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Abstract

We consider network cost-sharing games with non-anonymous cost functions, where the cost
of each edge is a submodular function of its users, and this cost is shared using the Shapley
value. Non-anonymous cost functions model asymmetries between the players, which can arise
from different bandwidth requirements, durations of use, services needed, and so on.

These games can possess multiple Nash equilibria of wildly varying quality. The goal of
this paper is to identify well-motivated equilibrium refinements that admit good worst-case
approximation bounds. Our primary results are tight bounds on the cost of strong Nash equi-
libria and potential function minimizers in network cost-sharing games with non-anonymous
cost functions, parameterized by the set C of allowable submodular cost functions.

These two worst-case bounds coincide for every set C, and equal the summability parameter
introduced in [Roughgarden and Sundararajan, |2009] to characterize efficiency loss in a family
of cost-sharing mechanisms. Thus, a single parameter simultaneously governs the worst-case
inefficiency of network cost-sharing games (in two incomparable senses) and cost-sharing mech-
anisms. This parameter is always at most the kth Harmonic number Hj ~ Ink, where £ is the
number of players, and is constant for many function classes of interest.

1 Introduction

1.1 Network Cost-Sharing Games with Non-Anonymous Cost Functions

We consider network cost-sharing games with non-anonymous cost functions. Such a game takes
place in a directed graph G = (V, E) and has k players. Player i has a source vertex s; € V and
a sink vertex t; € V, and its strategy set is the s;-t; paths of the graphE Outcomes of the game
correspond to path vectors (Py, ..., P;), with the semantics that the subnetwork (V,UF_, ;) gets
formed.

Each edge e has a cost function C,, specifying the total cost incurred on edge e as a function
of its users — the players S, that pick a path that includes e. The function C¢(S,) models the
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infrastructure or service cost of supporting the users S, between e’s endpoints. We always assume
that Ce(0) = 0 and that C, is monotone, meaning S, C T, implies C(S.) < C¢(Te). For most of
the paper, we assume that C, is submodular, meaning it exhibits diminishing costs in the following
sense:

Ce(Te U{i}) — Ce(Te) < Ce(Se U {i}) — Ce(Se)

for all 4 and S, C T,. Almost all previous work on network cost-sharing games, beginning with
[Anshelevich et al., [2008a], considers only anonymous cost functions, where the cost of an edge
depends solely on the number of users. For anonymous cost functions, submodularity is equivalent
to non-increasing marginal costs.

Example 1.1 (Weighted Players) For a simple example of a non-anonymous cost function, sup-
pose each player i has a positive weight w;, with higher weights indicating greater demands for
resources (more bandwidth, longer duration, etc.). Suppose that the joint cost function C¢(Se)
depends on the set Se of users only through the sum of their weights >, ¢ w;. If Ce(Se) =
(X ies, wi) for a nondecreasing concave function f, then Ce is monotone and submodular.

Example 1.2 (Coverage Functions) For a more general class of non-anonymous cost functions,
consider a ground set X of services, where supporting a service j € X imposes a weight of w; on the
service provider. Each player i requires a set A; C X of services. The cost C, of supporting all of
the services required by a set S, of users is C.(Se) = f(O_ j€Uics, A; wj). Provided f is a monotone
concave function, C¢ is a monotone submodular function. Example corresponds to the special
case in which the players require disjoint sets of services. If all of the A;’s coincide, we recover the
special case of (anonymous) constant cost functions.

To complete the description of the game, we need to define players’ costs. To do this, we assign
a cost share x¢(i,Se) to each user i € S, of each edge e. The cost ¢;(P) of a player i in a strategy
profile P = (Py,..., P) is then
ci(P) = Z Xe (%, Se),

EEPZ'

where Sc = {j : e € P;} is the set of users of e.

With anonymous cost functions, the natural cost shares proposed in [Anshelevich et al., 2008a]
are the equal cost shares: x.(i,Se) = Ce(Se)/|Se|. With non-anonymous cost functions, however,
such cost shares are not as well motivated. We extend the idea of equal cost-sharing to non-
anonymous cost functions by taking x.(i,Se) to be i’s Shapley value in the cooperative game
induced by C, and Se. In more detail, for a permutation o of the players of S, let A, (i) denote
the increase C'(Sy(1..i—1) U {i}) — C(Sy(1..i—1)) in cost due to i’s arrival, where S, ;1) is the set
of players that precede i in 0. Then, x.(i, Se) is defined as the expected value of A, (i), where the
expectation is over the (uniform at random) choice of o. It is easy to verify that: (i) these cost
shares coincide with equal cost-sharing when C. is anonymous; (ii) the joint cost is shared fully
across the players, with » ;¢ Xe(i,Se) = Ce(Se); and (iii) a submodular cost function Ce leads to
positive externalities, in the sense that x.(i,7.) < x.(7, Se) whenever i € S, C T,. Properties (ii)
and (iii) are called budget-balance and cross-monotonicity. These cost shares also ensure that every
network cost-sharing game has a potential function and therefore admits at least one pure Nash
equilibrium (see Section [2)).



Example 1.3 (Weighted Players Revisited) Consider two players with weights 1 and 3 and
the cost function Ce(Se) = (D e, w;)/2. The joint cost of the two players is 2. The players’ cost
shares are their Shapley values, namely %(3 —/3) =~ .635 and %(1 +/3) ~ 1.365, respectively

1.2 Measures of Equilibrium Inefficiency

The primary goal of this paper is to characterize the inefficiency of equilibria in network cost-
sharing games with non-anonymous cost functions, in as many senses as possible. We next review
the relevant measures of equilibrium inefficiency.

We define the cost C(P) of a strategy profile P of a network cost-sharing game as the sum of

players’ costs:
k

C(P) = ZCz(P) = Z Ce(Se)v (1)
=1 eckE
and take as our objective function. Recall that a pure Nash equilibrium (PNE) is a strategy
profile from which no player can decrease its cost via a unilateral deviation. To what extent do
PNE minimize the cost ?

1.2.1 A Non-Starter: The Price of Anarchy

It is well known that network cost-sharing games can have multiple PNE of wildly varying quality.
The canonical example in the basic model with constant cost functions [Anshelevich et al., 2008a,b]
posits k players, each choosing between an edge e; with fixed cost 1 + € and an edge ey with fixed
cost k. Since all players using the second edge is a PNE, the ratio between the worst PNE and
an optimal solution (i.e., the “price of anarchy”) can be as large as k. A simple argument gives a
matching upper bound on the worst-case price of anarchyﬁ

1.2.2 Equilibrium Refinements

The bad equilibrium identified above does not imply that network cost-sharing games are uninter-
esting — just that, to reason meaningfully about the quality of their equilibria, a more fine-grained
approach is required. Recall that an equilibrium refinement defines a subset of equilibria. We are
interested in equilibrium refinements with the following two properties:

1. All equilibria in the refined set have cost close to optimal.

*Non-uniform player weights have been proposed previously with anonymous cost functions [Anshelevich et al.,
2008a}, |Chen and Roughgardenl 2009} |Chen et al., [2010, |Albers, 2009, Kollias and Roughgardenl |2011|, necessarily
in a different way. An anonymous cost function is by definition insensitive to the players’ weights, and hence the
Shapley cost shares are equal, independent of the weights. One approach to incorporating weights is to redefine the
cost shares to be proportional to players’ weights [Anshelevich et al.,|2008a], at the cost of losing pure Nash equilibria
and good efficiency guarantees for them |[Chen and Roughgarden| 2009]. Another way to enforce weight-dependent
cost shares is to switch to a weighted variant of the Shapley value [Kollias and Roughgarden, [2011]. In the present
work, with (non-anonymous) cost functions that depend directly on players’ weights, the standard Shapley value
already leads to weight-dependent cost shares. As we show, these cost shares guarantee the existence of good pure
Nash equilibria. Our model also captures more general player asymmetries that cannot be modeled simply through
heterogeneous player weights.

