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1. INTRODUCTION
Computational complexity has already had plenty to say about economic equilibria.
Some of the most celebrated results in algorithmic game theory concern equilibrium
concepts that have guaranteed existence, like Nash equilibria in finite games, or
market equilibria in markets with divisible goods and concave utilities. These re-
sults determine whether or not such equilibria can be computed by polynomial-time
algorithms under standard complexity assumptions (see, e.g., [Chen et al. 2009b;
Daskalakis et al. 2009; Chen et al. 2009a]). Computational complexity is informative
also for equilibrium concepts that do not have guaranteed existence, such as pure Nash
equilibria in concise games, or market equilibria in markets with concave production
functions (see, e.g., [Fischer et al. 2006; Papadimitriou and Wilkens 2011]). For exam-
ple, by proving that it is computationally hard to compute whether or not a given game
or market admits an equilibrium of a desired type, one provides evidence that there is
no “nice characterization” of the instances in which such an equilibrium exists.

The primary theme of this work is that computational complexity can also be used
to study the equilibrium existence question itself, in that non-existence results can be
derived from the computational intractability of related optimization problems, under
suitable complexity assumptions.

We explore this theme in the classic setting of market-clearing prices for markets of
m indivisible items, where there are n consumers and each consumer i has a valuation
vi(S) for each bundle S of items. There is a large literature on understanding, for var-

This work is supported in part by NSF Award CCF-1215965 and the Hsieh Family Stanford Interdisciplinary
Graduate Fellowship. See the Acknowledgements section before REFERENCES.
Authors’ addresses: T. Roughgarden and I. Talgam-Cohen, Department of Computer Science, Stanford Uni-
versity; email: {tim,italgam}@cs.stanford.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EC’15, June 15–19, 2015, Portland, OR, USA. ACM 978-1-4503-3410-5/15/06 ...$15.00.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
http://dx.doi.org/10.1145/2764468.2764515

19



ious classes V of allowable valuations, what types of prices — item prices, anonymous
bundle prices, etc. — are necessary and sufficient to guarantee the existence of pricing
equilibria when all consumers have valuations in V (see, e.g., [Parkes and Ungar 2000;
Sun and Yang 2006; Candogan et al. 2015; Ben-Zwi et al. 2013; Sun and Yang 2014;
Candogan et al. 2014; Candogan and Pekec 2014]). The goal of this paper is to formal-
ize a general version of this question, show that the answer is inextricably linked to
the computational complexity of well-studied problems (like demand oracles, revenue-
maximization, or welfare-maximization), and derive from this connection a number of
results for the (non-)existence of pricing equilibria.

1.1. Some Highlights
While the main point of this paper is its methodology, many of our specific results
are also of independent interest. We now informally describe a few of them; see later
sections for the relevant formal definitions.

(1) Whenever the welfare-maximization problem for a valuation class V is strictly com-
putationally harder than the demand problem for V (with item prices), Walrasian
equilibria need not exist (Proposition 2.4). For example, for budget-additive valua-
tions, assuming P 6= NP, the welfare-maximization problem (which is strongly NP-
hard) is strictly harder than the demand problem (which is weakly NP-hard), thus
ruling out the possibility of guaranteed existence of Walrasian equilibria (Corol-
lary 2.2).

(2) Walrasian equilibria, which employ only anonymous item prices, are guaranteed
to exist when consumers only want one item (unit-demand). It follows from our
work that they need not exist when consumers only want a pair of items, but what
if we use a richer set of prices, defined on both items and item pairs? It is easy
to see that non-anonymous prices on item pairs recover the guaranteed existence
of pricing equilibria (Observation 5.2), but are anonymous prices also sufficient?
Under the assumption that NP * coNP, our general results imply a negative an-
swer to this question (Corollary 4.2). This conditional non-existence stems from
the facts that revenue-maximization with such prices is polynomial-time solvable,
the demand problem with such valuations and prices is polynomial-time solvable,
and the welfare-maximization problem with these valuations is NP-hard (Proposi-
tion 4.5).

(3) Walrasian equilibria are remarkable in that, despite using only m-dimensional
prices (one per item), they are guaranteed to exist for a valuation class with di-
mension exponential in m (gross substitutes valuations, see Lemma 5.1). Despite
much research on pricing equilibria for various valuation and pricing classes, no
generalizations of Walrasian equilibria with these properties (succinctness and
guaranteed existence) have been found to date. Our methodology provides an ex-
planation by identifying an algorithmic barrier to such results: it would require
a novel polynomial-time algorithm for the welfare-maximization problem, beyond
solving the standard configuration linear programming relaxation of the problem
(Section 5.3).

1.2. Related Work
Our study of equilibrium existence for different classes of valuations is related to the
large literature on how the class of valuations shapes computational aspects of com-
binatorial auctions and markets [Cramton et al. 2006]. We mention here three such
aspects. Additional related work relevant to Sections 4 to 6 appears in these sections.

(1) Communication: Nisan and Segal [2006] study communication aspects of welfare-
maximization in market settings. Generalizing a result of [Parkes 2002], they
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prove for many classes of valuations (such as submodular valuations) that welfare-
maximization requires exponential communication. In particular, it requires com-
munication of a price system that is exponential in the number of items m.

(2) Approximation: Algorithmic aspects of approximate welfare-maximization have
been extensively studied, especially for the “complement-free” valuation hierar-
chy [Blumrosen and Nisan 2007]. Recent research expands upon this by studying
valuation classes with “limited” complements and good approximation guarantees
[Abraham et al. 2012; Feige et al. 2014].1

(3) Representation and elicitation: Both succinctness (“compactness”) of valuation
classes and their learnability have been studied (see, e.g., [Boutilier et al. 2004;
Zinkevich et al. 2003]), and for classes of non-succinct valuations, simple sketches
have been pursued ([Cohavi and Dobzinski 2014] and references within).

1.3. Organization
We begin with a discussion in Section 2 of the basic market equilibrium notion of Wal-
rasian equilibrium. We then describe our general formalism in Section 3. Anonymous
pricing is discussed in Section 4, compressed pricing is discussed in Section 5, and
linear pricing is discussed in Section 6. Section 7 summarizes.

