate

Our proof of Theorem 7.3.8 dependé on two lemmas. The first bounds the service
- cost incurred by the mechanism in terms of the cost of the optlmal solutlon and part

" of the excluded valua.tlons of an optlmal solution. .

i Lemma 7312 Let M = M (x,T) be a no-deficit acyclic mechanism fo% a cost-
o ’,:s'ham'ng problem C with universe U that satisﬁes property (P2) of Theorem 7.8.8.

Let v be a valuation proﬁle for Uu,S the outcome of M on znput v, and S* the out- - -

come wzth optzmal soczal cost. Then
Cu) < |80+ Y w].
| - - ies\s
" Proof: Since M 1 sativsﬁes. the no-deficit condition,
Cu® < DD xS+ D x| - o (74)
~ \4iesns* i€S\S* ‘ N ’

By property (P2) and since C is nondecreasing,

> x(:5)<B-C(SNSYB-C(S). (7.5)

i€SNS*

By individual rationality (Proposition 6.3.1(d)), x(i,S) < v; for every ¢ €S \ 5%
combining this with inequalities (7.4) and (7.5) proves the lemma. B
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The second lemma upper bounds the excluded valuation of the mechamsm in

. terms of the serv1ce cost of an optimal solution.

Lemma 7.3. 13 Let M=M (x,7) be an acyclzc mechamsm for a cost-sharing prob-
lem C with universe U of k players that satisfies properties (PI ) and (P2) (for some
B) of Theorem 7.3.8. Let v be a valuatzon profile for U, S the outcome of M on

E input v, and S* the outcome with optimal social cost. Then,

lv oo Sﬁ-Hk-C(S*).

i€S*\S.
: Here k= |S*|
' "Proof Let £ = |S*\ S| and rename the players so that player i is the ith player of
S*\ S to be deleted by M on input. v. Let S denote the set of players from which 5
- is deleted by M. We prove that _
B C(S ) (1)

X@S)_ e

for every i€ {1,2,...,¢}; here ,8 is defined as in the statement of Theorem 7.3.8.
Player i s deletion. from S; implies that v; < x(4,S;); summing (7.6) over all players_
‘ of S*\ S then yields the lemma. :
 Fix a player ¢ of S* \ S. We first claim that, when player i is deleted, its offer
time T(Z, S;) is minimum among the remaining players {z,z +1,...,€} of S*\ S. "
| not, there is a player j > i‘of S*\ S with T(j, S;) < 7(4,85;). Since ¢ is offered a
1 prlce in the iteration it is deleted Corollary 6.3.3 lmphes that L(3,S;) € S. But
j € L(3,8;) N (S*\ S), a contradiction. S
This claim and property (P1) imply that, when player i is deleted, its cost
share x(i,S;) is minimum among the remaining players of S* \ S. Property (P2)
and the fact that C is nondecreasing give a bound on the sum of the cost shares of

these players:

- B | ‘
2 oxGS) < B-C({ii+1,.,8}) < B (8"
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 since player #’s cost share is the smallest of the (£ —i+ 1) remaihing players of 5*\ S,
it-is at most 8- C(S*)/(£— i+ 1). This establishes (7.6) and completes the proof. B

- Theorem 7.3.8 now follows easily.

Proof of Theorem 7.3.8: Fix a cost-sharing problem with universe U and a valuation

profile v for U. Applying Lemmas ,7.3.‘12'and77.3.13, we have:

S)+sz < ﬂ o5+ Y wtB MO+ Y w

¢S i€S\S* 1€U\(SUS*)
< (B Mt B)-CS)+ Y
‘ 'L¢S*
Rearranging terms then proves the theorem.
m o

; Remark 7.3.14 Lemma 7.3.13 and Theorem 7.3.8 continue to hold 1f property (P1)
s replaced by the weaker assumption that, for every subset S C U of players and
o ,] € S x(%, ) < X(],S) if and only if 7(i, S) < 7(4, S). '

Our ﬁnal result in th1s section shows that the logarlthmlc factor in Theorem 7.3.8
cannot be removed: even for extremely simple cost-sharing problems, every O( )-

. 'budget balanced acyclic mechanism is Q(log k)-approximate. Recall the excludable R

"pubhc good cost-sharing problem (Example 2.2.12). '

Theorem 7.3.15 Every no-deficit acyclzc mechanism for the publzc e:z:cludable good

problem with n players is at least H, — 1-approzimate.

