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Abstract

The price of anarchy, defined as the ratio of the worst-case objective function value of a
Nash equilibrium of a game and that of an optimal outcome, quantifies the inefficiency of selfish
behavior. Remarkably good bounds on this measure are known for a wide range of application
domains. However, such bounds are meaningful only if a game’s participants successfully reach
a Nash equilibrium. This drawback motivates inefficiency bounds that apply more generally
to weaker notions of equilibria, such as mixed Nash equilibria and correlated equilibria, and to
sequences of outcomes generated by natural experimentation strategies, such as successive best
responses and simultaneous regret-minimization.

We establish a general and fundamental connection between the price of anarchy and its
seemingly more general relatives. First, we identify a “canonical sufficient condition” for an
upper bound on the price of anarchy of pure Nash equilibria, which we call a smoothness argu-
ment. Second, we prove an “extension theorem”: every bound on the price of anarchy that is
derived via a smoothness argument extends automatically, with no quantitative degradation in
the bound, to mixed Nash equilibria, correlated equilibria, and the average objective function
value of every outcome sequence generated by no-regret learners. Smoothness arguments also
have automatic implications for the inefficiency of approximate equilibria, for bicriteria bounds,
and, under additional assumptions, for polynomial-length best-response sequences. Third, we
prove that in congestion games, smoothness arguments are “complete” in a proof-theoretic
sense: despite their automatic generality, they are guaranteed to produce optimal worst-case
upper bounds on the price of anarchy.
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1 Introduction

Self-interested behavior by autonomous decision-makers generally leads to an inefficient result — an
outcome that could be improved upon given dictatorial control over everyone’s actions. Imposing
such control can be costly or infeasible in many systems, with large networks furnishing obvious
examples. This fact motivates the search for conditions under which decentralized optimization by
competing individuals is guaranteed to produce a near-optimal outcome.

A rigorous guarantee of this type requires a formal behavioral model, to define “the outcome of
self-interested behavior.” The majority of previous research studies pure-strategy Nash equilibria,
defined as follows. Each player i selects a strategy si from a set Si, like a path in a network. The
cost Ci(s) incurred by a player i in a game is a function of the entire vector s of players’ chosen
strategies, which is called a strategy profile or outcome. By definition, a strategy profile s of a game
is a pure Nash equilibrium if no player can decrease its cost via a unilateral deviation:

Ci(s) ≤ Ci(s′i, s−i) (1)

for every i and s′i ∈ Si, where s−i denotes the strategies chosen by the players other than i in s.
These concepts can be defined equally well via payoff-maximization rather than cost-minimization;
see also Examples 2.6 and 2.7.

The price of anarchy (POA) [76] measures the suboptimality caused by self-interested behavior.
Given a game, a notion of an “equilibrium” (such as pure Nash equilibria), and a nonnegative
objective function (such as the sum of players’ costs), the POA of the game is defined as the ratio
between the largest cost of an equilibrium and the cost of an optimal outcome. An upper bound on
the POA has an attractive worst-case flavor: it applies to every equilibrium and obviates the need
to predict a single outcome of selfish behavior. Many researchers have proved remarkably good
bounds on the POA in a wide range of models; see the surveys in Nisan et al. [89, Chapters 17–21]
and the references therein.

1.1 The Need for More Robust Bounds

A good bound on the price of anarchy of a game is not enough to conclude that self-interested
behavior is relatively benign. Such a bound is meaningful only if a game’s participants successfully
reach an equilibrium. For pure Nash equilibria, however, there are a number of reasons why this
might not occur: the players might fail to coordinate on one of multiple equilibria; they might
be playing a game in which computing a pure Nash equilibrium is a computationally intractable
problem [49], or, even more fundamentally, a game in which pure Nash equilibria do not exist.
These critiques motivate worst-case performance bounds that apply to as wide a range of outcomes
as possible, and under minimal assumptions about how players play and coordinate in a game.

This paper presents a general theory of “robust” bounds on the price of anarchy, meaning
bounds that apply to equilibrium concepts that are much more permissive than pure Nash equilibria,
including those shown in Figure 1. We formally define these concepts — mixed Nash equilibria,
correlated equilibria, and coarse correlated equilibria — in Section 3.1.

Enlarging the set of equilibria weakens the behavioral and technical assumptions necessary
to justify equilibrium analysis. First, while there are games with no pure Nash equilibria —
“Rock-Paper-Scissors” being a simple example — every (finite) game has at least one mixed Nash
equilibrium [88]. As a result, the “non-existence critique” for pure Nash equilibria does not apply
to any of the more general equilibrium concepts in Figure 1. Second, while computing a mixed
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Figure 1: Generalizations of pure Nash equilibria. “PNE” stands for pure Nash equilibria; “MNE”
for mixed Nash equilibria; “CorEq” for correlated equilibria; and “No Regret (CCE)” for coarse
correlated equilibria, which correspond to the empirical distributions that arise from repeated joint
play by no-regret learners. See Section 3.1 for formal definitions.

Nash equilibrium is a computationally intractable problem in general [30, 44, 47], computing a
correlated equilibrium is not [60]. Thus, the “intractability critique” for pure and mixed Nash
equilibria does not apply to the two largest sets of Figure 1. More importantly, these two sets
are “easily learnable”: when a game is played repeatedly over time, there are natural classes of
learning dynamics — processes by which each player chooses its strategy for the next time step,
as a function only of its own past play and payoffs — such that the empirical distribution of joint
play converges to these sets (see Blum and Mansour [22]).

1.2 Overview of Results

The primary goal of this paper is the formulation and proof of the following general result:

In many fundamental game-theoretic models, worst-case bounds on the POA apply even when
players have not converged to a (Nash) equilibrium.

Our contributions can be divided into three parts. First, we identify a sufficient condition for
an upper bound on the POA of pure Nash equilibria of a game for the welfare objective function.
This condition encodes a canonical proof template for deriving such bounds. We call such proofs
“smoothness arguments.” Many of the POA upper bounds in the literature can be recast as
instantiations of this canonical method.

Second, we prove an “extension theorem”: every bound on the price of anarchy that is derived
via a smoothness argument extends automatically, with no quantitative degradation in the bound,
to all of the more general equilibrium concepts pictured in Figure 1. We also show that smoothness
arguments have automatic implications for the inefficiency of approximate equilibria, for bicriteria
bounds, and, under additional assumptions, for polynomial-length best-response sequences.
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Third, we prove that congestion games, with cost functions restricted to some arbitrary set,
are “tight” in the following sense: smoothness arguments, despite their automatic generality, are
guaranteed to produce optimal worst-case upper bounds on the POA, even for the set of pure Nash
equilibria. POA bounds for these classes of games are “intrinsically robust,” in that the worst-case
POA is the same for each of the equilibrium concepts of Figure 1. This result also provides an
understanding of the worst-case POA of congestion games that is as complete as that given for
nonatomic congestion games by Roughgarden and Tardos [101] and Correa et al. [42], in the form
of tight bounds and a characterization of worst-case examples for all classes of cost functions.

1.3 Organization of Paper

Section 2 provides formal and intuitive definitions of smooth games, along with several examples
and non-examples. Section 3 states and proves the main extension theorem, that every smoothness
argument automatically applies to all of the equilibrium concepts shown in Figure 1. Section 4
derives consequences of smoothness arguments for approximate equilibria, bicriteria bounds, and
best-response sequences. Section 5 proves that smoothness arguments always give optimal POA
bounds in congestion games. Section 6 describes related literature, including the numerous pre-
cursors to the present work, and several recent advances that followed the conference version [97].
Section 7 concludes.

2 Smooth Games

Section 2.1 formally defines smooth games. Section 2.2 interprets this definition in terms of POA
bounds that make minimal use of the Nash equilibrium hypothesis. Section 2.3 shows how three
well-known POA bounds from disparate problem domains can be interpreted as smoothness argu-
ments. Section 2.4 defines tight classes of games, in which smoothness arguments yield optimal POA
bounds. Section 2.5 explains why not all POA bounds are equivalent to smoothness arguments.

2.1 Definitions

By a cost-minimization game, we mean a game — players, strategies, and cost functions — together
with the joint cost objective function C(s) =

∑k
i=1Ci(s). Essentially, a “smooth game” is a cost-

minimization game that admits a POA bound of a canonical type — a smoothness argument. We
give the formal definition and then explain how to interpret it.