2. WALRASIAN EQUILIBRIUM
This section shows that, even for the exhaustively-studied Walrasian equilibrium con-
cept, computational complexity is a useful tool for (conditionally) ruling out existence
in many scenarios. While simple to prove, these results are conceptually interesting,
and also develop intuition for our subsequent results about other types of pricing equi-
libria. To keep this section brief we keep formal definitions to a minimum; see Section 3
for precise explanations of all terms. We begin with an overview of the results deferring
formal statements to Section 2.2.

2.1. Overview
Recall that a Walrasian equilibrium is an allocation of items to consumers together
with item prices such that (1) every consumer is allocated a bundle in his demand
set; and (2) the market clears, meaning every unallocated item has price 0. For condi-
tion (1), recall that the demand set of a consumer given prices is the set of all bundles
S that maximize his payoff — his value v(S) for the bundle minus his total payment
for it p(S). The demand problem for a valuation class V is to compute, given prices, a
bundle of items in the demand set of a consumer with v ∈ V. For condition (2), note an
equivalent condition that is useful later when we discuss more general types of prices:
that the allocation maximizes the seller’s revenue (given the prices).

A Walrasian equilibrium may or may not exist in a market — it depends on the
structure of the consumers’ valuations. At first blush, it might seem that the main re-
sults of Gul and Stacchetti [1999] and Milgrom [2000] tell us everything we want to
know about the existence question: markets with gross substitutes valuations (Defi-
nition A.1) always possess Walrasian equilibria, and for every valuation class V that
contains all unit-demand valuations (Definition A.2) and a non-gross-substitutes valu-
ation, there exists a market with valuations in V and no Walrasian equilibrium. There
are, however, natural valuation classes V that do not include all unit-demand valua-
tions (many examples appear below). Research on such valuation classes, to which the
non-existence results of Gul and Stacchetti [1999] and Milgrom [2000] do not apply,
has progressed in a relatively ad hoc fashion, relying on explicit constructions to rule

1Note that in our work the “baseline” valuation class — beyond which valuations are considered as exhibit-
ing complements — is that of gross substitutes.
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out the existence of Walrasian equilibria in various cases (see, e.g., [Candogan et al.
2015; Ben-Zwi et al. 2013; Sun and Yang 2014; Candogan et al. 2014; Candogan and
Pekec 2014]). Is a more systematic approach possible?

Let the allocation problem for a valuation class V be to maximize welfare given a
market with a valuation profile from V. Our main conceptual point in this section is:

PROPOSITION 2.1 (INFORMAL). A necessary condition for the guaranteed existence
of a Walrasian equilibrium in markets with valuations from class V is that the demand
problem is at least as hard computationally as the allocation problem for V.

Proposition 2.1 is conceptually interesting because it links a basic economic question
(existence of Walrasian equilibria), which is defined without reference to computation,
to computational complexity considerations. We show in Section 2.2 how it can be used
to re-derive many known non-existence results in an arguably more systematic way,
rooted in the mature understanding in theoretical computer science of the computa-
tional complexity of various problems. We highlight in particular two applications,
following directly from the complexity of well-known computational problems under
the widely believed P 6= NP assumption — one for the class of budget-additive valu-
ations and one for the class of positive graphical valuations (for definitions of these
classes see the proofs of Corollaries 2.2 and 2.3 in Section 2.2, and also, respectively,
[Lehmann et al. 2006] and [Conitzer et al. 2005]).

COROLLARY 2.2. Assuming P 6= NP, there exists a market with budget-additive
valuations for which there is no Walrasian equilibrium.

COROLLARY 2.3. Assuming P 6= NP, there exists a market with positive graphical
valuations for which there is no Walrasian equilibrium.

2.2. Results
In this section we formalize Proposition 2.1 and prove some applications. The proposi-
tion relies on a well-known connection between the allocation problem of maximizing
welfare and between Walrasian equilibria.

PROPOSITION 2.4. Consider a valuation class V. If for every market with valua-
tions from V there exists a Walrasian equilibrium, then the allocation problem reduces
in polynomial time to the demand problem.

PROOF. (Sketch.) Recall that the allocation problem has a canonical linear program-
ming formulation, known as the configuration LP (see, e.g., [Blumrosen and Nisan
2007], Section 11.3.1). A Walrasian equilibrium exists if and only if the configuration
LP has an optimal integral solution ([Blumrosen and Nisan 2007], Theorem 11.13). By
assumption of Walrasian equilibrium existence, if we can solve the LP in polynomial
time then we can solve the allocation problem in polynomial time. Since the dual of
the configuration LP has exponentially many constraints and polynomially many vari-
ables, it is solvable using the ellipsoid method by polynomially many applications of
a separation oracle. The dual constraints correspond to verifying, given item prices,
that the seller is maximizing his revenue and that each consumer’s allocation is in his
demand set. Revenue maximization with item prices is equivalent to market clearance
and thus verifiable. We conclude that the separation oracle, and thus the allocation
problem, reduces to solving the demand problem. This completes the proof.

A valuation class has demand oracle access if it is assumed that the demand problem
can be solved by a computationally efficient oracle. The following is an immediate
corollary of Proposition 2.4 for such classes.

22



COROLLARY 2.5. Consider a valuation class V with demand oracle access. If for
every market with valuations from V there exists a Walrasian equilibrium, then the
allocation problem for V can be solved using a polynomial amount of computation and
demand queries.

To derive the applications described above in Corollaries 2.2 and 2.3, our main in-
terest is in the contrapositive of Proposition 2.4 — if the allocation problem cannot
be reduced to the demand problem (assuming P 6= NP), then a Walrasian equilibrium
does not exist for every market. We use this to sketch the proof of Corollary 2.2 (details
appear in the full version), and to prove Corollary 2.3.