Proof: Fix a universe U of k players and a no-deficit aoyclic mechanism M(x, 7).
" We first claim the following: for every nonempty set S C U, there is a player with
minimum offer time 7 (3, S) and cost share x(é, S) > 1/|5|. In proof,'let T C S denote
the players with offer time strictly larger than the minimum. Since X is no-deficit,
'EzeS\Tx(i S\T) > C(S\T) =1 and hence x(i, S\ T) >1/|S\T| > 1/|S| for some
player i € S\ T. Invoking Deﬁmtlon 6.2. 4(a) shows that x(i,S) = x(4,S \ T) and

completes the claim.
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‘Using this claimv, we oah inductively rename the,players of U as follows. For
i’_= 1,2,...,n, player 7 is a player of S; = U\{l, 2, . .,,i—,l}‘ that has minimum offer
time 7(-,S;) and cost share x(~,‘Sz-)‘ at_vlea,st 1 /(n —i+1). Now setthe valuation v;
of player i to 1/(n =i + 1) — € for smatll € > 0. The optimal solution has efficiency

.~ H, — 1 Since player ¢ has minimum offer time in S; and v; < x(4, S,) for every i,} |

the meohanism'M outputs the empty a.llocatio/_nr and has an efficiency of zero. W

7 ,4: | Notes :
. 4 1 Is Acychclty Automat1c'7

Do all prlmal dual algorithms yield acyclic cost- sharing methods in the sense of Sec-'
' ~tion 6.27 Goemans and Williamson [35] and Agarwal et al. [3] propose a primal-dual
| algorithm for a generalized version of the Steiner tree cost-sharing p'roblem-that in:
cludes Steiner forest problems This algorithm does yield non-crose;monotonic cost
- shares that induce an acyclic mechanism for the Steiner tree problem. (The budget-
balance and efﬁc1ency approx1mat10ns achieved by the induced acychc mechamsm‘
match but don’t improve, those achieved by the optimal Moulin mechanism for the
'.Stemer tree problem.) However, there is no offer-function that together with these
cost-shares induces an acychc mechanism- for the Steiner forest problem (See Mehta |

et al. [59] for details). | " Co

7.4.2 Acyclic Mechanisms and Summability

The generic methods known for deriving efficiency guarantees for Moulin mechanisms
‘do not seem to carry over to acyclic mechanisms. In more detail, recall that a cost-
sharing method  is a-summable (Definition 4.2.2) for a cost function C if, for every

ordering o of the players of U and every subset SCU,

15| ' :
> X(ie, Se) < - C(S) o | (7.7)

=1
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where Sy and i¢ denote the set of the first £ players of‘ S and the ¢th player of S
(Wlth respect to o), respectlvely Intultlvely, the ordering o represents the reversal of

" the order in which players are deleted, and x(,.S;) is the worst-case valuatlon that
player i, could have possessed given that it was deleted from the set Sp. For Moulin
mechanisms, summablhty characterizes approximate efficiency in the following sense:
Cif Misa Moulin mechanism based on an a-summable no-deficit cost- sharlng method '
| then it is. O(a)- approxnnate (Chapter 4, Theorem 4.4.1). N ’
Unfortunately, the summability of a cost- sharlng method x does not 1mply upper

or lower bounds on the approximate efﬁmency of an acyclic mechanism constructed
from . Summablhty does not automatically lead to a valid Jower bound on approxi-

‘mate efﬁc1ency because, depending on the associated offer function, net all orderings

of the players, correspond to poss1b1e deletlon sequences It does not automatlcally .

give a valid upper bound because it only treats deletlon sequences that result i 1n the -

" empty set. For cross—monotomc cost-sharmg methods, worst-case deletlon sequences |
R ~are, essentlally without loss of generahty, of this form. For a non—cross—monotonlc
method, this need not be the case; 1ntu1t1vely, the presence of addltlonal undeleted
players can increase the left-hand side of (7.7). '
The definition of summablhty can be refined to handle both of these issues, re-. h
sultlng in a characterization of the approximate efﬁc1ency of an acyclic mechanlsm
| However, the resultlng expressmn is too unwieldy to be evaluated easﬂy for non—tr1v1al .