Definition 2.1 (Smooth Game) A cost-minimization game is (λ, µ)-smooth if for every two out-
comes s and s∗,

k∑
i=1

Ci(s∗i , s−i) ≤ λ · C(s∗) + µ · C(s). (2)

There is an analogous definition of smooth games for maximization objectives; see Examples 2.6
and 2.7. Smoothness controls the cost of a set of “one-dimensional perturbations” of an outcome,
as a function of both the initial outcome s and the perturbations s∗. Intuitively, in a (λ, µ)-smooth
game with small values of λ and µ, the externality imposed on any one player by the actions of the
others is bounded.
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We claim that if a game is (λ, µ)-smooth, with λ > 0 and µ < 1, then each of its pure Nash
equilibria s has cost at most λ/(1− µ) times that of an optimal solution s∗. In proof, we derive

C(s) =
k∑
i=1

Ci(s) (3)

≤
k∑
i=1

Ci(s∗i , s−i) (4)

≤ λ · C(s∗) + µ · C(s), (5)

where (3) follows from the definition of the objective function; inequality (4) follows from the Nash
equilibrium condition (1), applied once to each player i with the hypothetical deviation s∗i ; and
inequality (5) follows from the defining condition (2) of a smooth game. Rearranging terms yields
the claimed bound.

Definition 2.1 is sufficient for the last line of this three-line proof (3)–(5), but it insists on more
than what is needed: it demands that the inequality (2) holds for every outcome s, and not only
for Nash equilibria. This is the basic reason why smoothness arguments imply worst-case bounds
beyond the set of pure Nash equilibria.

We define the robust POA as the best upper bound on the POA that is provable via a smoothness
argument.

Definition 2.2 (Robust POA) The robust price of anarchy of a cost-minimization game is

inf
{

λ

1− µ
: (λ, µ) such that the game is (λ, µ)-smooth

}
,

with µ always constrained to be less than 1.

Remark 2.3 (Relaxations of Smoothness) There are two ways to weaken Definition 2.1 that
preserve all of the consequences proved in this paper. First, the assumption that the objective
function satisfies C(s) =

∑k
i=1Ci(s) can be replaced by the inequality C(s) ≤

∑k
i=1Ci(s); we

exploit this fact in Examples 2.6 and 2.7 below. Second, in Definition 2.1, the inequality (2) only
needs to hold for some optimal solution s∗ and all outcomes s, rather than for all pairs s, s∗ of
outcomes. See Example 2.7 and Section 6 for applications of this relaxation.

Remark 2.4 ((Non-)Existence of Pure Nash Equilibria) Games can be smooth with non-
trivial values of λ and µ despite possessing no pure Nash equilibria. Examples of such games
include valid utility games [107] (see Example 2.6) and weighted versions of the congestion games
studied in Section 5 [2, 11, 15, 34, 62, 90]. The derivation in (3)–(5) proves that if a (λ, µ)-smooth
game has at least one pure Nash equilibrium, then its POA for such equilibria is at most λ/(1−µ).
(We leave the POA undefined if no equilibria exist.)

Our smoothness framework provides an explanation for the arguably mystifying fact that mean-
ingful POA bounds for valid utility and weighted congestion games do not seem to require a uni-
versal equilibrium existence result. All of the known upper bounds on the POA of pure Nash
equilibria in these games follow from smoothness arguments. As such, these POA bounds are not
fundamentally about pure Nash equilibria, but rather the more permissive equilibrium concepts
shown in Figure 1, for which existence is guaranteed. Of course, when some of the mixed Nash
equilibria happen to be pure, such a POA bound applies to them as a special case.
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2.2 Intuition

Smoothness arguments are a class of upper bound proofs for the POA of pure Nash equilibria that
are confined to use the equilibrium hypothesis in a minimal way. To explain, recall the canonical
three-line proof (3)–(5). The first inequality (4) uses the Nash equilibrium hypothesis, but only to
justify why each player i selects its equilibrium strategy si rather than its strategy s∗i in the optimal
outcome. If we care only about the POA of pure Nash equilibria, then we are free to establish an
upper bound using any argument that we please. For example, such an argument could invoke the
Nash equilibrium hypothesis again to generate further inequalities of the form Ci(s) ≤ Ci(ŝi, s−i),
with the hypothetical deviations ŝi chosen as a function of the particular Nash equilibrium s. Using
a smoothness argument — that is, proving inequality (5) for all outcomes s — is tantamount to
discarding the Nash equilibrium hypothesis after deriving the first inequality (4) using only the
hypothetical deviations suggested by the optimal outcome s∗.

2.3 Examples

Concern about the range of applicability of a definition grows as its interesting consequences ac-
cumulate. To alleviate such fears and add some concreteness to the discussion, we next show how
three well-known POA analyses can be recast as smoothness arguments; more are discussed in
Sections 5 and 6.

The first example is congestion games with affine cost functions. The POA in these games was
first studied by Awerbuch et al. [11] and Christodoulou and Koutsoupias [35]. Section 5 treats
congestion games with general cost functions in detail. The second example concerns Vetta’s
well-studied utility games [107]. This example illustrates how smoothness arguments work in
payoff-maximization games, and also with a “one-sided” variant of sum objective functions (cf.,
Remark 2.3). The third example recasts as a smoothness argument the analysis in Christodoulou
et al. [38] of simultaneous second-price auctions, exploiting the second relaxation mentioned in
Remark 2.3.

2.3.1 Cost-Minimization Games

Example 2.5 (Congestion Games with Affine Cost Functions [11, 35]) A congestion game
is a cost-minimization game defined by a ground set E of resources, a set of k players with strategy
sets S1, . . . , Sk ⊆ 2E , and a cost function ce : Z+ → R for each resource e ∈ E. Congestion games
were defined by Rosenthal [93]. In this paper, we always assume that cost functions are nonnegative
and nondecreasing. For this example, we make the much stronger assumption that every cost func-
tion is affine, meaning that ce(x) = aex+ be with ae, be ≥ 0 for every resource e ∈ E. A canonical
example is routing games, where E is the edge set of a network, and the strategies of a player corre-
spond to paths between its source and sink vertices. Given a strategy profile s = (s1, . . . , sk), with
si ∈ Si for each i, we say that xe = |{i : e ∈ si}| is the load induced on e by s, defined as the number
of players that use it in s. The cost to player i is defined as Ci(s) =

∑
e∈si ce(xe), where x is the

vector of loads induced by s. A reversal of sums shows that C(s) =
∑k

i=1Ci(s) =
∑

e∈E ce(xe)xe.
We claim that every congestion game with affine cost functions is (5

3 ,
1
3)-smooth, and hence has

robust POA at most 5
2 . The basic reason for this was identified by Christodoulou and Koutsou-

pias [35, Lemma 1], who noted that

y(z + 1) ≤ 5
3y

2 + 1
3z

2
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for all nonnegative integers y, z and used it in the following way.1 Thus, for all a, b ≥ 0 and
nonnegative integers y, z,

ay(z + 1) + by ≤ 5
3

(
ay2 + by

)
+ 1

3

(
az2 + bz

)
= 5

3(ay + b)y + 1
3(az + b)z. (6)

To establish smoothness, consider a pair s, s∗ of outcomes of a congestion game with affine cost
functions, with induced loads x,x∗. Since the number of players using resource e in the outcome
(s∗i , s−i) is at most one more than that in s, and this resource contributes to precisely x∗e terms of
the form Ci(s∗i , s−i), we have

k∑
i=1

Ci(s∗i , s−i) ≤
∑
e∈E

(ae(xe + 1) + be)x∗e

≤
∑
e∈E

5
3

(aex∗e + be)x∗e +
∑
e∈E

1
3

(aexe + be)xe (7)

=
5
3
C(s∗) +

1
3
C(s),

where (7) follows from (6), with x∗e and xe playing the roles of y and z, respectively. The canonical
three-line argument (3)–(5) then implies an upper bound of 5/2 on the POA of pure Nash equilibria
in every congestion game with affine cost functions. This fact was first proved independently in [11]
and [35], along with matching worst-case lower bounds. Our extension theorem (Theorem 3.2)
implies that the bound of 5/2 extends to the other three sets of outcomes shown in Figure 1. These
extensions were originally established in two different papers [21, 34] subsequent to the original
POA bound [11, 35].

2.3.2 Payoff-Maximization Games

The next two examples are naturally phrased as payoff-maximization games, where each player has
a payoff function Πi(s) that it strives to maximize. We use W to denote the objective function of
a payoff-maximization game. We call such a game (λ, µ)-smooth if

k∑
i=1

Πi(s∗i , s−i) ≥ λ ·W (s∗)− µ ·W (s)

for every pair s, s∗ of outcomes. A derivation similar to (3)–(5) shows that, in a (λ, µ)-smooth
payoff-maximization game, the objective function value of every pure Nash equilibrium is at least
a λ/(1 + µ) fraction of the maximum possible. In detail, we can write W (s) =

∑k
i=1 Πi(s) ≥∑k

i=1 Πi(s∗i , s−i) ≥ λ ·W (s∗) − µ ·W (s), and then rearrange terms. We define the robust POA of
a payoff-maximization game as the supremum of λ/(1 + µ) over all legitimate smoothness parame-
ters (λ, µ).