PROOF OF COROLLARY 2.2 FOR BUDGET-ADDITIVE VALUATIONS — SKETCH.
Recall that a budget-additive valuation v assigns values {vj}j to the items and has
a budget b; the value v(S) of a bundle S is the aggregate value of the items capped
by the budget, i.e., v(S) = min{

∑
j∈S vj , b}. The first step of the proof is to show that

the demand problem for a budget additive valuation v given item prices can be solved
in pseudo-polynomial time. The second step of the proof is to show that the alloca-
tion problem is strongly NP-hard, meaning NP-hard even for polynomially-bounded
budget-additive valuations. We show this by reduction from the strongly NP-hard
bin packing problem. Therefore, assuming P 6= NP, the allocation problem cannot be
reduced to the demand problem, and so by Proposition 2.4 a Walrasian equilibrium is
not guaranteed. This completes the proof.

PROOF OF COROLLARY 2.3 FOR POSITIVE GRAPHICAL VALUATIONS. Recall that a
positive graphical valuation v is represented by a graph G = (M,E) with the set of
itemsM as vertices. The vertices and edges ofG are weighted by a non-negative weight
function w(·). The value of a bundle S is v(S) = w(G(S)), where G(S) is the subgraph
induced by the vertices in S, and w(G(S)) is the total weight of the subgraph’s vertices
and edges. The fact that the demand problem given item prices is solvable in poly-
nomial time was observed by [Abraham et al. 2012] (Proposition 5.1): The valuation
v defined by the positive graph is supermodular, and hence so is the consumer’s util-
ity function after subtracting item prices from valuation v; maximizing supermodular
functions can be done in polynomial time. On the other hand, the allocation problem is
NP-hard by a reduction of [Conitzer et al. 2005] (Theorem 6) from the problem of exact
cover by 3-sets. This completes the proof.

We can also apply Proposition 2.4 to the following valuation classes to show that,
assuming P 6= NP, a Walrasian equilibrium need not exist: graphical valuations with
an underlying tree graph and sign consistent weights [Candogan et al. 2015]; XOS
valuations with a sub-polynomial number of clauses; and other hard cases of succinct
supermodular valuations. See the full version for details.

3. GENERAL FORMALISM
Walrasian equilibria do not exist for many important valuation classes. A natural idea
is to permit prices that are somewhat more complex than anonymous item prices, while
retaining as many of the nice properties of Walrasian equilibria as possible. This sec-
tion introduces the formalism needed to evaluate the prospects of this idea. We define
abstract pricing functions, prove that the first and second welfare theorems continue
to hold for them, and discuss our requirement of efficient verification. Sections 4 and 5
build on the concepts of this section to rule out the guaranteed existence of any non-
trivial generalization of Walrasian equilibria for many valuation classes.
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3.1. Valuations and Pricings
3.1.1. Definitions. A market is a set M of m items sold by a seller to a set N of n con-

sumers. An allocation ~S = (S1, . . . , Sn) of the items is a partial partition of the item set
M among the n consumers (items are allowed to remain unallocated).

Every consumer i has a valuation function vi that maps bundles of items S ⊆ M to
their values in R.2 As is standard, valuation functions are assumed to be normalized
(vi(∅) = 0) and monotone (vi(S) ≤ vi(T ) for every S ⊆ T ), and thus non-negative.
A valuation profile v is a set of n valuations. The welfare of an allocation ~S given a
valuation profile v is

∑
i vi(Si).

We can describe general pricings in exactly the same way we describe general val-
uations. Formally, a pricing profile p is a set of n pricing functions, one function pi for
each consumer, each mapping bundles of items to prices in R+. An anonymous pricing
profile has the same pricing for every consumer. The revenue of an allocation ~S given a
pricing p is

∑
i pi(Si).

Consider consumer i with valuation vi and pricing pi. The payoff (also known as
utility) of this consumer from being allocated bundle Si is quasi-linear, i.e., is equal to
vi(Si)− pi(Si). His demand set is the family of all bundles that maximize his payoff.

We are interested in classes V (P) of valuations (pricings). We say that a profile
belongs to a class if all its valuations (pricings) belong to that class.

3.1.2. Representation. A naı̈ve representation of valuations and pricings is of exponen-
tial size and hence computationally uninteresting. One standard way to circumvent
this is via oracle access. We say that a valuation or pricing class has oracle access
of a certain kind if its functions are computed by such oracles, whose representation
and queries are considered computationally efficient. The two most common kinds of
oracles are as follows.

(1) A value oracle represents a valuation; it gets a bundle S and returns its value.
Similarly, a price oracle represents a pricing; it gets a bundle S and returns its
price. Unless otherwise noted, we consider only valuation and pricing classes that
have such oracle access.

(2) A demand oracle represents a valuation and is defined with respect to a pricing
class P; it gets a pricing from P (represented by a price oracle), and returns a
bundle S in the demand set given this pricing.

Of special interest are valuations (pricings) that belong to succinct classes, i.e.,
whose value (price) oracle has an explicit description polynomial in m that also runs
in polynomial time. It is hard to imagine using non-succinct pricings, except in mar-
kets with a very small number of items. Similarly, it is natural to assume that actual
consumers can be modeled faithfully with succinct valuations. Most of the valuation
classes we deal with in this paper are succinct.

3.2. The Allocation, Demand and Revenue Problems and their Complexity
3.2.1. The Problems. The allocation (welfare-maximization) problem for a valuation

class V is defined as follows: The optimization version gets as input a market with
valuations from V, and outputs a welfare-maximizing allocation. The decision version
gets an additional input w ∈ R, and decides whether or not there exists an allocation
with welfare at least w.3 The symmetric allocation problem is a special case of the
allocation problem where all consumers on the market have the same valuation.

2Throughout, all numerical values are assumed to have a polynomial representation in the parameter m.
3We will sometimes be informal about distinguishing between optimization and decision versions of a com-
putational problem.
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The demand (utility-maximization) problem for a valuation class V and pricing class
P is defined as follows: The optimization version gets as input a valuation v from V
and a pricing p from P, and outputs a bundle in the demand set of a consumer with
valuation v given pricing p. The decision version gets an additional input u ∈ R, and
decides whether or not the utility of the demand set bundles is at least u.

The revenue-maximization problem for a pricing class P is equivalent to the alloca-
tion problem for the valuation class V = P. The problem is to decide, given a pricing
profile from P and a target revenue r ∈ R, whether or not there exists an allocation
with revenue at least r. The symmetric revenue-maximization problem is the special
case where all pricings are equal.