. mechanlsms
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- Chapter 8

L0wei' Bounds On Tl'lltthI o

Mechanisms

: In previous chapters, we identify no—déﬁcit, truthful mechanisms that:have _‘p'olylog-
' approximate efficiency for a wide variety of cost-sharing problems—For submodulaf o
v cqét-shafing problems, metric UFL and vertex cover, we achieve a worst—caSé efﬁcienc_y
approximation of O(log k). For Steiner tree cost-sharing problems, their Varidnts and
NMUFL cost-sharing problems such as sét cover, we achieve a Worst,—céée efﬁcienéy‘
. approximaﬁion of Q(log2 k). The mechanisms that we identify are computatioii‘ally o
efficient, i.e., they have polynomial time implementations. In this chapter we drop this.-
- reqliirement to see if we can identify ho-‘deﬁcit, truthful mechanisms with improved
_efficiency. o - | |
- Section 8.1 starts‘ by idéntifying a no-deficit, truthful mechanism that is O(log k)- |
approximate for all cost-sharing problems with monotone cost functions. This is a- '
| very geheral resultf*Recall that all the cost-sharing problems studied in this thesis
a,rél not o_hly monotdne, but also subadditive. In particular, this mechanism improves
on the best truthful, no-deficit mechanism we couldr idehtify for the Stéiner tree and
NMUFL cost-sharing problems, which are (log? k) approximate.
Given this result, the million dollar question is: Are there truthful, no deficit mech-
anisms that achieve constant factor approzimations of efficiency for any non-trivial

* cost-sharing problem family? (Recall from Section 4.3 that maginal cost problemé

116
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8.1. . THE COMPOSED VCG-SHAPLEY MECHANISM 117

admit optimally efficient mechanisms, but are trivial.)

- This chapter shows that the anéwer to. this question‘is- an emphatic no, even
for the combinatorially simple excludable public good cost-sharing problem (Exam--
ple 2.2.12). As Figure 2.1 shows, this problem is a special case of nearly all of the
cost-sharing problems that have been studied in the theoretical computer science
literature, so our lower bound extends to these problem families as well.

We first investigate deterministic mechanisms that are budget-balanced and sym-
metric. Specifically, we show that the Shapley value mechanism (Example 4.1.4) is
optimal among all deterministic, symi'nétric, and budget-balanced cost-sharing mech-

- anisms for excludable public good pi‘oblems. (Moulin and Shenker [63] proves only
that the Shapley value mechanism is an optimal Mouli_n mechanism.) Here, “sym-

" metric” means that players that submit equal bids are given the same allocations and
prices. This proof is based on a new characterization of the Shapley value mecha-

~nism that improves upon a _previoué characterization of Deb and Razzolini [25]. See
Section 8.2. | ' | R -

Next, we forgo a characterization based a'pproach, and prové a ffdf in"e generAI; o
result. We show that every (v, 8)-budget-balanced truthful mechanism is Q(log k/5)-
approzimate, where k is the number of >participants. Our lower bound applies even
to randomized mechanisms that are only truthful in expectatioh, and only (v, 8)-
budget-balanced in expectation. Our lower bound is optimal up to constant factors
for all 8 = O(y/logk), with the nearly matching upper bound provided by a scaled
version of the Shapley value mechanism (recall Corollary 4.4.3). Our lower bounds

also apply to the social cost approximation measure (Equation 3.2). See Section 8.3.