Example 2.6 (Valid Utility Games [107]) Our second example concerns valid utility games [107].
Such a game is defined by a ground set E, a nonnegative submodular function V defined on subsets
of E, and a strategy set Si ⊆ 2E and a payoff function Πi for each player i = 1, 2, . . . , k.2 For exam-
ple, the set E could denote a set of locations where facilities can be built, and a strategy si ⊆ E could

1The statement of this lemma in [34, 35] contains a typo, but it is applied correctly in both works.
2A set function V : 2E →R is submodular if V (X ∩ Y ) + V (X ∪ Y ) ≤ V (X) + V (Y ) for every X, Y ⊆ E.

7



denote the locations at which player i chooses to build facilities. For an outcome s, let U(s) ⊆ E
denote the union ∪ki=1si of players’ strategies in s (e.g., the locations at which facilities were built).
The objective function value of an outcome s is defined as W (s) = V (U(s)). Furthermore, two
conditions hold, by definition, in a valid utility game: (i) for each player i, Πi(s) ≥W (s)−W (∅, s−i)
for every outcome s; and (ii)

∑k
i=1 Πi(s) ≤ W (s) for every outcome s. The second condition is

precisely the relaxation of the sum objective function discussed in Remark 2.3, and thus the ap-
plications of smoothness arguments apply in such games. One concrete example of such a game is
competitive facility location with price-taking markets and profit-maximizing firms [107]; further
applications are explored by Goemans et al. [61].

We claim that every valid utility game with a nondecreasing objective function V is (1, 1)-
smooth, and hence has robust POA at least 1/2. The proof is essentially a few key inequalities
from [107, Theorem 3.2], as follows. Let s, s∗ denote arbitrary outcomes of such a game. Let
Zi ⊆ E denote the union of all of the players’ strategies in s, together with the strategies employed
by players 1, 2, . . . , i in s∗. Then

k∑
i=1

Πi(s∗i , s−i) ≥
k∑
i=1

[V (U(s∗i , s−i))− V (U(∅, s−i))] (8)

≥
k∑
i=1

[V (Zi)− V (Zi−1)] (9)

≥ W (s∗)−W (s), (10)

where inequality (8) follows from condition (i) of valid utility games; inequality (9) follows from
the submodularity of V , with X = U(s∗i , s−i) ⊆ Zi and Y = Zi−1; and inequality (10) follows from
the assumption that V is nondecreasing. This smoothness argument implies a lower bound of 1/2
on the POA of pure Nash equilibria in every valid utility game with a nondecreasing objective
function — a result first proved in [107], along with an extension to mixed Nash equilibria and a
matching worst-case upper bound. Our extension theorem (Theorem 3.2) shows that this lower
bound applies more generally to all of the equilibrium concepts depicted in Figure 1, a fact first
established by Blum et al. [21].

Example 2.7 (Simultaneous Second-Price Auctions [38]) There is a set {1, 2, . . . ,m} of goods
for sale. Each player i ∈ {1, 2, . . . , k} has a nonnegative valuation vi(T ), or willingness to pay, for
each subset T of goods. We assume that every valuation function is submodular. A strategy for a
player i consists of a nonnegative bid bij for each good j such that the sum of the bids

∑
j∈T bij

for each subset T of goods is at most the bidder’s valuation vi(T ) for it. Each good is allocated
independently, to the highest bidder for it, at a price equal to the second-highest bid for the good.

For a bid profile b, let Xi(b) ⊆ {1, 2, . . . ,m} denote the goods that i wins — those on which
it is the highest bidder. Define pi(b) =

∑
j∈Xi(b) b(2)j as the total payment of bidder i, where b(2)j

denotes the second-highest bid for the good j. Finally, the payoff Πi(b) = vi(Xi(b)) − pi(b) of
bidder i with the bid profile b is simply its net gain from the auctions. We consider the welfare
objective function — the sum of all payoffs, including the revenue of the seller — and denote it
by W (b) =

∑k
i=1 vi(Xi(b)). As in Example 2.6, the sum of players’ payoffs

∑k
i=1 Πi(b) is always

bounded above by the objective function, and all of the implications of smoothness arguments
apply.
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Christodoulou et al. [38] show that this game satisfies the following relaxation of (1,1)-smoothness:
there is an optimal bid profile b∗ such that the inequality

k∑
i=1

Πi(b∗i ,b−i) ≥W (b∗)−W (b) (11)

holds for every bid profile b.3 As mentioned in Remark 2.3, this relaxed property is sufficient
for all of the applications of smoothness arguments discussed in this paper. This smoothness
argument implies a lower bound of 1/2 on the POA of pure Nash equilibria, which is tight in the
worst case [38]. Our extension theorem (Theorem 3.2) shows that this lower bound applies more
generally to all of the equilibria depicted in Figure 1.4

Here is the bid profile b∗ we use to prove the relaxed smoothness condition. Consider a welfare-
maximizing allocation of the goods to the players, in which the goods T ∗i are allocated to bidder i.
Consider a bidder i, and assume by relabeling that T ∗i contains the goods 1, 2, . . . , d for some d ∈
{0, 1, . . . ,m}. Set b∗ij = vi({1, 2, . . . , j}) − vi({1, 2, . . . , j − 1}) for j = 1, 2, . . . , d and b∗ij = 0 for
j > d. Submodularity of vi implies that

∑
j∈T b

∗
ij ≤ vi(T ) for every bundle T ⊆ {1, 2, . . . ,m}, and

equality holds when T = T ∗i . The bids b∗ recover the welfare-maximizing allocation (T ∗1 , . . . , T
∗
k ).

To verify (11), consider the payoff of a bidder i in the outcome (b∗i ,b−i). On a good j ∈ T ∗i ,
the bidder either wins at a price of max`6=i b`j or, if max`6=i b` ≥ b∗ij , loses and pays nothing. Let T
denote the goods of T ∗i that i wins in (b∗i ,b−i). Bidder i’s payoff can then be bounded below as
follows:

Πi(b∗i ,b−i) = vi(T )−
∑
j∈T

max
` 6=i

b`j

≥
∑
j∈T

(
b∗ij −max

`6=i
b`j

)

≥
∑
j∈T ∗i

(
b∗ij −max

`6=i
b`j

)
≥ vi(T ∗i )−

∑
j∈T ∗i

k
max
`=1

b`j . (12)

Let Ti denote the goods allocated to bidder i in the bid profile b. Summing inequality (12) over
all of the bidders and using the fact that highest bidders win, we have

k∑
i=1

Πi(b∗i ,b−i) ≥
k∑
i=1

vi(T ∗i )−
m∑
j=1

max
`
b`j = W (b∗)−

k∑
i=1

∑
j∈Ti

bij .

Bids are constrained to satisfy
∑

j∈Ti bij ≤ vi(Ti) for each bidder i, so the final term of the inequality
is at most W (b). This completes the verification of (11).

3To see that such games are not always (1,1)-smooth in the earlier stronger sense, consider an example with two
bidders and one good, with v1({1}) = 1, v2({1}) = 2, b∗11 = 0, b∗21 = 1

3
, b11 = 1, and b21 = 2

3
. The right-hand side

of (11) is 1 while the left-hand side is 0.
4Christodoulou et al. [38] did not discuss correlated or coarse correlated equilibria, but they did prove guarantees

for the Bayes-Nash equilibria of the incomplete information version of this game, which is not considered here. See
Section 6 for a discussion of smooth games of incomplete information and recent extension theorems for Bayes-Nash
equilibria.
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2.4 Tight Classes of Games

Smoothness arguments are a restricted form of POA bound that enjoy automatic extensions to,
among other things, all of the equilibrium concepts shown in Figure 1. What is the cost of restricting
ourselves to this class of proofs? For example, if we care only about the performance of the pure
Nash equilibria of a game, can we prove better bounds by departing from the smoothness paradigm?

Examples 2.5–2.7 share a remarkable property: smoothness arguments, despite their restricted
form and automatic generality, provide a tight bound on the POA, even for pure Nash equilibria.
Thus, in these classes of games, the worst-case POA is exactly the same for each of the equilibrium
concepts of Figure 1.

To define this property precisely, let G denote a set of cost-minimization games, each with
a nonnegative objective function. Let A(G) denote the parameter values (λ, µ) such that every
game of G is (λ, µ)-smooth. Let Ĝ ⊆ G denote the games with at least one pure Nash equilibrium,
and ρpure(G) the POA of pure Nash equilibria in a game G ∈ Ĝ. The canonical three-line proof (3)–
(5) shows that for every (λ, µ) ∈ A(G) and every G ∈ Ĝ, ρpure(G) ≤ λ/(1 − µ). We call a set of
games tight if equality holds for suitable choices of (λ, µ) ∈ A(G) and G ∈ Ĝ.