3.2.2. Complexity. This paper focuses on three of the most fundamental computational
complexity classes: P,NP and coNP. We refer the non-computer-scientist reader to the
full version of our paper for short informal descriptions, or to [Arora and Barak 2009]
for a detailed exposition. Consider a succinct valuation class V. The allocation problem
(and hence also the revenue-maximization problem when P is succinct) is in NP since
for every market with valuations from V and a target welfare w, it can be verified in
polynomial time with value queries that an allocation’s welfare is ≥ w. Similarly, the
demand problem is also in NP. The allocation problem is in coNP if for every such
market there is a polynomial-sized certificate (also known as proof ), which verifies in
polynomial time with value queries that the optimal welfare is < w. We do not know of
a natural valuation class for which the allocation problem is known to be in coNP but
not known to be in P.

3.3. Pricing Equilibrium and Verifiability
3.3.1. Definitions and Basic Properties. Consider a pricing class P. A pricing equilibrium

for a market is an allocation (S1, . . . , Sn) together with a supporting pricing profile that
belongs to P. We say a pricing profile is supporting if the following two conditions hold:

(1) The allocation maximizes the consumers’ payoffs given the pricings; in other words,
for every consumer i, bundle Si is in his demand set.

(2) The allocation maximizes the seller’s revenue given the pricings.

The latter condition can also be stated symmetrically to the former one, by defining
the seller’s “valuation” v0 to be zero for every bundle, and then requiring that the
allocation maximize his payoff.4 We say that pricing class P is supporting with respect
to valuation class V if for every market with a valuation profile from V there is a
supporting pricing profile from P.

A Walrasian equilibrium is precisely a pricing equilibrium supported by an anony-
mous profile from the class of item pricings.

The usefulness of the generalized pricing equilibrium notion stems from the follow-
ing generalization of the classic welfare theorems (proofs appear in the full version).

THEOREM 3.1 (GENERALIZED WELFARE THEOREMS).

(1) Every pricing equilibrium maximizes welfare.
(2) For every welfare-maximizing allocation there exists a supporting pricing profile;

moreover, every supporting pricing profile supports every welfare-maximizing allo-
cation.

4Algorithmically, however, the seller’s problem of maximizing revenue is different from the consumers’ prob-
lem of maximizing payoff by finding a bundle in demand — the seller must find a way to allocate the items
among the consumers such that their total payment according to the pricing profile is maximized.
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3.3.2. Verifiability. For a pricing equilibrium concept to be meaningful, it should be ef-
ficiently recognizable (in the computational sense) by all parties:5 given an alleged
pricing equilibrium, each consumer should be able to verify efficiently that he is given
a utility-maximizing bundle (given his pricing), and the seller should be able to ver-
ify efficiently that the proposed allocation maximizes his revenue (given the pricings).
For example, with gross substitutes valuations and item prices, Walrasian equilibria
can be verified efficiently: the revenue-maximization condition is trivial to check (all
unsold items have zero price), and each utility-maximization condition can be checked
with a polynomial number of value queries [Bertelsen 2004].

Assume that the pricing class P is succinct and revenue-maximization is tractable.
There are then two levels of verifiability. We say that pricing equilibria for P and
valuation class V are verifiable with demand oracle access if the valuations in V have
demand oracle access with respect to the pricings in P. In this case, all the pricing
equilibrium conditions can be verified using a polynomial amount of computation and
demand queries. If, in addition, a pricing equilibrium for P and V is guaranteed to
exist, then we say that the allocation problem is verifiable with demand oracle access,
since the equilibrium serves as a succinct and verifiable certificate.

A stronger requirement on V and P is that pricing equilibria are verifiable with value
oracle access. This is the case if the demand problem can be solved using a polynomial
amount of computation and value queries. When P and V guarantee the existence
of a pricing equilibrium we again say that the allocation problem is verifiable with
value oracle access. Finally, if V is also succinct, the pricing equilibria are verifiable in
polynomial time and the allocation problem belongs to coNP.

4. ANONYMOUS PRICING
Walrasian equilibria employ item prices that are “simple” in three respects: they are
anonymous (common to all consumers); they are succinct; and they make the revenue-
maximization problem tractable. This section and the next study, in general, when we
can and cannot obtain the first and second property, respectively, while keeping the
third property as a constraint.

4.1. Related Work
Consider a valuation class and its supporting pricing classes. It is helpful to classify
the pricing classes into two categories: In the first category, pricings belong to the same
class as the valuations, and in the second category, pricings are untethered from the
valuation class and are allowed to belong to a broader or altogether different class.
While the second category may be required in order to achieve anonymity, keeping
supporting prices simple is important for verifiability of the resulting pricing equilib-
ria.

There are two main examples in the literature of valuation classes supported by
anonymous pricing profiles.

(1) Gross substitutes and anonymous item prices: This canonical example belongs to
the first category, since item prices correspond to additive valuations, which belong
to the class of gross substitutes.

(2) Supperadditive valuations and anonymous bundle prices: A valuation v is super-
additive if v(S ∪ S′) ≥ v(S) + v(S′) for every disjoint bundles S, S′ ⊆ M [Parkes
and Ungar 2000; Vohra 2011; Sun and Yang 2014]. This example belongs to the

5One could argue that the stronger requirement of polynomial-time computability should also hold. Since
our main results are negative, adopting the weaker requirement of efficient verifiability only strengthens
our results.
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second category, since bundle prices correspond to general valuations, which are
a strict superclass of superadditive valuations. Even more is known about anony-
mous bundle prices: Bikhchandani and Ostroy [2002] formulate a linear program
that gives an instance by instance characterization of markets for which such sup-
porting prices exist, and Parkes and Ungar [2000] develop an algorithm for finding
them. They further show that anonymous bundle prices support certain XOR val-
uation subclasses.

Candogan [2013] studies anonymous graphical pricings, and establishes the follow-
ing negative finding: a valuation profile from the class of graphical valuations based on
series-parallel graphs is supported by an anonymous graphical pricing profile if and
only if it is also supported by anonymous item prices (i.e., a Walrasian equilibrium
exists for this market instance).