8.1 The Co’mp(‘)sed VCG-Shapley Mechanism

We now identify a no-deficit, truthful mechanism that is H-approximate (recall that
Hy, € O(log k)) for every cost-sharing problem with an underlying cost function that is
monotone. This mechanism satisfies no positive transfers and voluntary participation.
This is a very general result; all the cost-sharing problem_s we study in this thesis are

not only monotone, but also subadditive. The idea is to compose the VCG mechanism
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118 CHAPTER 8. LOWER BOUNDS ON TRUTHFUL MECHANISMS

with Clarke tax (Section 2.4.1) with an additional cost-sharing phase, based on the
- Shapley value mechanism (Example 4.1.4). The mechanism is a simplification of one

proposed by Swamy (personal communication, August 2008).

Definition 8.1.1 (Composed VCG-Shapley mechanism) The'allocation rule is
defined as follows. Bids are collected and the optimally efﬁcient allocation S* is com- i
puted (If there are multiple such allocations, break ties cons1stently using a lexico-" -
graphic ordering of 2V). This is precisely the allocation of- the VCG mechanism. The

players in S* graduate toa cost-sharlng phase based on a modlﬁcatlon of the Shapley
value mechanism (recall Example 4.1.4) ‘where all the cost- shares scaled by a fac-

tor C (S*) The composed VCG-Shapley mechanlsm allocates servwe to the players '
that the modified Shapley Value mechamsm services when run on the player set S* B
'The composed VCG- Shapley mechanism ‘charges every winning player its m1n1mum

wmnmg b1d as a funct1on of the other players bids. ’

We Now prove that this mechamsm is incentive compat1ble The tr1cky part is
~ that the set S*, and hence the outcome of the cost—sharlng phase, can conce1vably by

1nﬂuenced by a player’s b1d

.Lemma 8.1.2 The composed VCG—Shapley mechamsm s truthful and satzsﬁes vol-
untary partzczpatzon

'Proof Recall Propos1t1on 2.4.5. The mechamsm isa threshold mechamsm by defini-
t1on o) 1t is sufﬁcrent to show that it is monotone. ‘

Fix a player i and bids b_; of the other players. Fix a wmmng bid b; and another

b1d b,, such that b, > b;. Let S* and S* be the optlmally efficient sets with bid

vectors (b;;b—;) and (b};b_;), respectively. Because: player 4 receives service with bid

b;, it is-in S*. The optimally efficient allocation is invariant to an increase in the

~ bid of any winning bidder. Thus S* = S*, which implies that 4 € S* and that

C(S*)=C (S*'). Thus player 4 graduates to the cost-sharing phase and participates .

' in same cost-sharing problem whether it bids b; or ¥,. The Shapley value mechanlsm

has a monotone allocation rule (this is easy to check) and so if player ¢ wins service

with bid b;, it also wins service with bid &;. W
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8.1. THE COMPOSED VCG-SHAPLEY MECHANISM - 19 |

For a fixed set of bids, suppose that S is the player set serviced by the composed

- VCG-Shapley mechanism and S* is the optimally efficient set. If. .S is non-empty, the
composed VCG—Shapley mechanism charges each winner at least C(S*)/ |S | due the
*-cost-sharing phase. So, the mechanism satisfies the no-deficit condition if the cost
function is monotone.  Recall that the excludable public good cost-sharing problem
is also a submodulerl cost-shé;ring problem and so the upper bourid from Section 5.1
shows that the efficiency loss due to the second phase is upper bounded by Hk -C(S™).

" In summary, we have the followmg theorem:

Theorem 8.1.3 The :composed VCG—Shapley mecham'sm is truthfuL no-deficit, and

Hkvfopproxz'mate for_every cost-sharing problem with a monotone cost functiOn.,

-Remark 8.1.4 The composed VCG- Shapley mechamsm can be generahzed whlle, :
preserving - mcentlve compatlblhty VCG can be replaced with any monotone mech—

~ anism that satlsﬁes the followmg property Fix a player i and a set of bids b_., of
 the other players Fix two bids b; and b, for player i. Let S and S’ be the set of
| players serviced with bids (b;;b_;) and (b}; ..1) respectlvely IficSandie S’ then

- we must have that S - = S'. The Shapley value mechanism can be replaced by. any

mechanism with a monotone Aalloca;tion rule while preserving incentive compatibility.