3More generally, the price of anarchy depends on the allowable edge cost functions, but it remains disappointingly
large (polynomial in k) for essentially all cost functions of interest.



2. There is a plausible explanation why equilibria in the refinement are more “important” or
“likely” than those outside the set.

Previous work on network-cost sharing games with anonymous submodular cost functions can be
interpreted as proposing two refinements with these two properties: potential function minimizers
and strong Nash equilibria.

1.2.3 Potential Function Minimizers and the Price of Stability

Anshelevich et al.| [2008a] proposed circumventing bad PNE by studying the price of stability,
defined as the ratio between the minimum-cost PNE and that of an optimal outcome. They prove
that the worst-case price of stability in network cost-sharing games with anonymous submodular
cost functions is exactly the kth Harmonic number Hj, = Ele % =Ink + ©(1). The worst case is
achieved by an instance with constant cost functions.

We can interpret the upper bound in |Anshelevich et al., [2008a] as a worst-case bound for
an equilibrium refinement by examining its proof. The first step in |Anshelevich et al., [2008a]
constructs a potential function [Monderer and Shapley, [1996| for every network cost-sharing game
with anonymous cost functions — a function ® such that the change in ® under a unilateral
deviation by player ¢ equals the change in i’s cost. The PNE correspond to the local minimizers
(under unilateral deviations) of ®. The second step of the proof shows that every global minimizer
of ® has cost at most Hy times that of an optimal outcomeE] The global minimizers of ® therefore
form an equilibrium refinement of the PNE that satisfies the first property in Section As
for the second property, global potential function optimizers have been previously proposed as
a plausible equilibrium refinement in the game theory and economics literature, together with
supporting theoretical [Asadpour and Saberi, 2009, Blume, 1993, Sladel, 1994] and experimental
evidence [Chen and Chenl 2011].

1.2.4 Strong Nash Equilibria

Epstein et al. [2009] and |Albers| [2009] studied an incomparable equilibrium refinement in network
cost-sharing games with anonymous submodular cost functions. Recall that a strong Nash equilib-
rium (SNE) [Aumann, [1959] is a strategy profile such that no coalition of players can deviate in a
coordinated way to strictly decrease all of their costs. Robustness to coalitional deviations provides
good motivation for favoring strong Nash equilibria over non-strong PNE.

Global potential function minimizers need not be SNE — indeed, SNE are not guaranteed to
exist in general [Epstein et al., 2009, Albers, [2009] — and SNE need not minimize the potential
function, except in very simple networks |[Holzman and Law-Yone, 1997]. Nevertheless, Epstein
et al| [2009] and |Albers| [2009] proved that the worst-case ratio between an SNE and an optimal
outcome is also precisely Hy.



Table 1: Summary of main results. The columns describe the existence of a potential function and
bounds on the different solution concepts, and the rows give the conditions under which the results
hold. “SM” stands for submodular. “Shapley” indicates Shapley cost shares. The parameter «
denotes the summability of the cost-sharing method for the cost function.

Potential ® | & minimizer = a | Strong PoA = «a | Seq PoA =«
Anonymous costs v yes v yes v yes v yes
SM & Shapley v yes v yes v/ yes X no
Non-SM, Shapley v yes X no X no X no
Non-SM, cross-mono X no N/A 4 yesﬁ X no

1.3 Contributions and Paper Organization

Our results are summarized in Table Our primary contribution is a characterization of the
worst-case inefficiency of both potential function minimizers and strong Nash equilibria in network
cost-sharing games, as a function of the class C of allowable submodular cost functions.

These results correspond to the second and third columns of Table[ll Despite their instance-by-
instance incomparability, we prove that the worst-case approximation ratios of these two equilibrium
refinements are identical for every set C of allowable cost functions, and equal the worst-case
summability of a function in C E]

In more detail, we recall the summability parameter introduced in |[Roughgarden and Sun-
dararajan, 2009] to characterize efficiency loss in cost-sharing mechanisms [Moulin, |1999]. Let C(-)
denote a cost function defined on a ground set U and x a cost-sharing method — a function from
player sets and players to cost shares. We call x a-summable for C, if for every player subset S C U
and every ordering o of the players of S,

S|

> Xlio@) So1.)) < - C(S), (2)
=

where i,(;) denotes the fth player in o, and S,(;. ¢ denotes the set of the first £ players in the
ordering o. In words, we begin with the empty set and add players of S one-by-one according to o.
Letting X, denote the cost share of the ¢th player (according to x) when the player is first added,
the cost-sharing method x is a-summable for C' if the sum ), X, only overestimates the cost of
C(S) by an « factor (for a worst-case choice of the subset S and the ordering o of the players).
Let a(C') denote the smallest a such that C' is a-summable and «(C) = supgee (C).

We prove in Section [3|that the worst-case ratio between the cost of a potential function minimizer
or a strong Nash equilibrium and an optimal outcome of a network cost-sharing game with (mono-

4The lowest-cost PNE need not be a global potential function minimizer; see [Tardos and Wexler} 2007] and
Proposition in the current work.

®The proof in [Anshelevich et al., 2008a] also shows that the PNE reachable from a minimum-cost outcome via
better-response dynamics form such an equilibrium refinement. The results in the present work also hold for this
alternative refinement.

5The Strong Price of Anarchy is additionally dependent on the budget-balance parameter 3, for details see Sec-
tion [21;2'}

"Our upper bound for strong Nash equilibria meets the “coalitional smoothness” criterion of |Bachrach et al.,
2014], and therefore extends to additional solution concepts.




tone and submodular) cost functions in C is precisely a(C). This bound is always at most Hy, where
k = |U| (Proposition , and is constant for many cost function classes of interest. For example,
consider weighted players (Example and a polynomial cost function Ce(Se) = (D ;cs. w;)?.
For d € (0,1], this function is at most %i—summable7 independent of the number of players and
their weights (Example . This yields a constant-factor approximation guarantee for potential
function minimizers and strong Nash equilibria in games with such cost functions.

In addition to our main results above, in Section [4| we extend the equivalence of summability
and worst-case approximation bounds for strong Nash equilibria to network cost-sharing games
with non-submodular cost functions and arbitrary cross-monotonic cost-sharing methods (fourth
row of Table [I)). At this level of generality the games typically have no potential function and
existence of equilibria is no longer guaranteed, so the first refinement is not well defined.

Our results in Sections 3| and [4] effectively isolate the key features of the standard network
cost-sharing model that drive inefficiency bounds. While there exist properties that require the
full symmetry of anonymous cost functions (see Section [1.4)), tight worst-case bounds for potential
function minimizers only rely on cross-monotonicity of the underlying cost-sharing method and
(obviously) the existence of a potential function, and tight bounds for strong Nash equilibria do
not even require a potential function.