4.2. Overview
In this overview section we present our main findings on anonymous pricing profiles
and derive applications; details appear in Section 4.3. We focus on succinct pricing
classes for which the symmetric revenue-maximization problem is tractable.6 We es-
tablish a similar condition to that of Proposition 2.1, where we showed that a necessary
condition for the existence of a Walrasian equilibrium is that the demand problem is
as hard as the allocation one.

PROPOSITION 4.1 (INFORMAL). Consider a succinct pricing class P for which the
symmetric revenue-maximization problem is tractable. A necessary condition for the
guaranteed existence of a pricing equilibrium with an anonymous pricing profile from
P in markets with valuations from class V is that the demand problem is at least as
hard computationally as the allocation problem for these classes.

We demonstrate three applications of Proposition 4.1.
We begin by defining hypergraph pricings — a succinct pricing class for which

the symmetric revenue-maximization problem is tractable: Recall the class of posi-
tive graphical valuations from Corollary 2.3. A natural generalization is to consider
succinct hypergraphs in place of graphs.7 By definition, the resulting pricing class is
succinct. The symmetric revenue-maximization problem is tractable since revenue is
maximized by allocating all items to a single consumer.

As a first application, consider a natural generalization of unit-demand valuations
(Definition A.2) — pair-demand valuations, where there exist values {vi,j}i,j for item
pairs such that for every bundle S, v(S) = maxi,j∈S{vi,j}. Since anonymous item
prices support unit-demand valuations, one could hope that anonymous hypergraphi-
cal prices support pair-demand valuations. Proposition 4.1 refutes this hope.

COROLLARY 4.2. Assuming NP * coNP, there exists a market with pair-demand
valuations for which there is no pricing equilibrium supported by an anonymous profile
of hypergraph pricings.

As a second application, we return to positive graphical valuations, which form a
succinct subclass of supermodular valuations and as such may be considered a natural
candidate for the existence of a verifiable anonymous pricing equilibrium. However:

6The previous “success stories” of anonymous pricing profiles beyond item prices – anonymous bundle prices
supporting supermodular and other valuation classes – escape our impossibility results in this section by
being non-succinct.
7Such a pricing is represented by a hypergraph over the set of items M as vertices, with non-negative
weights on the vertices and hyperedges. The price of a bundle S is the total weight of the hypergraph
induced by it.
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COROLLARY 4.3. Assuming NP * coNP, there exists a market with positive graph-
ical valuations for which there is no pricing equilibrium supported by an anonymous
profile of hypergraph pricings.

As a third application, consider a generalization of the Sun and Yang [2006] mar-
ket: Sun and Yang define a market with two sets of items referred to as “tables” and
“chairs”, where consumers have unit-demand valuations for both tables and chairs, but
consider a pair of (table, chair) to be complementary. They show that a Walrasian equi-
librium is guaranteed to exist in their market. An obvious generalization is to allow
three sets of items with cross-set complementarities (cf., [Teytelboym 2014]), however:

COROLLARY 4.4. Assuming NP * coNP, there exists a generalized Sun and Yang
market for which there is no pricing equilibrium supported by an anonymous profile of
hypergraph pricings.

4.3. Results
We first prove a more formal version of Proposition 4.1 and then establish the applica-
tions described above.

PROPOSITION 4.5. Consider a succinct valuation class V and a succinct pricing
class P for which the symmetric revenue-maximization problem is tractable. If for every
market with valuations from V there exists a pricing equilibrium with an anonymous
pricing profile from P, then the allocation problem belongs to coNP whenever the de-
mand problem belongs to coNP.

PROOF. Assume the demand problem belongs to coNP. Consider a market with val-
uations from V. We want to show the existence of a polynomial-sized certificate, which
can certify in polynomial time that the optimal welfare is < w. By the first welfare the-
orem (Theorem 3.1), every pricing equilibrium maximizes welfare, and by the proposi-
tion’s assumptions, a polynomial-sized equilibrium with an anonymous pricing profile
is guaranteed to exist for V and P. Consider such a pricing equilibrium with welfare
< w; we know that symmetric revenue-maximization is tractable and so verifying it
reduces to verifying n instances of the demand problem, one per consumer. Since the
demand problem is assumed to be in coNP, there are polynomial-sized certificates for
verifying these in polynomial time. Together with the pricing equilibrium itself they
form the required certificate, completing the proof.

For valuation classes with demand oracle access, a similar proof shows the following.

COROLLARY 4.6. Consider a valuation class V with demand oracle access and a
succinct pricing class P for which the symmetric revenue-maximization problem is
tractable. If for every market with valuations from V there exists a pricing equilib-
rium with an anonymous pricing profile from P, then the allocation problem for V is
verifiable with demand oracle access.

To derive the applications described above in Corollaries 4.2 to 4.4, our main interest
is in the following immediate corollary of Proposition 4.5.

COROLLARY 4.7. Assuming NP * coNP, for classes V and P as in Proposition 4.5
for which the allocation problem is NP-hard and the demand problem is in P, there
exists a market with valuations in V for which there is no pricing equilibrium supported
by an anonymous pricing profile from P.
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4.3.1. Applications

PROOF OF COROLLARY 4.2 FOR PAIR-DEMAND VALUATIONS. In the full version we
show that the allocation problem for pair-demand valuations is NP-hard, by a reduc-
tion from the problem of three-dimensional matching. On the other hand, the demand
problem for pair-demand valuations with hypergraphical prices is in P, simply by com-
puting and comparing the payoffs from all possible pairs of items. Applying Corollary
4.7 completes the proof.

To prove Corollaries 4.3 and 4.4, the following definition is useful. A consumer has
a triplet valuation if there is a triplet of items j, k, l such that his value for a bundle
S is as follows: vj,k if j, k ∈ S and l /∈ S; vk,l if k, l ∈ S and j /∈ S; vj,l if j, l ∈ S and
k /∈ S; vj,k+vk,l+vj,l if j, k, l ∈ S; and zero otherwise. Since triplet valuations are strict
subclasses of positive graphical valuations and of the valuations in the generalized Sun
and Yang market, Corollaries 4.3 and 4.4 follow immediately from the next lemma.