In order to achieve a good efficiency guarantee and recover cost, the VCG surrogate'_ _

should allocate service to a set with near -optimal social Welfare and the Shapley
surrogate should be no-deficit while excludmg as little Valuatlon as possible. For
instance, if the cost-function is subadditive, the mechamsm from Blerschwrtz et al. [12]

is a good Shapley surrogate.

The composed VCG—Sha.pley mechamsm is not weakly GSP unhke acychc mech—

anisms:

Example 8.1.5 A quadmtic cost-sharing problem is defined by a player set U and
a non-decreasing cost function C(S) = |S| for all S C U. Consider a three player
instance of the quadratic cost-sharmg problem. The first two players have valuations -

of 5 each, and the second has a valuation of 4. For this bid vector, the first two
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120 CHAPTER 8. LOWER BOUNDS ON TRUTHFUL MECHANISMS

players win service and each pay 4. However, if the third player drops its valuation

to 3, the other two only pay 3 each.

Remark 8.1.6 Bleischwitz et al [12] (recall Section 6.4) shows that there exist
acyclic mechanisms that are budget—balanced and O(log k)-approximate for all sub-
additive cost-sharing problems; As in the case of the composed VCG Shapley mech-
anism, we do not know how to 1mplement these mechanisms in a computationally

efficient way

8.2 A Characterization of Symmetric Mechanisms

In this section we prove» a lower bound on-the efficiency approximation' factor of |
-~ every deterministic, budget—balaneed cOst—sharing mechanism that satisfies the “equal
treatment” pfoperty We derive thié lower-bound from a new characterization of the B
Shapley value mechanism, discussed below. v' o
Our charactenzatlon heav11y uses Prop031t10n 2.4.4, which states that in a truthful *
cost-sharmg mechanism every player is offered a. b1d independent price. However,
Proposition 2.4.4 does not specify the behavior of a truthful nmechanism when a player

bids exactly its threshold ¢;(b—;). There are two valid possibilities, each of which yields

zero utility to a truthful player: the player is not served (at price 0), or is served and

charged its bid. The followmg techmcal condition breaks tles in favor of the second

outcome.

Definition 8.2.1 A mechanism satisfies upper semi-continuity if and only if the fol-
lowing condition holds for every player 7 and bids b_; of the other players: if player %

receives service at every bid larger than b;, then it also receives service at bid b;.

A relatively weak requirement for a cost-sharing mechanism is consumer sovereignty,
i.e every player has a winning bid for every fixed set.of bids of the other players. We
stress that while our characterization result (Theorem 8.2.3) relies on upper semi-
continuity and consumer sovereignty, our lower bound (Corollary 8.2.4) does not

depend on them. Our results concern mechanisms satisfying the following symmetry

pfoperty.
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8.2, A CHARACTERIZATION OF SYMMETRIC MECHANISMS 12

Definition 8.2.2 A mechanism satisfies equal treatment if and only if every two - L

players i-and j that submit the same bid receive the same allocation and price.

Recall the Shapley value mechanism from Example 4.1.4. This mechanism is

' truthful budget balanced, and M — l-approximate (M; is 1 +1/2+1/3 +...1/,
the Ith harmonic number, k = |U [) Moreover, it satisfies equal treatment and upper
. semi-continuity. _ o _
The Shapley Value mechanism uses the same threshold function (m the sense of

Propos1t1on 24. 4) for each player, namely:

1

Vb t(b_;) = m,

) (8.1)
where, f (b _;) is the size of the largest subset S of U\ {é} such that b; > 1/(|S]+1)

’ for all j € S. Intu1t1ve1y, this is prec1sely the set of other players that the Shapley v
value mechanism services if player 1 pays its share and also receives service. - '

Our character1zat1on theorem is the followmg

Theorem 8.23 A determzmstzc and budget-balanced cost-shamng mechamsm satzs- }
fies equal treatment, consumer sovereignty, and upper—semzcontmuzty if and only zf it

is the Shapley value mechanism.