Definition 2.8 (Tight Class of Games) A set G of cost-minimization games is tight if

sup
G∈bG ρpure(G) = inf

(λ,µ)∈A(G)

λ

1− µ
. (13)

The right-hand side of (13) is the best worst-case upper bound provable via a smoothness
argument, and it applies to all of the sets shown in Figure 1. The left-hand side of (13) is the
actual worst-case POA of pure Nash equilibria in G — corresponding to the smallest set in Figure 1
— among games with at least one pure Nash equilibrium. That the left-hand side is trivially
upper bounded by the right-hand side is reminiscent of “weak duality.” Tight classes of games
are characterized by the min-max condition (13), which can be loosely interpreted as a “strong
duality-type” result. In a tight class of games, every valid upper bound on the worst-case POA of
pure Nash equilibria is superseded by a suitable smoothness argument. Thus, every such bound
— whether or not it is proved using a smoothness argument — is “intrinsically robust,” in that it
applies to all of the sets of outcomes in Figure 1.

Prior work [11, 35, 38, 107] effectively showed that the classes of games presented in Exam-
ples 2.5–2.7 are tight in the sense of Definition 2.8. The main result in Section 5 is that, for every
set C of allowable cost functions, the set of all congestion games with cost functions in C constitute
a tight class.

2.5 Non-Examples

Not all POA bounds are equivalent to smoothness arguments, and not all interesting classes of
games are tight. Here are two concrete examples.

Example 2.9 (Network Formation Games) Consider a network formation game in which links
are formed unilaterally; Fabrikant et al. [48] is one well-known example. That is, the players are
the vertices of an undirected graph, each player selects a subset of the other players to connect to
via an edge, and an edge is then formed if and only if at least one of its endpoints wants to be
connected to the other. A typical player objective function is the sum of two cost terms, one that
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is increasing in the number of incident edges and one that is increasing in the vertex’s distances
from the other vertices of the network. Thus a player wants to be central in the network without
investing undue resources in maintaining local relationships.

In many such models, all players incur infinite cost when the formed network has more than
one connected component. Since an arbitrary “hybrid” outcome (s∗i , s−i) might well correspond
to a disconnected network, even when s∗ is an optimal outcome and s is a pure Nash equilibrium,
such network formation games are not smooth for any finite values of λ and µ. Nonetheless, non-
trivial bounds on the POA of pure Nash equilibria are known for such games; see [106] for a survey
and [3, 4] for some of the most recent results. These bounds fail to qualify as smoothness proofs
because the Nash equilibrium hypothesis is invoked for a hypothetical deviation s∗i that is a function
of the other players’ equilibrium strategies s−i.

More generally, in most network formation models the worst-case POA of coarse correlated
equilibria is strictly worse than that of pure Nash equilibria, and hence no lossless extension theorem
like Theorem 3.2 can apply. Thus, these classes of network formation games are not tight.

Example 2.10 (Symmetric Congestion Games with Singleton Strategies) A more subtle
example is provided by symmetric congestion games with singleton strategies — equivalently, net-
works of parallel links — and affine cost functions. The worst-case POA of pure Nash equilibria
in such games is precisely 4/3 [6, 54, 80]. The proofs of the POA upper bound use the Nash
equilibrium hypothesis in non-obvious ways (cf., Section 2.2). For example, one proof follows from
Anshelevich et al. [6, Theorem 3.4] and relies on a characterization of the Nash equilibria of these
games as the minimizers of a potential function [53, 71]. Other proofs of this upper bound [54, 80]
rely on inequalities beyond the canonical ones in (4), which hold for pure Nash equilibria but not
for arbitrary outcomes. None of these proofs can be recast as smoothness arguments.

More generally, there is no smoothness proof that yields an upper bound of 4/3 on the POA.
The reason is that for mixed-strategy Nash equilibria, the worst-case POA in congestion games with
singleton strategies and affine cost functions is strictly larger than 4/3 [76]; see also Example 3.1.
We conclude that such games do not form a tight class.

3 Extension Theorems

This section states and proves the extension theorems discussed in Section 1.2: every POA bound
for pure Nash equilibria that follows from a smoothness argument extends automatically to the more
general equilibrium concepts in Figure 1, and to the corresponding outcome sequences in games
played over time. Further consequences of smoothness arguments are discussed in Section 4. We
work with cost-minimization games, though analogous results hold for smooth payoff-maximization
games, such as those in Examples 2.6 and 2.7.

3.1 One-Shot Games

We begin with implications of Definition 2.1 for randomized equilibrium concepts in one-shot games;
the next section treats outcome sequences generated by repeated play.

A set (σ1, . . . , σk) of independent probability distributions over strategy sets — one per player
of a cost-minimization game — is a mixed Nash equilibrium of the game if no player can decrease
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its expected cost under the product distribution σ = σ1 × · · · × σk via a unilateral deviation:

E s∼σ[Ci(s)] ≤ E s−i∼σ−i [Ci(s
′
i, s−i)]

for every i and s′i ∈ Si, where σ−i is the product distribution of all σj ’s other than σi. (By
linearity, it suffices to consider only pure-strategy unilateral deviations.) Obviously, every pure
Nash equilibrium is a mixed Nash equilibrium and not conversely; indeed, many games have no
pure Nash equilibria, but every finite game has at least one mixed Nash equilibrium [88].

A correlated equilibrium [9] of a cost-minimization game G is a (joint) probability distribution σ
over the outcomes of G with the property that

E s∼σ[Ci(s)|si] ≤ E s∼σ[Ci(s′i, s−i)|si] (14)

for every i and si, s′i ∈ Si. A classical interpretation of a correlated equilibrium is in terms of a medi-
ator, who draws an outcome s from the publicly known distribution σ and privately “recommends”
strategy si to each player i. The equilibrium condition requires that following a recommended strat-
egy always minimizes the expected cost of a player, conditioned on the recommendation. Mixed
Nash equilibria correspond to the correlated equilibria that are also product distributions. Corre-
lated equilibria have been widely studied as strategies for a benevolent mediator, and also because
of their relative tractability. The set of correlated equilibria is explicitly described by a small set
of linear inequalities, so computing (and even optimizing over) correlated equilibria can be done in
time polynomial in the size of the game [60]. They are also relatively “easy to learn,” as discussed
in the next section.

Finally, a coarse correlated equilibrium [86] of a cost-minimization game is a probability distri-
bution σ over outcomes that satisfies

E s∼σ[Ci(s)] ≤ E s∼σ[Ci(s′i, s−i)] (15)

for every i and s′i ∈ Si. The set of all such distributions is sometimes called the Hannan set, after
Hannan [63]. While a correlated equilibrium (14) protects against deviations by a player aware
of its recommended strategy, a coarse correlated equilibrium (15) is only constrained by player
deviations that are independent of the sampled outcome. Since every correlated equilibrium is
also a coarse correlated equilibrium, coarse correlated equilibria can only be easier to compute and
learn, and are thus an even more plausible prediction for the realized play of a game.

Example 3.1 (Equilibrium Concepts) All of the inclusions in Figure 1 are generally strict.
To see this and to illustrate the different equilibrium concepts, consider a congestion game (Exam-
ple 2.5) with four players, a set E = {0, 1, 2, 3, 4, 5} of six resources each with cost function c(x) = x,
and singleton strategies, meaning Si = E for each player i. The pure Nash equilibria of this game
are the

(
6
4

)
outcomes in which each player chooses a distinct resource. Every player suffers only unit

cost in such an equilibrium. One mixed Nash equilibrium that is obviously not pure has each player
independently choosing a resource uniformly at random. Every player suffers expected cost 3/2 in
this equilibrium. The uniform distribution over all outcomes in which there is one resource with
two players and two resources with one player each is a (non-product) correlated equilibrium, since
both sides of (14) read 3

2 for every i, si, and s′i. The uniform distribution over the subset of these
outcomes in which the set of chosen resources is either {0, 2, 4} or {1, 3, 5} is a coarse correlated
equilibrium, since both sides of (15) read 3

2 for every i and s′i. It is not a correlated equilibrium,
since a player i that is recommended the resource si can reduce its conditional expected cost to 1
by choosing the deviation s′i to the successive resource (modulo 6).
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We now give our extension theorem for equilibrium concepts in one-shot games: every POA
bound proved via a smoothness argument extends automatically to the set of coarse correlated
equilibria. With the “correct” definitions in hand, the proof writes itself.