LEMMA 4.8. Assuming NP * coNP, there exists a market with triplet valuations for
which there is no pricing equilibrium supported by an anonymous profile of hypergraph
pricings.

PROOF. The allocation problem for triplet valuations is NP-hard by a reduction from
the problem of exact cover by 3-sets [Conitzer et al. 2005]. On the other hand, the
demand problem for triplet valuations with hypergraphical prices is in P, simply by
computing and comparing the payoffs from every pair of items in the triplet and from
the entire triplet. Applying Corollary 4.7 completes the proof.

5. COMPRESSED PRICING
This section focuses on the low-dimensionality or compressed aspect of the prices used
in Walrasian equilibria — there is only one price for each of the m items, and yet
existence is guaranteed even for the high-dimensional class of gross substitutes valu-
ations. When else can we achieve guaranteed existence of succinct equilibria, even for
non-succinct valuations?

5.1. Related Work and Background
Compression of valuations is an important theme in mechanism and market design,
with a classic trade-off between expressiveness of the valuations and simplicity of the
market mechanism.

In the context of market equilibria, the class of gross substitutes stands out as the
canonical example for which simple m-dimensional equilibria exist, despite the fact
that the dimension of this valuation class is exponential in m.8 Note that the high-
dimensionality rules out the possibility of a compact encoding for gross substitutes
(cf., [Hatfield and Milgrom 2005; Hatfield et al. 2012]):

LEMMA 5.1. The class of gross substitutes valuations is not succinct.

Another research direction is compressed bid spaces for simple auction formats. In
this context, the level of compression affects how close equilibria of these auctions
can get to a welfare-maximizing allocation. See [Christodoulou et al. 2008] for item
bidding in combinatorial auctions, and [Duetting et al. 2013; Babaioff et al. 2014] for
recent extensions. [Feldman et al. 2015] further extend this line of work by considering
posted price mechanisms.

8The gross substitutes class contains all weighted matroid rank functions. Even with constant-size weights
and restricted to partition matroids, there are doubly-exponentially many of these.
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5.2. Overview
We begin with a trivial “line in the sand:” when the pricing class is equal to the val-
uation class — i.e., there is no compression — a (non-anonymous) pricing equilibrium
always exists.

OBSERVATION 5.2. Consider a valuation class V and an identical pricing class
P = V. For every market with valuations from V there exists a pricing equilibrium with
pricings from P.

PROOF. Given a market with valuations from V, the following is a pricing equilib-
rium: Pick a welfare-maximizing allocation, and for every consumer i let his pricing
pi be equal to his valuation vi. The consumers are indifferent among different bundles
and so trivially maximize their payoff. The revenue is equal to the welfare and so is
maximized by the allocation.

In fact, every welfare-maximizing allocation can be supported by pricings from the
class P = V. If V is succinct, this characterizes when finding a verifiable pricing equi-
librium is tractable.

COROLLARY 5.3. Consider a succinct valuation class V. There exists a polynomial
time algorithm that finds a verifiable pricing equilibrium for every market with valua-
tions from V if and only if the allocation problem for V is in P.

One example of a tractable allocation problem is for the class of feature-based valua-
tions with a constant number of features (see [Candogan and Pekec 2014] and Section
6.2).9

Given the above observation, the main question in this section is: how much can
pricings be compressed in comparison to valuations, without losing the ability to sup-
port efficient allocations? I.e., how much can the pricing class be shrunk with respect
to the valuation class while still guaranteeing the existence of a pricing equilibrium?

We first present a simple necessary condition on the valuation and pricing classes
(Proposition 5.4). Like Propositions 2.4 and 4.5, it is based on computational com-
plexity considerations. We then address, in Section 5.3, the question of whether there
are classes for which partial compression is possible. We show an example with a
supporting pricing class of dimension strictly smaller than the valuation class, yet
strictly larger than m item prices. Section 6 revisits these questions from an instance-
by-instance perspective, and uses linear programming to characterize when succinct
“linear” supporting pricings exist.

PROPOSITION 5.4. Consider a succinct valuation class V and a succinct pricing
class P for which the revenue-maximization problem is tractable. If for every market
with valuations from V there exists a pricing equilibrium with pricings from P, then
the allocation problem belongs to coNP whenever the demand problem belongs to coNP.

The proof is similar to that of Proposition 4.5, and a corollary similar to Corollary 4.6
follows for valuation classes with demand oracle access.

COROLLARY 5.5. Consider a valuation class V with demand oracle access and a
succinct pricing class P for which the revenue-maximization problem is tractable. If for
every market with valuations from V there exists a pricing equilibrium with pricings
from P, then the allocation problem for V is verifiable with demand oracle access.

9Feature-based pricings are of interest in practical settings, where the seller often needs to set prices based
on a small set of summarizing features (cf., [Dughmi et al. 2014]). Tractability follows from dynamic pro-
gramming, utilizing the constant number of different item types.

30



5.3. Partial Compression
5.3.1. A Rare Species. Despite the large literature on pricing equilibria for various val-

uation classes and pricing classes, we are unaware of any previously studied examples
of classes V and P that meet the following criteria: (i) anonymous item prices are insuf-
ficient to support all markets with valuations in V; (ii) the prices in P are sufficient to
support all markets with valuations in V; (iii) P is succinct and strictly smaller than V
(where V may or may not be succinct); (iv) pricing equilibria for V and P are verifiable
with demand oracle access (i.e., the revenue-maximization condition can be efficiently
verified). In this sense, there are no known non-trivial generalizations of Walrasian
equilibria!