Section [5| interprets known results for anonymous cost functions in terms of the summability
parameter, and shows that these fail to carry over to non-anonymous functions. Section [6] clarifies
the relationship between network cost-sharing games and Moulin mechanisms |[Moulin, 1999] by
showing a sense in which the latter are a special case of the former. Section [7|identifies conditions
on the cost functions that extend the existence guarantees in |[Epstein et al., [2009] for strong Nash
equilibria in restricted network topologies beyond anonymous cost functions. Section [8] concludes.

1.4 Further Related Work

This paper contributes to the literature on network cost-sharing games that was initiated in [An-
shelevich et al., 2008a.b]. Subsequent works on these and related models include |Fiat et al., [2006]
[Li, 2009] [Bilo et al.l [2013] [Christodoulou et al., [2010] [Bilo and Bove, [2011] [Kawase and Makino),
2013 |Lee and Ligett}, 2013] [Chekuri et al., 2007 [Charikar et al., 2008] [Syrgkanis, 2010] [Chen and
Roughgarden, 2009] [Chen et al. 2010] [Kollias and Roughgarden, [2011] |[Paes Leme et al., 2012]
[Bilo et al.l |2014]. All of these papers study only anonymous cost functions. Most consider only the
special case of constant cost functions (with Ce(Se) = e if Se # 0 and 0 otherwise), with the goal
of obtaining better efficiency guarantees in undirected and other special classes of networks. There
are two previous papers that treat network cost-sharing games with non-anonymous cost functions.
Gopalakrishnan et al. [2013] characterize cost-sharing rules that guarantee the existence of PNE
and do not consider equilibrium inefficiency. Von Falkenhausen and Harks| [2013] consider machine
scheduling games that may have positive and negative externalities and design cost sharing methods
that yield small PoA bounds. Their cost-sharing methods, unlike ours, are “non-uniform,” and are
defined in an instance-specific way that references the optimal outcome of the given instance. In
particular, the payments are designed to charge players highly when they deviate from an optimal
solution and thus have to be aware of the entire network structure.

Not all efficiency guarantees for network cost-sharing games with anonymous submodular cost
functions can be extended to the non-anonymous case. For example, one result in [Paes Leme et al.|
2012| can be interpreted as an approximation guarantee for a third equilibrium refinement for the
case of network cost-sharing games with anonymous submodular cost functions and (asymmetric)



singleton player strategies. They consider a sequential version of the game and show that (assuming
no ties) all player orderings yield (permutations of) the same subgame perfect equilibrium, which
in turn induces a pure Nash equilibrium of the single-shot game with near-optimal cost. With
non-anonymous submodular cost functions and singleton strategies, there need not be such an
“order-independent” subgame perfect equilibrium. Similarly, the algorithm in [Syrgkanis| 2010]
for efficiently computing a near-optimal PNE in such games does not extend to non-anonymous
submodular cost functions. See Section [l for more details.

Many other models of network formation have been studied. We mention only the network
creation game of [Fabrikant et al., [2003|, which has been particularly influential in the theoretical
computer science literature; see |Tardos and Wexler, [2007] for a survey. For a comprehensive
treatment of game-theoretic models of network formation, see |Jackson, 2008].

The idea of using the Shapley value to define cost-sharing methods with good properties is not
new; see [Moulin, 1999] and the references therein. In network cost-sharing games, the weighted
Shapley value [Shapley, |1953| [Kalai and Samet,, |1987] was first introduced implicitly in [Chen et al.,
2010| for games with constant cost functions to characterize cost-sharing rules that guarantee the
existence of pure Nash equilibria. This characterization was recently generalized by [Gopalakrishnan
et al., [2013] to all cost functions. Shapley value-based cost shares have also been used in congestion
games, which can be thought of as the “negative externality version” of network cost-sharing games
[Kollias and Roughgarden, 2011].

2 Preliminaries

2.1 The Shapley Value Yields Potential Games

We first review why every network cost-sharing game with Shapley cost shares is a potential game
in the sense of [Monderer and Shapley, |1996]. First we define the ordered potential ®,(S) with
respect to an ordering o of the players:
|Se|
e (P) = > Xelio(e): Seor(1.) (3)
eck (=1
where S¢ ;1) 18 Se restricted to the first £ in players 0. Remarkably, when the Shapley value is
used as the cost-sharing method, the ordered potential is the same for every ordering o, even
though individual summands generally differ [Hart and Mas-Colell, |1989, [Kollias and Roughgarden),
2011]. We can therefore define ®(P) as the value in for an arbitrary choice of the ordering o.
The next proposition notes that the “order-independence” property of ® implies that it is a
potential function.

Proposition 2.1 For every network cost-sharing game with Shapley cost sharing, and for every
pair P and P’ = (P}, P_;) that differ only in their ith component,

O(P') — ®(P) = c;(P') — ci(P).
Proof: We show that every edge e contributes the same amount to the left- and right-hand sides.
If e € PN P ore¢ PN P then we have nothing to prove. Consider e € P/\P,. By the order-
independence property of ®,, we can assume without loss of generality that player i is the last

player in the ordering o, so the change in the left-hand side due to edge e is x(i, Se U {i}), which
by definition is also the change in ¢; on edge e. The case for e € P;\ P/ is analogous. W



2.2 Summability: Some Examples

Recall the definition of summability in (2).

Proposition 2.2 ([Roughgarden and Sundararajan, 2009]) For the Shapley cost-sharing method
and a set C of monotone cost functions, a(C) < Hj.

One way to prove Proposition is to evaluate the left-hand side of with a player ordering
o chosen uniformly at random. Monotonicity of C' and the budget-balance property of the Shapley
value imply that the fth summand has expected value at most C(5)/¢ (conditioned on the first
¢ players, each is equally like to be last). It follows that there exists an ordering o such that
holds with a = Hj, and Proposition then follows from order-independence.

Example 2.3 (Polynomial Cost Functions) First consider anonymous polynomial cost func-
tions, of the form C(S) = |S|¢ with d € (0,1]. Since the cost function is anonymous, the players
all have cost shares equal to |S|?/|S| = |S|¢~!. Since the summands are decreasing, we can upper
bound the sum that ranges from 1 to |S| by an integral that ranges from 0 to |S|:

S| S|
i=1 0
:d_ltd‘lsl
0
= Is),

which shows that a(C) < 1/d, independent of k. When d = 0 and C(S) = 1 for every non-empty
set S, we realize the worst case of a(C') = H.

More interesting is the following computation for the non-anonymous case. The summability
remains é with weighted players and a polynomial cost function.

Example 2.4 (Weighted Players) Suppose every player i has a weight w; and C(S) = (Zies wi)d.
Shapley cost sharing yields different costs for players with different weights. However, some com-
putations show that the summability is largest with equal-weight players (see the Appendix for
a proof). Therefore, the summability with weighted players is bounded by our previous example,
with a(C) < 1/d.

3 Summability Characterizes Worst-Case Inefficiency

Sections prove that, with monotone submodular cost functions, the worst-case approxima-
tion guarantee of strong Nash equilibria and potential function minimizers is exactly the summa-
bility of the Shapley cost-sharing method. Section shows that two equilibrium refinements are
incomparable on an instance-by-instance basis.

3.1 Efficiency Guarantees for Strong Nash Equilibria

The strong Price of Anarchy is the worst-case inefficiency of a strong Nash equilibrium. For network
cost-sharing games, this is bounded by the summability.