Theorem 3.2 (Extension Theorem — Static Version) For every cost-minimization game G
with robust POA ρ(G), every coarse correlated equilibrium σ of G, and every outcome s∗ of G,

E s∼σ[C(s)] ≤ ρ(G) · C(s∗).

Proof: Let G be a (λ, µ)-smooth cost-minimization game, σ a coarse correlated equilibrium, and s∗

an outcome of G. We can write

E s∼σ[C(s)] = E s∼σ

[
k∑
i=1

Ci(s)

]
(16)

=
k∑
i=1

E s∼σ[Ci(s)] (17)

≤
k∑
i=1

E s∼σ[Ci(s∗i , s−i)] (18)

= E s∼σ

[
k∑
i=1

Ci(s∗i , s−i)

]
(19)

≤ E s∼σ[λ · C(s∗) + µ · C(s)] (20)
= λ · C(s∗) + µ ·E s∼σ[C(s)], (21)

where equality (16) follows from the definition of the objective function, equalities (17), (19),
and (21) follow from linearity of expectation, inequality (18) follows from the definition (15) of a
coarse correlated equilibrium (applied once per player i, with the hypothetical deviation s∗i ), and
inequality (20) follows from the assumption that the game is (λ, µ)-smooth. Rearranging terms
completes the proof. �

3.2 Repeated Play and No-Regret Sequences

The extension theorem (Theorem 3.2) applies equally well to certain outcome sequences generated
by repeated play. To illustrate this point, consider a sequence s1, s2, . . . , sT of outcomes of a (λ, µ)-
smooth game and a minimum-cost outcome s∗ of the game. For each i and t, define

δi(st) = Ci(st)− Ci(s∗i , st−i) (22)

as the hypothetical improvement in player i’s cost at time t had it used the strategy s∗i in place
of sti. When st is a Nash equilibrium, δi(st) is non-positive; for an arbitrary outcome st, δi(st) can
be positive or negative. We can mimic the derivation in (3)–(5) to obtain

C(st) ≤ λ

1− µ
· C(s∗) +

∑k
i=1 δi(s

t)
1− µ

(23)

for each t.
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This section concerns outcome sequences in which every player i experiences vanishing average
(external) regret, meaning that its cost over time is asymptotically competitive with that of every
time-invariant strategy:

1
T

T∑
t=1

Ci(st) ≤
1
T

[
min
s′i

T∑
t=1

Ci(s′i, s
t
−i)

]
+ o(1), (24)

where the o(1) term denotes some function that goes to 0 as T →∞. The condition (24) is a time-
averaged analog of the Nash equilibrium condition (1), but it does not preclude highly oscillatory
behavior over large time horizons. For example, repeatedly cycling through all of the outcomes
in the support of the coarse correlated equilibrium in Example 3.1 yields arbitrarily long outcome
sequences in which every player has zero regret. The most significant motivation for considering
outcome sequences in which every player has vanishing average regret is that there are several
simple “off-the-shelf” online learning algorithms with good convergence rates that are guaranteed
to generate such sequences. See, for example, Cesa-Bianchi and Lugosi [27].

For such a sequence, we can proceed as follows. Averaging (23) over the T time steps and
reversing the order of the resulting double summation yields

1
T

T∑
t=1

C(st) ≤ λ

1− µ
· C(s∗) +

1
1− µ

k∑
i=1

(
1
T

T∑
t=1

δi(st)

)
. (25)

Recalling from (22) that δi(st) is the additional cost incurred by player i at time t due to playing
strategy sti instead of the (time-invariant) strategy s∗i , the no-regret guarantee (24) implies that
[
∑T

t=1 δi(s
t)]/T is bounded above by a term that goes to 0 with T . Since this holds for every

player i, inequality (25) implies that the average cost of outcomes in the sequence is no more than
the robust POA times the cost of an optimal outcome, plus an error term that approaches zero as
T →∞.

Theorem 3.3 (Extension Theorem — Repeated Version) For every cost-minimization game G
with robust POA ρ(G), every outcome sequence s1, . . . , sT that satisfies (24) for every player, and
every outcome s∗ of G,

1
T

T∑
t=1

C(st) ≤ [ρ(G) + o(1)] · C(s∗)

as T →∞.

Blum et al. [21] were the first to consider bounds of this type, calling them “the price of total
anarchy.”

We reiterate that the approximation bound in Theorem 3.3 is significantly more compelling,
and assumes much less from both the game and its participants, than one that applies only to
Nash equilibria. Nash equilibria can be intractable or impossible to find while, as mentioned,
simple online learning algorithms guarantee vanishing average regret for every player. Of course,
the guarantee bound in Theorem 3.3 makes no reference to which learning algorithms, if any, the
players’ use to play the game — the bound applies whenever repeated joint play has low regret,
whatever the reason.

14



Remark 3.4 (Mixed-Strategy No-Regret Sequences) For simplicity, the condition (24) and
Theorem 3.3 are stated for sequences of pure outcomes. These are easily extended to mixed out-
comes: for every cost-minimization game G with robust POA ρ(G), every sequence σ1, . . . , σT of
(not necessarily product) probability distributions over outcomes that satisfies

E st∼σt

[
T∑
t=1

Ci(st)

]
≤ E st−i∼σt−i

[
T∑
t=1

Ci(s′i, s
t
−i)

]
+ o(T )

for every player i, we have

1
T

T∑
t=1

E st∼σt [C(st)] ≤ [ρ(G) + o(1)] · C(s∗)

as T →∞.

Remark 3.5 (Equivalence of Theorems 3.2 and 3.3) Theorems 3.2 and 3.3 are essentially
equivalent, in that either one can be derived from the other. The reason is that the empirical
distributions of sequences in which every player has vanishing average regret approximate, arbi-
trarily closely as T →∞, the set of coarse correlated equilibria.

Remark 3.6 (Correlated Equilibria and Internal Regret) Correlated equilibria correspond,
in the sense of Remark 3.5, to outcome sequences in which every player has nonpositive “internal”
regret; see Blum and Mansour [22]. There are also several computationally efficient online learning
algorithms that guarantee a player vanishing average internal regret in an arbitrary game [52, 67].

4 Additional Consequences of Smoothness

Smooth games enjoy robustness properties beyond those guaranteed by the main extension the-
orems (Theorems 3.2 and 3.3). Section 4.1 proves that approximate equilibria of smooth games
approximately obey the robust POA guarantee. Section 4.2 establishes bicriteria bounds for smooth
games, where the performance of equilibria is compared to that of an optimal outcome with a dif-
ferent number of players. Section 4.3 considers smooth potential games and shows that many
forms of best-response dynamics rapidly converge to outcomes in which the robust POA guarantee
approximately holds.

4.1 Approximate Equilibria

Every POA bound proved via a smoothness argument applies automatically to approximate equi-
libria, with the bound degrading gracefully as a function of the approximation parameter. For
instance, define an ε-Nash equilibrium of a cost-minimization game as a strategy profile s in which
no player can decrease its cost by more than a (1 + ε) factor via a unilateral deviation:

Ci(s) ≤ (1 + ε) · Ci(s′i, s−i) (26)

for every i and s′i ∈ Si. Approximate versions of the other three equilibrium concepts studied in
Section 3.1 can be defined in the same way.
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Mimicking the derivation (3)–(5) for exact Nash equilibria, replacing in (4) the exact equilibrium
condition (1) by the approximate one (26), shows that every ε-Nash equilibrium of a (λ, µ)-smooth
cost-minimization game with ε < 1

µ − 1 has cost at most (1+ε)λ
1−µ(1+ε) times that of an optimal so-

lution. Just as the bound for exact pure Nash equilibria extends to coarse correlated equilibria
(Theorem 3.2), this bound for ε-Nash equilibria extends to ε-coarse correlated equilibria.

Theorem 4.1 (Extension Theorem for Approximate Equilibria) For every (λ, µ)-smooth cost-
minimization game G, every ε < 1

µ − 1, every ε-coarse correlated equilibrium σ of G, and every
outcome s∗ of G,

E s∼σ[C(s)] ≤ (1 + ε)λ
1− µ(1 + ε)

· C(s∗). (27)

Example 4.2 (Congestion Games with Affine Cost Functions) Since every congestion game
with affine cost functions is (5

3 ,
1
3)-smooth (Example 2.5), Theorem 4.1 implies that every ε-coarse

correlated equilibrium of such a game with ε < 2 has expected cost at most 5−5ε
2−ε times that of an

optimal outcome.