Our complexity-theoretic methodology provides an explanation for the paucity of
examples. Suppose the classes V and P satisfy (i)—(iv). By (ii)—(iv) and Corollary 5.5,
the welfare-maximization problem for V is verifiable with demand oracle access, and
this can be thought of as membership in coNP with demand oracle access. Because
the problem can also be thought of as belonging to NP with demand oracle access, this
suggests (but does not prove, of course) that the welfare-maximization problem can in
fact be solved in polynomial time with demand oracle access. On the other hand, by (i),
the configuration linear program fails to solve the welfare-maximization problem in
polynomial time with demand oracle access (recall the proof of Proposition 2.4 and
[Blumrosen and Nisan 2007], Theorem 11.13). Thus, a non-trivial generalization of
Walrasian equilibria in the above sense requires a novel polynomial-time algorithm for
the welfare-maximization problem (unless such a problem belongs to (coNP∩NP) \ P
with demand oracles)!10

We remark that the same argument can be repeated for a succinct valuation class V
for which pricing equilibria with P are verifiable.

5.3.2. An example. We show there are (somewhat contrived) classes V and P that
satisfy properties (i)—(iv) above. It is no coincidence that also (v) the welfare-
maximization problem for V can be solved in polynomial time, but not directly by the
configuration LP.

Example 5.6. We define a family of markets with two consumers, whose valuations
belong to a slight variation of the gross substitutes class (which remains not succinct).
These markets are supported by a succinct pricing class, but not by item prices.

Define the valuation class V as follows: There are two special items, without loss of
generality items 1 and 2. Every valuation v ∈ V is equal to a gross substitutes valu-
ation with the possible deviation that items 1 and 2 are allowed to complement each
other, i.e., to be valued positively as a couple but as zero on their own. The following
transformation of v must recover a gross substitutes valuation v′: unify items 1 and 2
into a single item. For every bundle S ⊆ M , let S′ be the same bundle after unifying
items 1 and 2 (if S =M let M ′ be the reduced item set). Observe that v′(S′) = v(S).

CLAIM 5.7. There exists a succinct pricing class P such that for every market with
two consumers whose valuations belong to the non-succinct class V defined above, there
are supporting pricings in P. Moreover, there exists such a market for which there is no
Walrasian equilibrium.

The proof of Claim 5.7 appears in the full version.

10While there are of course other algorithms (like greedy algorithms) that compute a welfare-maximizing
allocation in various special cases, in all known such cases the configuration LP also solves the problem
exactly.
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6. LINEAR PRICING
Most of our results thus far have been impossibility results, ruling out the guaranteed
existence of pricing equilibria for different classes of valuations and pricings. This
section characterizes equilibrium existence on an instance-by-instance (rather than
class-by-class) basis. We formulate the notion of a succinct linear valuation or pricing,
and show that this notion captures and generalizes many previously studied valuation
classes. We then give a linear programming characterization of the market instances
supported by succinct linear pricings.

6.1. Definitions
Consider a set function f on the ground set of items M . A naı̈ve representation is
linear in the number of sets and exponential in the number of items m. We propose an
alternative representation based on a set L of pseudo-items.

Definition 6.1. A linear representation is a mapping L : 2M → 2L from bundles of
items in M to bundles of pseudo-items in L.

A linear representation can be seen as a bipartite graph with bundles of items on
one side and individual pseudo-items on the other. Each bundle of items is connected
to several pseudo-items. Now we can add weights to the pseudo-items. In this way a
linear representation associates a value with each bundle of items: the total weight of
the pseudo-items the bundle is connected to.

Definition 6.2. We say that a set function f on a ground set M has linear represen-
tation L if there exist weights w` ∈ R for the pseudo-items such that for every bundle
of items S ⊆M , f(S) =

∑
`∈L(S) w`.

Observe that every set function f has an exponentially large linear representation
as follows: Let L = 2M , i.e., let there be a pseudo-item `S for every bundle of items
S. For every S let L(S) = {`S} and let the corresponding weight be w`S = f(S). Then∑
`∈L(S) w` = f(S) as required. However, set functions can have multiple linear repre-

sentations, and we are most interested in those that are succinct.

Definition 6.3. A family of linear representations is succinct if for every linear rep-
resentation in the family, the set L of pseudo-items is of polynomial size in m = |M |,
and the mapping L can be implemented by a polynomial time algorithm.

Succinct linear functions are functions that have succinct linear representations with
polynomially-represented weights {w`}.

6.2. Succinct Linear Valuations in the Literature
Succinct linear valuations capture many previously studied succinct valuation classes.
This section includes several examples (for additional examples see the full version).11

General hypergraphical valuations. Consider a valuation v defined by a hypergraph
(M,E) over the items, with a polynomial number of hyperedges e ⊆M with weights ce.
The following is a succinct linear representation of v: Let L = E and L(S) = {e | e ⊆ S}.
Let the weights be we = ce. Then we get

∑
`∈L(S) w` =

∑
e⊆S ce = v(S), as required,

and computing L(S) requires polynomial time. A further generalization is additively
decomposable valuations [Candogan 2013] (Section 5.5), and these also form a strict
subset of succinct linear valuations.

11An example of a valuation class that is not captured is valuations that map bundles to the product of their
items’ values.
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Explicit coverage valuations. Consider a valuation v defined by a ground set G and
a subset Gj ⊆ G associated with each item j. The value v(S) of every bundle S is
|
⋃
j∈S Gj |. The following is a linear representation of v: Let L = G and L(S) =

⋃
j∈S Gj .

If all weights are set to 1 then we get
∑
`∈L(S) w` = |L(S)| = v(S), as required. Com-

puting L(S) if the coverage valuation is given explicitly by a bipartite graph encoding
is in polynomial time in the size of the encoding.

Feature-based valuations. Consider a valuation v described by a multi-unit valua-
tion vf for each of polynomially many features f , and polynomial-time functions cf (S)
that return the number of times feature f appears in bundle S [Candogan and Pekec
2014]. The value v(S) for every bundle S is equal to

∑
f vf (cf (S)). The following is

a succinct linear representation of v: Let L = {`f,k} and L(S) =
⋃
f `f,cf (S). Let the

weights be w`f,cf (S)
= vf (cf (S)). Then we get

∑
`∈L(S) w` =

∑
f vf (cf (S)) = v(S), as

required, and computing L(S) requires polynomial time.

Additional examples. (See the full version for details.)

(1) Succinct endowed assignment valuations, proposed as a succinct subclass of gross
substitutes by Hatfield and Milgrom [2005].