Theorem 3.1 The strong Price of Anarchy in a network cost-sharing game e with submodular
cost functions in C and Shapley cost-sharing is at most the summability a(C).

Proof: Fix Z¢, let P be a strong Nash equilibrium and P* an optimal solution. Since P is a strong
Nash equilibrium, for each group I'; of [ players, there is at least one player i, who blocks changing
their joint actions to Pr, because ¢;(P) < ¢;(Pr,, P-r,)-

Using this, we define an order o of the players, such that I';_; = I';\{¢}, and player ¢ is blocking
the group I'; from deviating to the optimal solutionﬁ Let Z¢ r, be a new instance in which only the
members of I'; participate, and let Pr, be the strategy profile P restricted to the players in I'; (which
are the first ¢ players in the order o). The cost of player i is given by ¢;(Pr;) = > .cp, Xe(7; Ser,),
which we can also write in terms of the potential function ®:

¢i(Pr;) = ®(Pr,) — ®(Pr,_,). (4)

Here ®(Pr,) denotes the potential of the restricted game Z¢ r,. This gives us an upper bound on
the cost of player ¢ in the original network cost-sharing game instance Z¢ when everyone plays P:

ci(P) < ¢i(Pr,, P-r,) (by strong Nash equilibrium) (5)
< c(Pr,) (by cross-monotonicity) (6)
= ®(Pr,) — ®(Pr,_,) (by Equation (4)). (7)

We can now bound the total cost of the strong Nash equilibrium:

k
C(P) = Z ci(P) (by Equation (8)
i=1
k
<y ((I)(P{fi) - @(P;H>) (by Equation 7
i=1
= ®(Pr,) — ©(0) (by telescoping sum)
= ¢(P*) (definition of @)
|Se |
= Z Z Xe(i,S%1.4) (by Equation
< Z a(C) - Ce(SE) (by summability)
ecl
=a(C) - C(PY), (by Equation

and this concludes the proof. B

8This order is easily constructed back to front: we label a player that blocks the entire group from deviating as
player k and recurse on the remaining players.



3.1.1 Coalitional Smoothness

Smoothness frameworks extend price of anarchy bounds automatically to more general solution
concepts. The coalitional smoothness framework of Bachrach et al.| [2014] applies to equilibria that
are resistant to deviations of a group of players, and the proof of Theorem can be recast as a
coalitional smoothness argument.

Proposition 3.2 Network cost-sharing games with monotone submodular cost functions and Shap-
ley cost-sharing are («(C),0)-coalitionally smooth.

Proof: We need to show that for every ordering o of the players, Zle c¢i(Pt,, P-r;) < a(C)-C(P*).
While we fixed a particular order in the proof of Theorem [3.1} we only needed to do so to express
¢; in terms of a deviation in . Since we did not use the order after this, we can conclude from
the remainder of the proof that for every order, S_%_| ¢i(Pr, P-r;) < a(C)-C(P*). A

Since network cost-sharing games are coalitionally smooth, we inherit the extensions described
in [Bachrach et al., 2014] to strong correlated equilibria [Moreno and Wooders, [1996], strong coarse
correlated equilibria [Rozenfeld and Tennenholtz, |2006], and coalitional sink equilibria [Bachrach
et al., 2014].

Corollary 3.3 For network cost-sharing games:
e Fvery strong correlated equilibrium has expected cost at most «(C) times the optimal cost.

e FEvery strong coarse correlated equilibrium has expected cost at most o(C) times the optimal
cost.

e FEvery coalitional sink equilibrium has expected cost at most Hy - «(C) times the optimal cost.

We revisit the topic of strong Nash equilibria twice more in later sections. Section [4] considers
cost-sharing methods other than the Shapley value, and proves that the strong Price of Anarchy
remains bounded by the summability « even in games without potential functions, and Section
discusses conditions on the network topologies and the cost functions C under which strong Nash
equilibria are guaranteed to exist.

3.2 Efficiency Guarantees for Potential Function Minimizers

We now consider the second equilibrium refinement, potential function minimizers. Given the
existence of a potential function (Proposition , it is straightforward to apply the potential
function method (see [Tardos and Wexler| 2007]) to bound the cost of its minimizers in terms of
the summability. When we consider cross-monotonic cost-sharing methods other than the Shapley
value in the next section, this method will no longer apply.

Theorem 3.4 The inefficiency of the potential function minimizer in a network cost-sharing game
Zc with submodular cost functions in C and Shapley cost-sharing is at most the summability «(C).

10
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Figure 1: Tight example for Propositions and All cost functions are multiples of a common
function C; the numbers on the edges are the multiples.

Proof: First observe the following upper bound on ®(P):

|Se|

(I)(P) = Z Z Xe(ia Se,l..i)
ecE i=1
<> a(C) - Ce(Se)
eclk
< a(C)-C(P).

Since the Shapley value is budget-balanced and cross-monotonic, C(P) < ®(P). Let Ppot be the
potential function minimizer and P* the optimal solution; we apply the potential function method:
C(Ppot) < ®(Ppot) < ®(P*) < a(C) - C(P*). So the cost of a global potential function minimizer
is at most (C) times that of an optimal solution. W

3.3 Lower Bounds

We now show how to adapt a well-known instance from [Anshelevich et al., 2008a] to show si-
multaneously that our two upper bounds are tight for every set C of monotone submodular cost
functions. The key reason that the lower bound instance from [Anshelevich et al., [2008a] remains
relevant in the present more general context is the cross-monotonicity of the Shapley value for a
submodular cost function.

In Figure [I] we have a network with k players with different sources s; and a common sink ¢.
The cost functions on all edges are scalar multiples of a cost function C' € C with a(C) = a(C) (or
arbitrarily close to «(C)); the numbers on the edges denote the multiplesﬂ

For sufficiently small €, the total cost is minimized when all players share the cost of the top
route. This is not a Nash equilibrium: player k pays slightly less by taking its own personal shortcut
to t. By the cross-monotonicity of the Shapley value for a submodular cost function, this holds
no matter what the other players do. Given that player k takes the shortcut, player k& — 1 has
a (conditional) dominant strategy to take its shortcut, and so on until player 1 does the same.

9For constructing lower bounds, we can assume without loss of generality that the set C is closed under scalar
multiplication. The reason is that scalar multiples can be simulated by replacing edges of a lower bound example
with paths of suitable lengths.
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(a) The potential function minimizer is (b) The Strong Price of Anarchy is better
better than the Strong Price of Anarchy. than the potential function minimizer.

Figure 2: Instances where one equilibrium refinement yields the optimal solution, while the other
exhibits worst-case inefficiency.

This argument implies that the resulting outcome is the unique Nash equilibrium (and hence the
potential function minimizer) and also a strong Nash equilibrium. The cost that each player pays
is x#(4,51.4), so by the definition of summability, the total cost of the equilibrium is, as € — 0,
a(C) times the optimal cost.

Proposition 3.5 For every set C of submodular cost functions and € > 0, there is a network cost-
sharing game Zc with cost functions in C in which the strong Price of Anarchy is at least «(C) — €.

Proposition 3.6 For every set C of submodular cost functions and € > 0, there is a network cost-
sharing game Ze with cost functions in C in which the cost of the potential function minimizer is
at least a(C) — € times the optimal cost.

3.4 Comparison of Equilibrium Concepts

Although both equilibrium refinements have the same tight worst-case guarantees, the refinements
are incomparable on an instance-by-instance basis. Even for network cost-sharing games with
constant functions, there are instances where one refinement yields the optimal solution and the
other exhibits worst-case inefficiency.