Proof: Fix such a mechanism M. We first note that all thresholds ti(b_i) _induced
by M must lie in [0, 1]: every threshold is finite by‘consumer sovereignty, and is at
most 1 by the budget-balance condition. We proceed to show that for all players ¢
and bids b_; by the other players the threshold function ¢; has the same value as
that for the Shapley value mechanism. We prove this by downward 1nduct10n on the
number of coordinates of b_; that are equal to 1. '

For the base case, fix ¢ and suppose that b_; is the all-ones vector. Suppose
that b; = 1. Since all thresholds are in [0,1] and M is upper semi-continuous, . all
players are served. By equal treatment and budget-balance, all players pay 1/k. Thus,
ti(b—;) = 1/k when b_; is the all-ones vector, as in the Shapley value mechauism.

For the inductive step, fix a player 7 and a bid vector b_; that is not the all-ones
‘vector. Set b; = 1 and consider the bid vector b = (b;, b_;). Let S denote the set of
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players j with bJ =1. Let R 2 5 denote the output of the Shapley value mechaniem
for the bid vector b — the largest set of players such that b; > 1/|R| for all j € R.
As in the base case, consumer sovereignty, budget-balance, and equal treatment
“imply that M serves all of the players of S at a common price p. For a player j
outside S, b_; has_ one more bid of 1 than b_; (corresponding to player i), and the
inductive hypothesis implies that itsthfeshold is that of the Shdpley value mechanism '
for the same bid vector b. For players of R\ S, this threshold is 1/|R|. For a playe_r
outside R, this threshold is some value strictly greater than its bid. Since b; > 1/|R|
for all j- € R and M is upper semicontinuous it serves precisely the set R when
given the bid vector b. This generates revenue S Ip + (|R| —|S|)/|R|. Budget- balance.
“dictates that the common threshold p for all players of S, and in particular the value
of t;(b-;), equals 1 /IR|. This agrees with player ’s threshold for the bids b_z in the .

Shapley value mechanlsm and the proof is complete. W

Theorem 8.2.3 implies that the Shapley value mechanism is the optimal determin- -

- istic, budget-balanced mechanism. that'satisﬁes the equal treatment property.

Corollary 8.2.4 “Every deterministic, budget—balanced cost-sharing mechanism that

'satzsﬁes equal treatment is at least He- appro:czmate

We briefly sketch the proof. Let M be such a mechanism. If M fails to satlsfy.
consumer sovereignty, then we can find a player ¢ and bids b_; such that t; (b_l) +oo
Letting the valuation of player ¢ tend to infinity shows that the mechamsm fails to
achieve a finite approximation factor. »

. Suppese that M also satisfies consumer sbvereignty. Then the proof of Thveo-'.
rem 8.2.3 shows that the outcome of the mechanism agrees with that of the Shapley
value mechanism except on the measﬁre—zero set of bid vecte_rs for which there is at
least one bid equal to 1/i for some % e {1,...,k}. As in Example 4.1.4, bid vectors
of the form 1 — ¢, £ —¢,...,x — € for small € > 0 show that M is no better than
Hy — l-approximate. | '

| An interesting problem is to characterize the class of mechanisms obtained after
dropping the (admittedly strong) equal treatment condition, and the perfect fbudg'et-

‘balance condition. There are several mechanisms that satisfy the remaining conditions
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and appear hard to characterize (e.g. [45, Example 41]) In the next section, forgo

characterizations in order to prove more general lower bounds.

8.3 A Lower Bound on Cost-Sharing Mechanisms

In this section we prove that every O(l)—budgebbalanced cost-sharing mechanism for
the excludable public good problem is Q(log k)-approximate. This lower bound ap-
plies even to randomized mechanisms, and even to mechanisms that are only truthful

\
in expectation.