Remark 4.3 (Optimal Smoothness Parameters Can Depend on ε) Theorem 4.1 applies to
every choice (λ, µ) of smoothness parameters for a class of games, not just the choice that mini-
mizes the robust POA λ

1−µ . The smoothness parameters that minimize the POA bound (1+ε)λ
1−µ(1+ε)

for ε-equilibria for some ε > 0 need not be the optimal parameters for the ε = 0 case. For example,
in congestion games with affine cost functions, the standard smoothness parameters (5

3 ,
1
3) give no

POA bounds whatsoever when ε ≥ 2. Christodoulou et al. [37] show how to choose smoothness pa-
rameters (λ(ε), µ(ε)) as a function of ε to obtain tight POA bounds for the ε-approximate equilibria
of such games for all ε ≥ 0.

Remark 4.4 (Payoff-Maximization Games) Analogous results hold in smooth payoff-maximization
games. Here, for ε ∈ [0, 1), we define an ε-coarse correlated equilibria as a probability distribution σ
over outcomes that satisfies E s∼σ[Πi(s)] ≥ (1− ε)E s∼σ[Πi(s′i, s−i)] for every player i and unilateral
deviation s′i ∈ Si. For every (λ, µ)-smooth payoff-maximization game G, every ε ∈ [0, 1), every
ε-coarse correlated equilibrium σ of G, and every outcome s∗ of G, the expected objective function
value under σ is at least (1−ε)λ

1+µ(1−ε) times that of s∗. For instance, ε-coarse correlated equilibria
of valid utility games with a nondecreasing objective function (Example 2.6) and simultaneous
second-price auctions with submodular bidder valuations (Example 2.7) have expected welfare at
least 1−ε

2−ε times that of an optimal outcome.

4.2 Bicriteria Bounds

This section derives “bicriteria” or “resource augmentation” bounds for smooth games, where the
objective function value of the worst equilibrium is compared to the optimal outcome with a different
number of players.

4.2.1 Cost-Minimization Games

This section and the next consider sets of games G that are closed under player deletions and player
duplications, meaning that applying either of these operations to a game G yields another game
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of G. Congestion games (Example 2.5), several natural classes of utility games (Example 2.6), and
simultaneous second-price auction games (Example 2.7) are all closed in this sense.

Bicriteria bounds follow from a strengthened version of Definition 2.1 that accommodates du-
plicated players. Below, we write CG and CGi for the objective function and player cost functions
of a cost-minimization game G.

Definition 4.5 (Smooth Closed Sets of Cost-Minimization Games) Let G be a set of cost-
minimization games that is closed under player deletions and duplications. The set G is (λ, µ)-
smooth if for every outcome s of a game G ∈ G, and every outcome s∗ of a game Ĝ obtained from G
by duplicating each player i ni times,

k∑
i=1

ni∑
j=1

CGi (s∗(i,j), s−i) ≤ λ · C
bG(s∗) + µ · CG(s), (28)

where s∗(i,j) denotes the strategy chosen by the jth copy of player i in s∗.

For example, consider congestion games with affine cost functions. The derivation in Exam-
ple 2.5, based on the inequality (6), shows that this (closed) set of games is (5

3 ,
1
3)-smooth in the

sense of Definition 4.5. More generally, the results of Section 5 imply that whenever Definition 2.1
holds for congestion games with cost functions restricted to a set C, Definition 4.5 holds as well,
with the same values of λ and µ.

Theorem 4.6 (Bicriteria Bound for Smooth Cost-Minimization Games) Let G be a (λ, µ)-
smooth set of cost-minimization games that is closed under player deletions and duplications, and `
a positive integer. For every pure Nash equilibrium s of a game G ∈ G and every outcome s∗ of the
game Ĝ in which each player of G is duplicated ` times,

CG(s) ≤ λ

`− µ
· C bG(s∗).

Proof: Write s∗(i,j) for the strategy used by the jth copy of player i in s∗. Applying our usual
assumption about the objective function, the Nash equilibrium condition, and smoothness yields

` · CG(s) =
∑̀
j=1

k∑
i=1

CGi (s)

≤
∑̀
j=1

k∑
i=1

CGi (s∗(i,j), s−i)

≤ λ · C bG(s∗) + µ · CG(s);

rearranging as usual completes the proof. �

Example 4.7 (Congestion Games with Affine Cost Functions) Theorem 4.6 implies that
the Nash equilibria of a game in a (λ, µ)-smooth closed set cost no more than that of an optimal
outcome after every player has been duplicated at least λ + µ times. For example, in congestion
games with affine cost functions, the cost of every Nash equilibrium is bounded above by that of
an optimal outcome with two copies of every player.
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4.2.2 Payoff-Maximization Games

In payoff-maximization games, bicriteria bounds award additional players to the Nash equilibrium,
rather than to the optimal outcome. The analog of Definition 4.5 is the following.

Definition 4.8 (Smooth Closed Sets of Payoff-Maximization Games) Let G be a set of
payoff-maximization games that is closed under player deletions and duplications. The set G is
(λ, µ)-smooth if for every outcome s of a game G ∈ G, and every outcome s∗ of a game Ĝ with a
subset A of the players of G,∑

i∈A
ΠG
i (s∗i , s−i) ≥ λ ·W

bG(s∗)− µ ·WG(s). (29)

For example, the derivation (8)–(10) shows that the condition in (29) is satisfied, with λ = µ = 1,
by every valid utility game with a nondecreasing objective function. The derivation in Example 2.7
shows that the set of simultaneous second-price auction games with submodular bidder valuations
satisfies a relaxed version of Definition 4.8, with λ = µ = 1, in which the inequality (29) holds for
all outcomes s of G and for a judiciously chosen welfare-maximizing outcome s∗ of Ĝ. The following
bicriteria bound also holds under this weaker condition.

Theorem 4.9 (Bicriteria Bound for Smooth Payoff-Maximization Games) Let G be a (λ, µ)-
smooth set of payoff-maximization games that is closed under player deletions and duplications,
and ` a positive integer. For every outcome s∗ of a game Ĝ ∈ G and every pure Nash equilibrium s
of the game G in which each player of Ĝ is duplicated ` times,

WG(s) ≥ `λ

1 + `µ
·W bG(s∗) =

λ
1
` + µ

·W bG(s∗).

Proof: Write s−(i,j) for the strategies of s other than that chosen by the jth copy of player i,
and ΠG

i,j for the payoff function of the jth copy of player i in G. Applying our usual assumption
about the objective function, the Nash equilibrium condition, and smoothness yields

WG(s) ≥
∑̀
j=1

k∑
i=1

ΠG
i,j(s)

≥
∑̀
j=1

k∑
i=1

ΠG
i,j(s

∗
i , s−(i,j))

≥ `
(
λ ·W bG(s∗)− µ ·WG(s)

)
;

rearranging completes the proof. �

Remark 4.10 (Impossibility of Recovering the Optimal Welfare) No number ` of dupli-
cate players is sufficient to guarantee that Nash equilibria in the modified payoff-maximization
game have performance as good as that of an optimal outcome in the original game (cf., The-
orem 4.6). To see this, fix a positive number ` and consider the following ((1, 1)-smooth) valid
utility game. In the original game Ĝ, there are k ≥ 2 players and k resources. Player 1 can only use
resource 1; player i > 1 can use resource 1 or resource i. If x players choose resource 1, then they
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each receive payoff k`/x. If x players choose resource i, then they each receive payoff 1/x. Define
the objective function to be the sum of players’ payoffs. In the optimal solution of Ĝ, player i
chooses resource i and the welfare is k`+k−1. In the game G in which every player is duplicated `
times, there is a Nash equilibrium in which every player chooses the resource 1, yielding welfare
only k`.

4.2.3 Further Discussion

We conclude this section with three comments on Theorems 4.6 and 4.9. First, analogous to bounds
for approximate equilibria (Remark 4.3), the smoothness parameters that optimize the POA ( λ

1−µ
or λ

1+µ) need not be the same ones that optimize bicriteria bounds ( λ
`−µ or `λ

1+`µ).
Second, if the POA of a cost-minimization game is ρ and the cost of an optimal outcome

increases at least linearly with the number ` of player duplicates, as in congestion games with
nondecreasing cost functions, then there is a trivial bicriteria bound of ρ/`. For smooth games, this
bound of λ

`−`µ is significantly weaker than that in Theorem 4.6. For payoff-maximization games,
it is not obvious that duplicating players improves the approximation bound for worst-case Nash
equilibria at all. For smooth games, Theorem 4.9 guarantees such an improvement.

Finally, following the proofs of Theorems 3.2 and 3.3 shows that the approximation guarantees
of Theorems 4.6 and 4.9 also extend to all coarse correlated equilibria of and no-regret sequences
in the game G.

4.3 Short Best-Response Sequences

Our extension theorem for outcome sequences generated by no-regret learners (Theorem 3.3) shows
that good approximation bounds apply to fundamental classes of learning dynamics in smooth
games, even when such dynamics fail to converge to a Nash equilibrium. This section investigates
another well-studied learning procedure, best-response dynamics.