Proposition 3.7 For all € > 0 and sufficiently large k, there is a network cost-sharing game with
constant cost functions such that the potential function minimizer is the optimal solution and the
strong price of anarchy is at least Hy, — €.

Proof: We adapt an example from Epstein et al. [2009, Thm 3.12]; see Figure There are two
Nash equilibria, one where all players take the top route Py, and one where all take the bottom
route Phottom-

The strategy where all players share the cost going to ¢t has potential ®(Piop) = (1 + €)Hy,
whereas the potential of all taking their own paths is ®(Ppottom) = Hik—2 + % + % > H; for
kE > 2. We can pick e small enough so that ®(Piop) < P(Phottom), making Piop the potential
function minimizer. However, if players k and k — 1 deviate to their bottom strategies at the same
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time, they both strictly decrease their costs, hence the Nash equilibrium of the potential function
minimizer is not a strong Nash equilibrium. The only strong Nash equilibrium is Ppottom, Which is
a factor Hy_o + % worse than the optimal. B

Proposition 3.8 For alle > 0 and k > 1, there is a network cost-sharing game with constant cost
functions such that every strong Nash equilibrium is an optimal solution and the potential function
manimizer has cost at least Hy — € times that of an optimal solution.

Proof: The network is given in Figure Again there are two Nash equilibria, Piop and Phottom-

The potential of the strategy profile where every player chooses their bottom path to ¢ is ®(Ppottom) =
Zle 1 = k, whereas the potential of the strategy profile where all players share the cost of the

joint path to ¢ is ®(Piop) = (kH—':E) Zle % =k + ¢ > ®(Ppottom ). However, the potential function

minimizer has total cost k, while the optimal solution has total cost l;;’k =
on their bottom path, but only about H%g in the optimal solution, the optimal solution is the only
strong Nash equilibrium. B

Since every player pays 1

4 Beyond Submodular Cost Functions

The previous section considered submodular cost functions and cost sharing according to the
Shapley value. Recall that the Shapley value is a cross-monotonic cost-sharing method for ev-
ery submodular cost function, and is not generally cross-monotonic for non-submodular cost func-
tions. This section considers two natural directions for further generalization. Section re-
tains Shapley cost shares (and hence a potential function) but relaxes submodularity (and hence
cross-monotonicity). Section considers cross-monotonic (and hence non-Shapley) cost-sharing
methods for non-submodular cost functions.

4.1 Non-Submodular Costs with Shapley Cost Sharing

If we use Shapley cost shares with non-submodular (monotone) cost functions, the correspond-
ing network cost-sharing games continue to have a potential function (Proposition [2.1)), and the
summability remains bounded by Hj, (Proposition . However, because Shapley cost shares need
not be cross-monotone, summability need not upper bound the worst-case approximation ratio of
potential function minimizers.

In addition, without cross-monotonicity the lower bound in Proposition [3.6/no longer holds. The
reason is that we use cross-monotonicity to argue conditional dominant strategies. The last player
has a dominant strategy to take their lower path, because she knows that her most advantageous
situation is when all players share the cost of the top path, and in that case she pays less by taking
the bottom path. However, if her cost could decrease by another player choosing to deviate to their
lower path, this is no longer a dominant strategy for her, and the equilibrium can depend on the
cost function. Indeed, there are examples of monotone non-submodular cost functions such that
the approximation ratio of potential function minimizers is strictly better than the summability
(see |Christodoulou and Koutsoupias, 2005] for one).

Also, without cross-monotonicity, the upper bound (Theorem for the strong price of anarchy
fails to hold. The proof of Theorem uses cross-monotonicity to upper bound the cost for a
player in an entangled strategy profile in @ Indeed, Theorem is generally false for non-cross-
monotonic cost-sharing methods (see [Chien and Sinclair, 2009, Theorem 5.1] for an example). The
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lower bound argument (Proposition for the price of anarchy of strong Nash equilibria breaks
down for the same reasons as for potential function minimizers.

We conclude that relaxing the cross-monotonicity constraint has significant consequences: nei-
ther the upper nor the lower bounds for potential function minimizers of strong Nash equilibria
carry over.

4.2 Non-Shapley Cross-Monotonic Cost Sharing

This section explores non-Shapley-value cost-sharing methods that are cross-monotonic; the design
of such methods has been explored extensively in the context of cost-sharing mechanisms (see Jain
and Mahdian| [2007] for a survey). Network cost-sharing games with arbitrary cross-monotonic
cost-sharing methods no longer admit potential functions in general, and even the best PNE can
be arbitrarily bad (see [Chen and Roughgarden, 2009| for an example), so we focus on strong Nash
equilibria. Despite the non-existence of a potential function, we can still prove that whenever a
strong Nash equilibrium exists, it is approximately optimal.

We also allow non-budget-balanced rules; this relaxation permits cross-monotonic cost-sharing
rules for many non-submodular cost functions (see Jain and Mahdian| [2007]).

Definition 4.1 A cost-sharing method is 8-budget balanced if it recoups at least a § fraction of
the cost from the players:

0235) <> x(i,8) < C(S).

€S

This also means that the total cost for the game does not necessarily equal the total cost over all
the players. Instead, we have

k
C(P) =) CelSe) < B)_a(P).

eeE

Let F denote a class of monotone cost functions, possibly including non-submodular functions.
Let Zx denote an instance of a network cost-sharing game with cost functions from F. Let a(F)
denote the summability of F. Since we no longer use the Shapley value for cost sharing, the
cost-sharing method x is no longer order-independent, and summability is defined via a worst-case
order ¢ as in . The summability of a cost-sharing method other than the Shapley value can
be larger than Hy, but for many non-submodular cost functions, there exist O(1)-budget-balanced
cross-monotonic cost-sharing methods with summability O(log k) or O(log? k); see [Roughgarden!
and Sundararajan, 2009| for a survey. Finally, we also revert back to the ordered potential ®, in
the original definition in .

Theorem 4.2 For arbitrary monotone cost functions F, and a cost-sharing method x that is cross-
monotonic and B-budget balanced, the strong Price of Anarchy in a network cost-sharing game Lr
with cost functions in F is at most 3 - a(F).

Proof: We follow the proof outline of Theorem Fix Zr, let P be a strong Nash equilibrium
and P* an optimal solution. Define o to be an order such that for every ¢, o(¢) blocks the joint
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deviation of I';(p) to P*. The ordered potential function ®, can be used to bound the cost of the
last player in o:

ca(ﬁ)(PFU(z)) = (I)U(PFJ(@) - (I)U(PFGMA))‘

Player o(¢) is unique in this, and the identity does not hold for the players preceding it. We can
therefore bound the cost of player o(¢) using the ordered potential:

CO’(@) (P) S CO’(Z) (PFU(KVP*FU(Z)) S Ca(f) (PFU([)) = (PU(PFU(Z)) - (bU(Plﬁa(g_l))'

Next, following but using that x is 8-budget balanced, we obtain

k k
C(P) < B coy(P) = BY_ ((PF,) = @0 (PF,_,)) = B2,(P*) < 8- a(F) - C(P"),
/=1 =1

where the last inequality holds because a(F) is defined as the supremum over all orders o. B

Proposition and Corollary also carry over to the present more general setting, with a
loss of (8 in the approximation factors.