(2) Budget-additive valuations (e.g., [Lehmann et al. 2006]).
(3) XOS valuations with polynomially many clauses, and their generalization to max-

imum over polynomially many positive hypergraph valuations with rank k [Feige
et al. 2014].

(4) GGS(k,M) valuations with a constant k [Ben-Zwi et al. 2013].
(5) Sketches of valuations [Badanidiyuru et al. 2012; Cohavi and Dobzinski 2014].

6.3. Linear Program Characterization
The linear programming formulation in this section and the welfare theorems in the
next apply to general (not necessarily succinct) linear representations. Given a profile
of linear representations {Li}, one for each consumer, we formulate a linear program
that characterizes the existence of a pricing equilibrium with price functions repre-
sented by {Li}. Without loss of generality we assume a unified (across consumers) set
of pseudo-items L, and define the following program LP1 for maximizing welfare.

max
∑n
i=1

∑
S vi(S)xiS

s.t.
∑
S xiS ≤ 1 ∀1 ≤ i ≤ n (1)∑n

i=1

∑
S:`∈Li(S)

xiS =
∑n
i=1

∑
µ:`∈Li(µi)

σµ ∀` ∈ L (2)∑
µ σµ ≤ 1 (3)
xiS ≥ 0 ∀1 ≤ i ≤ n,∀S
σµ ≥ 0 ∀allocation µ

The variables of LP1 are: xiS , indicating whether bundle S is allocated to consumer
i; and σµ, indicating whether ordered partition µ = (µ1, . . . , µn) is the chosen allocation
(where consumer i gets part µi and all items are allocated). The number of variables
of LP1 is exponential. Constraint (1) ensures no consumer is allocated more than one
bundle; Constraint (2) matches the number of times pseudo-item ` appears in the bun-
dles allocated to the consumers with the number of its appearances in the allocation;
Constraint (3) ensures a single allocation is chosen.

As for the dual program, the variables are: πi, the payoff of player i (including the
seller as player 0); and w`, the weight of pseudo-item `. Constraints (4) and (5) ensure
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that πi is indeed player i’s payoff. The number of constraints is exponential.

min
∑n
i=0 πi

s.t. πi ≥ vi(S)−
∑
`∈Li(S)

w` ∀1 ≤ i ≤ n,∀S (4)

π0 ≥
∑n
i=1

∑
`∈Li(µi)

w` ∀allocation µ (5)
πi ≥ 0 ∀0 ≤ i ≤ n

6.4. Welfare Theorems
We now state versions of the welfare theorems for LP1 and DP1 (cf., [Blumrosen and
Nisan 2007], Theorems 11.13 and 11.15). The proofs appear in the full version of the
paper.

THEOREM 6.4 (FIRST WELFARE THEOREM). Every pricing equilibrium whose pric-
ing functions have linear representations {Li} maximizes welfare over all fractional
allocations that are feasible solutions to LP1.

THEOREM 6.5 (SECOND WELFARE THEOREM). If an integral optimal solution that
corresponds to a feasible allocation exists for LP1, then a pricing equilibrium whose
pricing functions have linear representations {Li} also exists.

PROOF. By complementary slackness — see the full version for details.

Combining the two theorems gives the following characterization.

COROLLARY 6.6 (CHARACTERIZATION). A pricing equilibrium whose pricings
have linear representations {Li} exists if and only if LP1 has an integral optimal solu-
tion that corresponds to a feasible allocation.12

6.5. Implications for Guaranteed Existence
Returning to our theme of necessary conditions for the guaranteed existence of pricing
equilibria, we can use Corollary 6.6 to extend Proposition 2.4 to arbitrary succinct
linear pricings.

COROLLARY 6.7. Consider a valuation class V and a succinct linear pricing class
P for which the revenue-maximization problem is tractable. If for every market with
valuations from V there exists a pricing equilibrium with pricings from P, then the
allocation problem reduces in polynomial time to the demand problem.

The proof follows that of Proposition 2.4, using the characterization in Corollary 6.6
in place of the classical linear programming characterization of the existence of Wal-
rasian equilibria.

Corollary 6.7 differs from Proposition 5.4 in two respects: in the hypothesis, the pric-
ing class P is assumed to be linear in addition to being succinct; and in the conclusion,
the computation (rather than just the verification) of a welfare-maximizing allocation
reduces to that of the demand problem. Equivalently, the two “coNP” terms of Proposi-
tion 5.4 are replaced in Corollary 6.7 by “P.”

12The condition that the solution correspond to a feasible allocation can alternatively be encoded into the
linear program or into the pricing: Adding the constraint

∑n
i=1

∑
S:j∈S xiS =

∑n
i=1

∑
µ:j∈µi

σµ for every
item j to LP1 would achieve this, with additional dual item price variables added to DP1. The pricing would
then be the sum of the item prices and linear prices. Another possibility is to include in L a pseudo-item
for every item, and for every bundle S to add to the mapping L(S) the pseudo-item corresponding to every
j ∈ S. In this case the pricing includes item prices by definition.
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7. CONCLUSION AND OPEN QUESTIONS
The well-studied problem of proving or disproving the guaranteed existence of pric-
ing equilibria seems to have nothing to do with computation. As this paper demon-
strates, however, computational complexity offers numerous insights into the problem,
and provides general techniques for proving impossibility results. For example, many
(conditional) non-existence results for different types of pricing equilibria (Walrasian,
anonymous, compressed, etc.) follow easily from the known computational complexity
of various optimization problems, obviating the need for ad hoc explicit constructions
without equilibria. Similarly, this methodology demystifies the dearth of useful exten-
sions of the Walrasian equilibrium concept, by linking the existence of such extensions
to algorithmic progress on the welfare-maximization problem.
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A. APPENDIX
Definition A.1. A valuation v is gross substitutes if for every two vectors of item

prices ~p, ~q such that ~q ≥ ~p, for every bundle S in the demand set of v given ~p, there
exists a bundle T in the demand set of v given ~q which contains every item j ∈ S whose
price according to ~q equals its price according to ~p.

Definition A.2. A valuation v is unit demand if there are item values {vj}j such
that for every bundle S, v(S) = maxj∈S{vj}.
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