Best-response dynamics (BRD) is a natural myopic model of how players might search for a pure
Nash equilibrium: if the current outcome s is not a pure Nash equilibrium, then some player i that
can benefit from a unilateral deviation switches to a strategy that minimizes its cost Ci(s′i, s−i).
BRD cannot converge in games without pure Nash equilibria, and might fail to converge even in
games that do have such equilibria. These facts motivate the search for a general extension theorem,
analogous to Theorem 3.3, for BRD. Sadly, Mirrokni and Vetta [82] showed that no such general
extension theorem exists: there are ((1, 1)-smooth) valid utility games in the sense of Example 2.6,
with an arbitrarily large number k of players, such that BRD only visits outcomes with welfare 1/k
times that of an optimal solution.

We next prove guarantees on the performance of BRD in smooth games under two additional
assumptions. First, we restrict attention to potential games [83], meaning games that admit a
potential function Φ, which is a function on the game outcomes that satisfies

Φ(s)− Φ(s′i, s−i) = Ci(s)− Ci(s′i, s−i) (30)

for every outcome s, player i, and deviation s′i ∈ Si.5 That is, a potential function tracks the
change in a unilateral deviator’s cost.

BRD converges to a pure Nash equilibrium in every finite potential game, since equation (30)
guarantees that every iteration strictly improves the potential function.

5Monderer and Shapley [83] call this an exact potential function, to contrast it with some more relaxed notions.
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Example 4.11 (Congestion Games [93]) Every congestion game is a potential game, with the
potential function

Φ(s) =
∑
e∈E

xe∑
i=1

ce(i),

where xe denotes the number of players using resource e in s.

Example 4.12 (Basic Utility Games [107]) Valid utility games do not always possess pure
Nash equilibria [107], so they are not always potential games. Vetta [107] defined a basic utility
game as one for which the welfare function W is a potential function. Concrete examples of basic
utility games include competitive facility location [107] and certain market-sharing games [61].

Since BRD eventually converges to a pure Nash equilibrium in a finite potential game, every
POA bound — robust or otherwise — applies to sufficiently long BRD sequences. However, the
number of iterations required for convergence can be exponential in the number of players, no
matter how the deviating player is chosen in each iteration, even in congestion games with affine
cost functions [1, 49]. Similar lower bounds hold for reaching an approximate Nash equilibrium [102].
For potential games, the technically and conceptually interesting goal is to prove approximation
bounds for BRD that apply after a relatively small number of iterations, long before convergence
to an (approximate) Nash equilibrium is guaranteed.

Our second assumption restricts how the deviating player in each iteration of BRD is chosen.
Without some such restriction, BRD can require an exponential number of iterations to reach a state
with a non-trivial approximation guarantee, even in congestion games with affine cost functions [10,
Theorem 3.4]. Several different assumptions imply convergence to outcomes that approximately
obey the robust POA bound within a polynomial number of iterations. Roughly, as long as the
deviating player is likely to have at least an approximately average incentive to deviate, relative
to the other players, then BRD rapidly reaches near-optimal outcomes in smooth potential games.
We next treat two concrete restrictions of BRD in detail.

Define maximum-gain BRD as the specialization of BRD in which, in each iteration, the player
with the most-improving unilateral deviation is chosen.

Theorem 4.13 (Maximum-Gain BRD in Smooth Potential Games) Let G be a (λ, µ)-smooth
cost-minimization game with k players and a positive potential function Φ that satisfies Φ(s) ≤ C(s)
for every outcome s. Let s0, . . . , sT be a sequence generated by maximum-gain BRD, s∗ a minimum-
cost outcome, and ε > 0 a parameter. Then all but

O

(
k

ε(1− µ)
log

Φ(s0)
Φmin

)
(31)

states st satisfy

C(st) ≤
(

λ

(1− µ)(1− ε)

)
· C(s∗),

where Φmin is the minimum potential function value of an outcome of G.

Proof: Define δi(st) = Ci(st)− Ci(s∗i , st−i) and ∆(st) =
∑k

i=1 δi(s
t). Call a state st bad if

∆(st) ≥ ε(1− µ)C(st).
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Inequality (23) reduces the theorem to proving that only O( k
ε(1−µ) log Φ(s0)

Φmin
) states st are bad.

The potential function Φ strictly decreases in each iteration of BRD. For a nonnegative integer j,
we define the jth phase of the sequence s0, . . . , sT as the (contiguous) subsequence of states in
which Φ(st) ∈ (2−(j+1) · Φ(s0), 2−j · Φ(s0)]. There are only ≈ log2

Φ(s0)
Φmin

phases.
We complete the proof by showing that each phase contains O( k

ε(1−µ)) bad states. In a bad
state st, since Φ underestimates C, ∆(st) ≥ ε(1− µ)C(st) ≥ ε(1− µ)Φ(st). If a player i chooses a
best response to the outcome st, its cost decreases by at least δi(st). Thus, in a bad state st, the
cost of the player chosen by maximum-gain BRD decreases by at least ε(1−µ)

k Φ(st). Since Φ is a
potential function, Φ(st+1) ≤ (1− ε(1−µ)

k )Φ(st) whenever st is a bad state. This implies that there
are O( k

ε(1−µ)) bad states in each phase, completing the proof. �

Define random BRD as the specialization of BRD in which the deviating player in each iteration
is chosen independently and uniformly at random.

Theorem 4.14 (Random BRD in Smooth Potential Games) Let G be a (λ, µ)-smooth cost-
minimization game with a positive potential function Φ that satisfies Φ(s) ≤ C(s) for every out-
come s. Let s0, . . . , sT be a sequence generated by random BRD, s∗ a minimum-cost outcome, and
ε > 0 a parameter. Let Ψ denote Φ(s0)

Φmin
, where Φmin is the minimum potential function value of an

outcome of G. Then with probability at least 1− 1
k over the generated sequence, all but

O

(
k(log k + log log Ψ)

ε(1− µ)
log Ψ

)
(32)

states st satisfy

C(st) ≤
(

λ

(1− µ)(1− ε)

)
· C(s∗).

Proof: Using the notation of the proof of Theorem 4.13, in each iteration t of random BRD we
choose a (random) player i(t) to deviate that satisfies E [δi(t)(st)|st] ≥ ∆(st)/k. Thus, in a bad
state st,

E [Φ(st+1)|st] ≤
(

1− ε(1− µ)
k

)
Φ(st). (33)

Define phases as in the proof of Theorem 4.13. The potential function value Φ(st) is decreasing
in t with probability 1, and there are only ≈ log2 Ψ phases. We prove that, for each j, with
probability at least 1− 1

k·log2 Ψ , phase j contains O(k(log k+log log Ψ)
ε(1−µ) ) bad states. The theorem then

follows from a union bound over the phases.
The argument is the same for every phase, so we focus on the outcomes in phase 0. Let Xt

denote Φ(st) if st belongs to the 0th phase, and 0 otherwise. Define Yt = Xt − Xt+1 for t ≥ 1,
which lies in [0, Xt] with probability 1. Also, if st is a bad state in phase 0, then inequality (33)
implies that E [Yt|Xt] ≥ 2αXt ≥ αΦ(s0), where α = ε(1−µ)

2k .
The probability that phase 0 contains more than m bad states is bounded above by the prob-

ability that the sum of a sequence of m nonnegative random variables, each bounded by Φ(s0)
and with expectation αΦ(s0), is at most Φ(s0)/2. The Azuma-Hoeffding inequality (see, e.g.,
Motwani and Raghavan [85]) implies that the latter probability is at most 1

k·log2 Ψ provided m ≥
c
α(log k + log log Ψ) for a sufficiently large constant c. The proof is complete. �
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Remark 4.15 (Discussion of Theorems 4.13 and 4.14) Analogs of Theorems 4.13 and 4.14
hold for payoff-maximization games that possess a positive potential function Φ with Φ(s) ≤W (s)
for every outcome s. The approximation guarantees are λ/(1+µ)(1+ε) rather than λ/(1−µ)(1−ε).
In the convergence rates, the parameter Ψ = Φ(s0)/Φmin is replaced by Φmax/Φ(s0).

The convergence bounds (31) and (32) in Theorems 4.13 and 4.14 are polynomial in the number
of players k and the number of bits used to specify the potential function. By contrast, the number
of iterations needed for BRD to converge to an (approximate) Nash equilibrium of a potential game
can be exponential in both of these quantities [1, 49, 102].

The condition that Φ(s) ≤ C(s) for every outcome s in Theorems 4.13 and 4.14 holds in
congestion games (Example 4.11) since cost functions are assumed to be nondecreasing. If this
condition is relaxed to Φ(s) ≤ M · C(s) for some constant M , then the upper bounds on the
number of bad states increase by a factor of M . The condition Φ(s) ≤W (s) holds with equality in
the basic utility games of Example 4.12.