5 Negative Results for Non-Anonymous Cost Functions

This section shows that, in contrast to the results of Section [3|, not all positive results known for
network cost-sharing games with anonymous submodular cost functions carry over to the non-
anonymous submodular case. We consider both the greedy algorithm of |Syrgkanis [2010] for com-
puting a low-cost PNE, and the equilibrium refinement implicit in the subgame perfect equilibria
identified by [Paes Leme et al. [2012]. Section explains the models and results from previous
work. Section shows that these results do not extend to non-anonymous submodular cost
functions.

5.1 Model and Previous Work
5.1.1 Singleton Cost-Sharing Games

This section restricts attention to singleton cost-sharing games, where each strategy of each player
is a single edge. Different players can have different strategy sets. Such games can be thought of as
k players that each have a task that they need to run on one of m machines, with a bipartite graph
indicating which tasks can run on which machines. The cost of a machine j is shared by all players
that use that machine. It is straightforward to model such a game as a network cost-sharing game.

5.1.2 A Greedy Algorithm

Syrgkanis [2010] gave a greedy algorithm for computing a PNE of such a game that has cost bounded
above by the potential function value of an optimal solution. This algorithm proceeds analogously
to the greedy algorithm for the set cover problem, where sets correspond to machines and elements
to players. Each iteration, the algorithm picks one machine and assigns as many unassigned players
to it as possible; subject to this, it picks the machine that minimizes the cost share of the newly
assigned players. We denote this algorithm by GREEDY .
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Theorem 5.1 (Syrgkanis| [2010]) In singleton anonymous cost-sharing games, the GREEDY al-
gorithm computes a PNE with cost at most the potential function value of an optimal solution.

As in the proof of Theorem this translates to an upper bound in terms of the summability
of the cost functions in C.

Corollary 5.2 In singleton anonymous cost-sharing games with cost functions in C, the GREEDY
algorithm computes a PNE with cost at most a(C) times that of an optimal solution.

The lower bound instance in Propositions and can be realized by a singleton cost-
sharing game. The game has k players and k£ + 1 machines. There is one special machine that
every player can use, and each player has a private machine that only they can use. The costs for
common/private machine are the same as for the common/private edges in Figure Since the
costs and actions are the same, the equilibria in this singleton game are the same as the equilibria
in the network cost-sharing game in Figure |l So there is only one PNE in the game which is «/(C)
worse than the optimal solution, hence Corollary [5.2]is tight for every set C of monotone anonymous
submodular cost functions.

5.1.3 Sequential Price of Anarchy

We next describe a sequential version of a singleton cost-sharing game. There is an exogenous
ordering on the players. Player i can observe all the actions a; € A; of players before her, and the
utility functions u;(ay, ..., ax) of all players ¢ is public knowledge. A strategy S; is a mapping from
the actions of preceding players aq, ...,a;—1 to an action a; € A;.

Given a prefix (o.j—1) € Ay x .. x Aj_1, the induced subgame for players j, ...,k is given
by strategies S;(au,..,a5-1,a;,..,a;—1) and utility functions w;(ou,..,aj—1,a;,..,a). A subgame
perfect equilibrium is a strategy profile S that simultaneously is an equilibrium for all of its sub-
games. The sequential price of anarchy is the ratio of the worst subgame perfect equilibrium and
the optimal solution.

Previous results of Syrgkanis [2010] and Paes Leme et al.[|2012] imply that summability bounds
from above the sequential price of anarchy in singleton anonymous cost-sharing gamesm

Proposition 5.3 For singleton cost-sharing games with anonymous cost functions in C, the se-
quential price of anarchy is at most a(C).

Proof: Paes Leme et al. [2012, Theorem 1] prove that, for every player ordering, the GREEDY
algorithm yields the unique subgame perfect equilibrium, with the ith player playing the strategy
computed for it by the algorithm. The proposition follows from Corollary [ |

Adapting the standard lower bound example of Figure[I|shows that the bound in Proposition|5.3
is tight.

The proof of Proposition [5.3| shows that, ranging over all possible player orderings in an anony-
mous singleton cost-sharing game, all subgame perfect equilibria induce the same single-shot out-
come, which is a PNE. In this sense, it can be interpreted as an upper bound of «(C) on an
equilibrium refinement in the single-shot game — the PNE induced by subgame perfect equilibria
or, equivalently, the PNE computed by the GREEDY algorithm.

0This result requires a generalized “no ties” assumption on the cost functions; see [Paes Leme et al. [2012] and
Bilo et al|[2013] for details.

16



5.2 Non-anonymous Cost Functions

Unfortunately, the results surveyed in Section do not extend to singleton cost-sharing games
with non-anonymous submodular cost functions.

5.2.1 The Greedy Algorithm

There are multiple ways to extend the GREEDY algorithm to singleton cost-sharing games with
non-anonymous cost functions and Shapley cost shares. The reason is that when many players
are assigned to a common machine in a single iteration, they generally incur different cost shares.
The next proposition notes that the three arguably most natural extensions — minimizing the
minimum, the maximum, or the average cost share of a newly assigned player — do not yield
algorithms guaranteed to output a PNE.

Proposition 5.4 For a greedy algorithm that uses the “lowest average cost,” “lowest minimum
cost,” or “lowest maximum cost” rules, there exists a singleton cost-sharing game with submodular
cost functions and Shapley cost sharing such that the greedy algorithm does not yield a PNE.

Proof: We give two examples: the first shows a singleton cost-sharing game where the “lowest
average cost” and “lowest maximum cost” rules make the wrong decision, the second example
shows that the “lowest minimum cost” rule can also make the wrong decision. Both examples have
three players and two machines: player p; can only choose machine a, player po can only choose
machine b, and player ps can choose either. Both machines have the same cost function.

Consider the following submodular cost function:

C{m}p) = 1 C{pi,p2}) =1
C({p2}) = 3/4 C({p1,p3}) =1+e C({p1,p2;ps}) =1+
C({ps}) = 1/2 C({p2;p3}) =1.

Both the “lowest average cost” and “lowest maximum cost” rules assign ps to machine b (with
p2), but this is not a Nash equilibrium.
Similarly for the “lowest minimum cost” rule, for the submodular cost function

C({p})= 1/2 C({p1,p2}) =1
C({p2}) = 3/4 C({p1.p3}) =1 C({p1,p2,p3}) =1
C({ps}) = 1 C({p2,p3}) =1,

player ps3 is assigned to machine a with p;, while p3 will want to switch to machine 5. B

5.2.2 Subgame Perfect Equilibria

With non-anonymous submodular cost functions and Shapley cost shares, it is no longer true that
all subgame perfect equilibria (across all player orderings) of a singleton cost-sharing game induce
a common PNE, or even a PNE at all.

Proposition 5.5 Different player orderings can lead to different subgame perfect equilibria in sin-
gleton cost-sharing games with non-anonymous submodular cost functions and Shapley cost shares.
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Proof: Consider two players and two machines, a and b. The first machine has cost function

Ca({p1}) =4/6
Ca({p2}) =5/6
Ca({p1,p2}) =1,

and machine b has the roles of p; and ps reversed. Regardless of who goes first, both players are
better off by sticking together. However, p; would prefer to be on machine a, whereas py wants
to be on machine b. Therefore whoever goes first in the order determines which equilibrium the
players converge to.