Theorem 8.3.1 Every cost—éharing mechanism for the excludable public good. prob-
lem that is truthful in ezpectation and v, 3-budget-balanced in ezpectation is

Q((log k)/ B)-approzimate, where k is the number of players.

- Proof: Fix values for k and § > > 1. The plan of the proof is to define a distribution
over valuatlon profiles such that the sum of the valuations is hkely to be large but
" every mechanism is likely to produce the empty allocation. Let ay,...,a; beiid.
draws from the distribution with den31ty 1/2% on [1,k] and rema,mlng mass (1/k)
at zero. Set v; = a,/4k;8 for each iand V = Zl 1 Vi- We first note that V is
likely to be Q((Iog k)/B). To see why, we have £[V] = k€[v;] = (Ink)/48, Var[V] =
kVar[y;] < k€[vZ] = 1/(1682), and o[V] = 1/43. By Chebyshev’s Inequality, V is at
least (Ink — 2)/48 = (log k/f) with probability at least 3/4. |
Let M be a mechanism that is truthful in expectation and B3-budget-balanced
in expectation, meaning that for every bid vector, the expected revenue of M is at
least a B fraction of its expected cost. For the excludable public good problem, the |
expected cost equals 1 minus the probability that no player is served. We can finish
the proof by showing that the expected revenue of M, over both the random choice
of valuation profile and the internal cdin flips of the mechanism, is at most 1/44: if
- true, the expected cost of M is at most 1/4, so no player is served with probability at
least 3/4. By the Union Bound, the probability that no player is served and also the
sum of the valuations is Q((log k)/ B) is at least 1/2. Thus, there is a valuation profile
for which the optimal efficiency is Q((log k)/G) but the mechanism has an efficiency
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. of zero. o , . _.

We next vapply a transformation of Mehta and Vazirani [60],' originally devel-

‘ opedvfor. digifal goods auctions, to assist in ilpper bounding the revenue obtained :

by M. Given a bid vector b, a randomized threshold mechanism ehooses a random

~ threshold ti(b_;) for each player 4 (cf., Pfoposition' 2.44) from a distributionvthat.'
is independent of b;. By Mehta and Vazirani [60], there is a randomized threshold

mechanism M’ that has the same expected revenue as M on every bid vector. |

To upper bound the expec'ted'revenue of M’ , consider a single truthful player ¢ with

(random) valuation v;. Every fixed thi:es_hold t extracts expected revenue t - Pr[v; >

] < 1/4kp from the player. .By the Principle of Deferred Decisions, a randomized

E " threshold that i is 1ndependent of v; a.lso obtains expected revenue at most 1/ 4k,8 from -

 player i. Llnearlty of expectation implies that the expected revenue of M ' and hence o

<of M, is at most 1 / 4, completmg the proof. W

o Scaling vt'he pfices of the Shapley value mechahisr_n downbyag>1 f_aetorugives\-a o
B-budget-balanced, O(8+(log k)/B)- approximate mechanism (Theoterh 4.4.1). Thus, *
the lower bound in Theorem 8.3.1 is optimal up to constant factors for all ﬂ
O(vlogk). Recall that there is also a tr1v1a1 lower bound of I5} along thls lines of

~ Example 4.4.4. ‘

8.4 Notes

: ;8v.4.1 - The Power_v'qf Randomization

Dobzinski et al [27] show that randomized mechanisms are in fact strictly more pow-
erful than deterministic ones. However the improvement is not signiﬁcant. Indeed,
Theorem 8.3.1 shows that the best-possible approximation guarantee of a randomized
cost—sharing mechanism cannot be more than a constant factor smaller than that of

the (deterministic) Shapley value mechanism.
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8.4.2 Other Characterizations

Other characterizations of the Shapley value mechanism are known. See Moulin and
Shenker [63] and Immorlica, Mahdian, and Mirrokni [45] for related characteriza-
tions of groupstrategyproof (Definition 2.4.2) mechanisms that satisfy various prop-
erties. Our Theorem 8.2.3 is incomparable to these results because we work with
the much richer class of truthful, not necessarily groupstrategyproof, mechanisms,
but assume equal treatment. Our characterization is more similar to that of Deb
and Razzolini [25], who also show that the Shapley value mechanism is the only one
that satisfies certain conditions. We weaken their stand-alone condition to consumer
sovereignty and do not require their voluntary non-participation condition. Also, our

proof is arguably simpler.
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Chapter 9
Open Questions
| l-Ier’e are. someope_n ouestions‘motivatéd b_yv thistlieSis.‘.