Lemma 5.6 In a singleton cost-sharing game with non-anonymous submodular cost functions and
Shapley cost shares, the single-shot outcome induced by a subgame perfect equilibrium may not be
a PNE.

Proof: Consider three machines a,b, ¢ and three players with strategy spaces {a,b}, {a,c}, and
{b, c}. Machines a and ¢ have anonymous cost functions, and machine b has a non-anonymous one:

Ca(l) =3/2+e¢ Co({p1}) =3/2+2¢  C(1) =3/2
Ca(2) =2 Cy({p3}) = 2 Ce(2) =2+ 2¢
Cy({p1,p3}) = 2.

Take the order po,p1,p3. Solving for the subgame perfect equilibrium yields ps on ¢, p; on a,
and p3 on c. This is not a Nash equilibrium as po would prefer to switch to a. B

We conclude that the positive results known for singleton cost-sharing games with anonymous
submodular cost functions cannot be extended, without significant compromise, to non-anonymous
submodular cost functions with Shapley cost shares.

6 Equivalence between Network Cost-Sharing Games and Moulin
Mechanisms

The concept of summability was first proposed in the context of cost-sharing mechanisms [Rough-
garden and Sundararajan, [2009]. This section makes explicit a connection between Moulin mecha-
nisms [Moulin, 1999, [Moulin and Shenker} 2001] and network cost-sharing games. We first briefly
discuss cost-sharing mechanisms and then show a sense in which Moulin mechanisms are special
cases of network cost-sharing games. In particular, negative results for the inefficiency of Moulin
mechanisms transfer directly to network cost-sharing games.

6.1 Moulin Mechanisms

43

There are n players; player i has a valuation v; for “winning” (and 0 for “losing”). A cost function
C indicates the cost incurred as a function of the set S of winners. A Moulin mechanism is defined
by a cross-monotonic cost-sharing method x(7,S5). An outcome is then the choice S of a winning
set, with player ¢ € S paying x(i,5) (and losers paying nothing).

Moulin/ [1999] described two closely related models. In the full-information model, we treat
players’ valuations as common knowledge. Each player has two actions, “in” and “out.” A player’s
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Out

Figure 3: The network cost-sharing game that is equivalent to any in/out cost-sharing game.

43 7

payoff is 0 when it chooses “out,” and is v; — x(7,S) when it chooses “in,” where S denotes the
set of players choosing “in.” Cross-monotonicity implies that the union of PNE is again a PNE, so
there is a unique maximal PNE in such a game. This maximal PNE is also strong.

In the private-information model, we treat players’ valuations as private. The strategy of a
player is now a nonnegative bid. A Moulin mechanism takes these bids at face value and com-
putes the corresponding maximal strong PNE. This mechanism is strategyproof, meaning that for
every player, it is a dominant strategy to bid its true valuation. The mechanism is also group-
strategyproof, meaning that coalitions that do not use side payments also have no incentive to
collectively misreport valuations.

Following Roughgarden and Sundararajan [2009], we compare different Moulin mechanism out-
comes with the social cost objective function:

m(S) =C(S)+ > _w;
where S denotes the set of “in” players.

6.2 Equivalence

By construction, there is a natural equivalence between the full-information and private-information
models of Moulin mechanisms. Next, we show an equivalence between the full-information model
and the subclass of network cost-sharing games that are played on the network of Figure 3] By
“equivalent,” we mean there is a bijection between players and strategy sets that preserves the
objective function value and players’ costs (or negative payoffs), up to a universal constant.

Proposition 6.1 Full-information Moulin mechanisms are equivalent to a subclass of network cost-
sharing games.

Proof: Figure [3| depicts the equivalence. The direct path s; to t corresponds to the “out” strategy
of player ¢ at opportunity cost v;. The other strategy corresponds to the “in” strategy. There is
an obvious bijection between players and strategy sets. The social cost of the Moulin mechanism
outcome equals the cost of the corresponding network cost-sharing game outcome. Up to an additive
constant (of v;), this bijection preserves the costs incurred by all players. B
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Proposition [6.1]implies that lower bounds for the social cost approximation of Moulin mechanism
outcomes apply equally well to network cost-sharing games.

Corollary 6.2 Let C be a monotone cost function and x a cost-sharing method. If the worst-case
social cost approzimation of the corresponding Moulin mechanism is at least p, then the worst-case
strong price of anarchy in network cost-sharing games with cost function C' and cost-sharing method
X 1s at least p.

Since summability characterizes the worst-case social cost approximation of Moulin mecha-
nisms [Roughgarden and Sundararajan, [2009], the lower bound of Corollary matches that of
Proposition Put differently, the subclass of network cost-sharing games corresponding to
Moulin mechanisms is guaranteed to furnish worst-case examples for the strong price of anarchy
(amongst all network cost-sharing games).

7 Existence of Strong Equilibria

Sections and 4] showed that when strong Nash equilibria exist, their cost is bounded by the
summability a(C) (respectively, a(F)) times that of an optimal outcome. One of the criticisms of
strong Nash equilibria is that they are not guaranteed to exist in every instance. [Epstein et al.
[2009] showed that for constant cost functions with equal cost-sharing, strong Nash equilibria are
guaranteed to exist in all graphs when all players have the same source and sink; in series-parallel
graphs when all players share the same source; and in extension-parallel graphs for arbitrary sources
and sinks for all players.

In this section we show that the generalization from equal cost-sharing of constant functions to
anonymous cross-monotonic cost sharing yields guaranteed existence for the same network topolo-
gies. However, once we allow non-anonymous cost sharing, existence is no longer guaranteed for
these topologies. We give an example of an extension-parallel graph with 2 players that share the
same source and sink, which admits no strong Nash equilibrium.

For the existence questions studied in this section, only the cost-sharing method x is relevant;
players care about the cost functions only through their cost shares. The cost shares we use are
not pathological: all of them arise as Shapley values with respect to a submodular cost function.

7.1 Anonymous Cost-Sharing Methods

In the case where we have different cost-sharing methods on the edges, but each cost-sharing method
shares the cost equally among all players, we can extend the proofs from Epstein et al.| [2009] quite
straightforwardly. We give the proof for the single-source single-sink case directly; for single-source
and multi-sink networks we give the lemma that allows Epstein et al.’s proofs to go through.

Lemma 7.1 For a network cost-sharing game with possibly different anonymous cross-monotonic
methods, where all players have the same source and sink, there exists a strong Nash equilibrium in
which all players take the same path.

Proof: Take the entire set of players, and pick the path P that has the lowest total cost for the
entire group. This is a strong Nash equilibrium. For if not, there is a deviation to one or more
paths where all players in the coalition decrease their cost. Take a deviating path P’ that decreased
the cost for a player . By anonymity and cross-monotonicity of the cost-sharing method, any other
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player can join this path for at most the cost of player ¢. Therefore, all the players can move to
this path, to decrease their cost. Hence the path P could not have been the minimizing path. B

The remainder of the proofs in [Epstein et al., 2009] use the recursive definition of series and
extension parallel graphs. Their proof for series composition relies on a key lemma that shows that
players whose source and sink are the source and sink of the graph minimize their cost in one of
the strong Nash equilibria. We extend their proof from equal sharing of constant cost functions, to
anonymous cross-monotonic cost-sharing methods.

Lemma 7.2 Consider a series-parallel graph with possibly different anonymous cross-monotonic
methods, source s, and sink t. Suppose player i has source s; = s and sink t; = t and that the
instance has at least one strong Nash equilibrium. Then, player i’s minimum cost across all strong
Nash equilibria equals its minimum cost across all strategy profiles.