9\.71* | Betterf App’r"oximation Guarantees:
/o .
One natural goal is to improve upon the performance guarantees achreved by the i

¢

mechamsms presented in this the31s Some concrete suggestlons follow.

° Is there a polynomial—time (B-budget- balanced acyclic mechanism for Steiner
tree cost-sharlng problems with’ ,8 < 2 and reasonable (e g., O(log k) for some |
constant d) approximate efﬁmency" Recall that such a result is achlevable for

= 2 (Section 5.3, Section 7.4.1). '

° Metric UFL algorithms,With approximation ratio less than 1.61 are known (18,
57]. Can these be used to obtain polynomi_al—time' acyclic mechanisms with com-
parable budget—balance and reasonable approximate eﬁiciency? (Remark' 7.3.7
identifies a 1.61—bndget-balanced acyclic mechanism that is O(log k)-approximate).

e Istherea polynomial—time, O(1)-budget-balanced, o(log? k)-approximate acyclic
mechanism for Steiner tree cost-sharing problems? Can achieve such bounds
~ even more generally, i.e., for all subadditive cost-sharing problems or monotone

cost-sharing problems,? '

126
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Bleischwitz, Monien, and Schoppmann [12] gives acyclic mechanisms for all subad—
ditive cost-sharing problems that are fully budget- balanced and O(log k)- approx1mate |
but do not run in polynomial time (unless P = N P), and do not work for all monotone
cost functions. ’ ‘ ‘

Since acyclicity is only the means to the end of incentiVe—compatibility, we can
-ask thé same questions for wider classes of mechanisins. Answef the above ques-
tions with “acyclic mechanism” replaced by “weakly groupstrategyproof mechdnism” '

“and by “Strategyproof mechanism”. The composed VCG—_Shap]ey mechanism (Sec-
. tion 8.1) achieves the required éfﬁciency bounds, is no-deficit and strategyproof, but
does not have bounded budget-balance, is not acyclic, WGSP or polyndmial time

implementable.

9.2 General Demand Mechanisms

_General demand cosﬁ-sharing‘problems should be studied in mu_ch" greater depth.
. Bleischwitz and Schoppmann [14] generalizes Moulin mechanisms to general deinand
settings and applies it to generalizations of t‘he UFL and Steiner tree cost-sharing .
problems where players demand redundancy in connectivify However, the budget-
balance achleved by these mechanisms scales with the maximum number of allowable
service levels. Are there polynomial-time, O(1)-budget-balanced acyclic (alternatively
weakly groupstrategyproof or strategyproof) mechanism for such problems that have
reasonable economic eﬂimency”
The frameworks for general demand cost-sharing problems—(59] and [14]—only
apply to settings where pla'yers',havé diminishing returns from additional levels of
service. Is there a general mechanism design technique when marginal valuations can .

be increasing?
9.3 Characterizations

‘Moulin [62] provides characterizatio‘ns under the assumptions of GSP and full budget-

balance. Immorlica, Mahdian, and Mirrokni [45] provide a partial characterization of
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- GSP mechamsms thhout any budget-balance assumptlons

~ Is there a- 31mple characterization of WGSP mechanisms? To what extent do |

acychc ‘mechanisms’ exhaust the class of WGSP mechanisms? (See Juarez [49] for
_recent progress on these questlons ) , _ | : ’

. - Is there a 31mple characterization of SP, budget- balanced mechanisms? Sectlon 8.2

R provides such a characterlzatlon, but with additional technical conditions, notably

equal treatment.
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