Proof: Let P denote a strong Nash equilibrium that minimizes the cost of player i. Let P denote
a strategy profile that minimizes the cost of player i. Among all such strategy profiles, choose the
one that minimizes the number of players that choose different strategies in P and P; let I' denote
these players. If there is such a strategy profile with ¢ € I', then choose that strategy profile.

The proof works as follows: we create a reference profile P* where player i plays P; and all
players in I interact as much as possible with player i. (Players outside of I' U {i} play as in P
and P.) By |Epstein et al.l 2009, Lemma A.1], the first and last vertex where players can interact
with ¢ are uniquely determined in a series-parallel graph: players align their path between these
two vertices, and cannot interact any earlier or later with the path of player ¢. Due to cross-
monotonicity of the cost-sharing methods, ¢;(P*) < ¢;(P). Since i’s cost in P is minimal over all
profiles, so is its cost in P*.

Since P is a strong Nash equilibrium, there is a player j € I with ¢;(P*) > ¢;(P). We will
show that we can either remove j from I', or swap her for ¢ to arrive at a contradiction. Let P’
be the strategy profile where j plays P; and all other players in I' interact maximally with j. By
cross-monotonicity, we have ¢;(P’) < ¢;(P) < ¢;(P*). Note that j plays P;, and only players from
I" changed their profile with respect to P. If ¢ € I', then for the subpaths where ¢ and j interact
¢i(P') = ¢;(P') < ¢j(P) < ¢j(P*) = ¢i(P*), where the equalities hold because the cost-sharing
methods are anonymous. Therefore P’ also minimizes ¢; with a smaller group I', contradicting our
choice of P. If i # I, then we can put i in I' on the path of j, where again we get for the subpaths
where they interact ¢;(P’) = ¢;(P’) < ¢;(P) < ¢;(P*) = ¢;(P*), reaching the same contradiction.
|

Combining Lemma with the arguments in Epstein et al.| [2009] yields the following.

Proposition 7.3 For every network cost-sharing game on a series-parallel graph with a common
source vertex and with possibly different anonymous cross-monotonic cost-sharing methods, there
1s at least one strong Nash equilibrium.

Proposition 7.4 For every network cost-sharing game on an extension-parallel graph with possi-

bly different anonymous cross-monotonic cost-sharing methods, there is at least one strong Nash
equilibrium.
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Figure 4: There is no strong Nash equilibrium on this network. The only Nash equilibrium is for
p1 to take e;, and po to take edges eo and es, but both can decrease their cost by sharing edges es
and ey.

7.2 Non-anonymous Cost Sharing

With non-anonymous cost sharing methods, we lose guaranteed strong Nash equilibria even in very
restricted settings.

Lemma 7.5 There exists an extension-parallel graph with submodular cost functions and Shapley
cost shares, and two players with a common source and sink, such that no strong Nash equilibrium
exsts.

Proof: We adapt the example from Rozenfeld and Tennenholtz| [2006], see Figure 4| There are two
players p1,p2 on the graph. There is only one Nash equilibrium, which is that p; takes edge ey,
and po takes edges eo and esz; both for a cost of 4. If they both deviate to edges es, e4, then their
cost would decrease to 3, and hence there is no strong Nash equilibrium. W

On the positive side, an easy argument shows that if all players have a common source and sink,
and all edges have the same cross-monotonic cost-sharing method, then strong Nash equilibria exist.

Proposition 7.6 For every network cost-sharing game with a common source and sink verter and
a common (possibly non-anonymous) cross-monotonic cost-sharing method, there is at least one
strong Nash equilibrium. In particular, it is a strong Nash equilibrium for all players to use a
common source-sink path with the minimum-possible number of edges.

8 Conclusions

This paper studied systematically network cost-sharing games with non-anonymous cost functions;
the large literature on network cost-sharing games has confined its attention almost entirely to
the anonymous case. Non-anonymous cost functions arise naturally when, for example, different
players have different sizes or service requirements.

Two well-studied equilibrium refinements, strong Nash equilibria and potential function mini-
mizers, are near-optimal with non-anonymous cost functions as long as the functions are submod-
ular and costs are shared using the Shapley value. Strong Nash equilibria remain near-optimal,
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when they exist, provided costs are shared by a cost-monotonic cost-sharing method. All of these
worst-case approximation guarantees equal the summability of the cost-sharing method used for
the set of allowable cost functions. This exact characterization unifies our understanding of these
equilibrium refinements in network cost-sharing games with the theory of efficiency guarantees for
Moulin mechanisms.

A Summability for Weighted Players and Polynomial Cost

This Appendix supplies the computations needed to justify the assertion in Example that, for
a fixed polynomial cost function, the summability is maximized by equal-weight players.

First, we recall that Kollias and Roughgarden| [2011] show that the sum of Shapley cost shares
can be written as a linear combination of the costs of subsets. The coefficient of a subset of size

|T| is ar = k(kil()‘_T_.‘(;i)fT' )L which we can rewrite as follows:
(7] - 1)! (T =DMk - (T TR (T 11
k(k—1) - (k—|T|+ 1) k! Tk (&)

This gives us an alternative formulation for the left hand side of the summability definition
when x is the Shapley value:

k k 11
ZX(i;Si) = Z;T Z C(T).
i=1 i=1 (z) TCS,|T|=i
Consequently, the summability is given by
1 11
s = () TCS,|T|=i

It is straightforward to show that, in the case of weighted players and a polynomial cost function,
scaling the weights has no effect on the summability.

Proposition A.1 The summability a(C) of C(S) = (Xcq wi)d with Shapley cost sharing is in-
variant under uniform scaling of the weights w;.

We can now prove that over all weight profiles, uniform weights maximize the summability.

Lemma A.2 The summability a(C) of C(S) = (X ;s wi)d and Shapley cost sharing is maximized
when all weights are equal.

Proof: Order the weights so that w; > we > .. > wy. By Proposition we can assume without
loss of generality that >, w; = 1. Assume that a weight profile with w; > wy, yields the maximum
Summabilitym Rewrite w1 = w+e€, w, = w—¢; we show that the derivative of the summability with
respect to € is strictly negative for all sufficiently small € > 0, contradicting that the summability
was maximized.

"' This maximum is attained because we can restrict attention to weight vectors that lie in the (compact) simplex
and the summability is a continuous function of the weight vector.
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Since we normalized the weights, the denominator in Equation @ is 1, so the summability is
given by Zle %ﬁ > TCS,|T|=i (Xier wi)d. For every summand C(7") that includes both or none of

player 1 and player k, we have %C (T') = 0. For every T containing neither 1 nor k, the summands
C(T U{1}) and C(T'U {k}) have the same coefficient. We pair these up with each other and show
that %C’(T U{1}) + C(TU{k}) < 0 for ¢ > 0. Recall that wy = w + €,wr = w — € and let
w =w+ Y, cpw;i. Then,

COMUfwn)) + 0T U {wd) = [+t + wf — )]
=d(w +e)¥t —dw —e)? !
<0

where the last step follows because for € > 0, and the exponent d —1 < OE It follows that the first
summand is smaller than the second summand, which completes the contradiction. B

Corollary A.3 The summability o(C) of C(S) = (X ;cq wi)d and Shapley cost sharing is at most
1/d.
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