Theorems 4.13 and 4.14 provide upper bounds N on the total number of “bad states” — states
that fail to approximately obey the robust POA bound. These results do not imply that every state
beyond the first N are good — since an iteration of BRD can strictly increase the overall cost, a good
state can be followed by a bad one. When the potential function gives a two-sided approximation
of the cost function, however, the first good state can only be succeeded by “approximately good”
states. Precisely, if, for some M ≥ 1, φ(s) ≤ C(s) ≤M ·φ(s) for every outcome s, then an arbitrary
number of BRD iterations can only increase the cost by a factor of M . For instance, in congestion
games with cost functions that are polynomials with nonnegative coefficients and degree at most d,
M = d+ 1.

Remark 4.16 (Guarantees for ε-BRD) Here is a third approach for ensuring that the improve-
ment of the deviating player chosen by BRD is related to that of an average player — and thus,
along the lines of Theorems 4.13 and 4.14, that there can only be a polynomial number of bad
states. In every iteration of ε-BRD, a deviating player is chosen such that a best response will
decrease its cost by at least a (1 + ε) factor. ε-BRD can only terminate at an ε-approximate Nash
equilibrium (see Section 4.1). Theorem 4.1 applies upon convergence, but convergence can take an
exponential number of iterations [102]. Awerbuch et al. [10] effectively proved that, under a mild
additional Lipschitz condition on a game’s cost functions, and assuming that every player is given
the opportunity to move at least once every polynomial number of iterations, ε-BRD generates only
a polynomial number of bad states in smooth potential games.

5 Congestion Games Are Tight

Example 2.5 introduced congestion games, and considered the special case of affine resource cost
functions. The worst-case POA in such games is 5/2. More generally, the POA in congestion
games depends on the set of allowable cost functions. For example, with cost functions that are
polynomials with degree at most d and nonnegative coefficients, the worst-case POA in congestion
games is exponential in d, but independent of the network size and the number of players [2, 11, 35,
90]. This dependence motivates parameterizing POA bounds for congestion games via the class C
of allowable resource cost functions. We do not expect the worst-case POA in congestion games to
be expressible in closed form for every set C, and instead seek a relatively simple characterization
of this value, as a function of the set C.
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This section proves that, for every fixed set of nonnegative and nondecreasing cost functions C,
the set G(C) of congestion games with cost functions in C form a tight class of games. Recalling
Definition 2.8 from Section 2.4, and the fact that every congestion game has at least one pure Nash
equilibrium (see Rosenthal [93] or Example 4.11), this means that

sup
G∈G(C)

ρ(G) = inf
(λ,µ)∈A(G(C))

λ

1− µ
, (34)

where A(G(C)) is the set of parameter values (λ, µ) with µ < 1 for which every game of G(C) is
(λ, µ)-smooth. Combining this result with Theorem 3.2 shows that, for every set C, the worst-case
POA of games in G(C) is the same for each of the equilibrium concepts shown in Figure 1.

We proceed as follows. Section 5.1 uses the additive structure of congestion games to simplify
the search for optimal smoothness parameters. Sections 5.2 and 5.3 form the heart of our argument.
The former section shows that optimal smoothness parameters can generally be characterized as
the unique intersection of two smoothness constraints. The latter section extracts the ingredients
of a worst-case congestion game from these two constraints, and establishes tightness for finite sets
of positive cost functions subject to a bounded load on every resource. Section 5.4 extends this
tightness result to arbitrary sets of cost functions. Section 5.5 explains how our proof provides two
characterizations of the worst-case POA in congestion games, as a function of the set C of allowable
cost functions — one stemming from each side of (34).

5.1 Simplifying the Smoothness Constraints

We begin by simplifying the right-hand side of equation (34). We exploit the fact that, in a
congestion game, the objective function and players’ cost functions are additive over the resources E.
This reduces the search for parameters (λ, µ) that satisfy condition (2) of Definition 2.1 — which
imposes one constraint for every congestion game with cost functions in C, and every pair s, s∗ of
outcomes in that game — to a much simpler one.

Let C be a non-empty set of cost functions. As always, we assume that every function c ∈ C is
nonnegative and nondecreasing. For convenience, we disallow the irrelevant all-zero cost function.
Let A(C) denote the set of parameters (λ, µ) with µ < 1 that satisfy

c(x+ 1)x∗ ≤ λ · c(x∗)x∗ + µ · c(x)x (35)

for every cost function c ∈ C, non-negative integer x, and positive integer x∗. When C is the set of
affine cost functions, condition (35) specializes to the one (6) used in Example 2.5.

We define the value γ(C) as the best POA bound that can be proved for games in G(C) via the
condition (35). That is, define γ(C) as

inf
{

λ

1− µ
: (λ, µ) ∈ A(C)

}
, (36)

with γ(C) = +∞ if A(C) is empty.
We have not constrained µ to be nonnegative. When c(1) > 0 for every cost function c ∈ C,

however, all points of A(C) have this property.

Lemma 5.1 (Nonnegativity of µ) For every non-empty set C of strictly positive functions and
every (λ, µ) ∈ A(C), µ ≥ 0.
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Proof: Taking x = n and x∗ = 1 in (35), with an arbitrary cost function c ∈ C, shows that

µ ≥ c(n+ 1)− λc(1)
c(n)n

≥ 1− λ
n

, (37)

where we have used that c is nondecreasing. Since n can be arbitrarily large, inequality (37) implies
that µ ≥ 0 for every (λ, µ) ∈ A(C). �

We next show that the set A(C) can only be smaller than A(G(C)) — that is, every game of G(C)
is (λ, µ)-smooth for every (λ, µ) ∈ A(C) — and hence the value γ(C) is an upper bound on the
worst-case robust POA of games in G(C). The proof is similar to the derivation in Example 2.5,
and we record it for future reference.

Proposition 5.2 (γ(C) Is an Upper Bound on the Robust POA) For every non-empty set C
of cost functions, the robust POA of every game of G(C) is at most γ(C).

Proof: We can assume that γ(C) is finite. If C contains a cost function c that is not strictly positive
— say c(z) = 0 and c(z + 1) > 0 for some z ≥ 1 — then taking x = x∗ = z in (35) shows
that A(C) = ∅ and hence γ(C) = +∞. We can therefore assume that all functions of C are strictly
positive.

We show that every game G ∈ G(C) is (λ, µ)-smooth for every (λ, µ) ∈ A(C). Fix G and (λ, µ) ∈
A(C); by Lemma 5.1, µ ≥ 0. For every outcome pair s, s∗ of G with induced load vectors x,x∗, we
have

k∑
i=1

Ci(s∗i , s−i) ≤
∑

e∈E :x∗e≥1

ce(xe + 1)x∗e (38)

≤
∑

e∈E :x∗e≥1

[λce(x∗e)x
∗
e + µce(xe)xe] (39)

≤
∑
e∈E

[λce(x∗e)x
∗
e + µce(xe)xe] (40)

= λ · C(s∗) + µ · C(s),

where in (38) we use that exactly x∗e players ponder a deviation s∗i that contains the resource e,
which in turn is used by at most xe players in s−i; inequality (39) follows from the definition
of A(C); and inequality (40) follows from the nonnegativity of µ. �

5.2 Characterization of the Optimal Smoothness Parameters

The next step is to characterize the right-hand side of (34), meaning the parameters that minimize
the objective function λ/(1 − µ) over the feasible region A(C) defined in the preceding section.
This optimization problem has several nice properties. First, there are only two decision variables
— λ and µ — so A(C) is contained in the plane. Second, while there are an infinite number
of constraints (35) that define this feasible region, each is linear in λ and µ. Thus, A(C) is the
intersection of halfplanes. Third, the objective function λ/(1 − µ) is increasing in both decision
variables. Thus, ignoring some edge cases that can be handled separately, the choice of (λ, µ)
that minimizes the objective function lies on the “southwestern boundary” of A(C), and can be
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characterized as the unique point of A(C) that satisfies with equality a particular pair of constraints
of the form (35).

Precisely, we assume in this section that the set C is finite, that every cost function is strictly
positive, and that there is an upper bound n on the maximum load of a resource. Let A(C, n)
denote the set of parameters (λ, µ) with µ < 1 that satisfy (35) for every c ∈ C, x ∈ {0, 1, . . . , n},
and x∗ ∈ {1, 2, . . . , n}. Geometrically, A(C, n) is the intersection of a finite number of halfplanes,
one open (µ < 1), and each of the others a closed halfplane containing everything “northeast” of a
line with negative slope. In contrast to Lemma 5.1, the set A(C, n) can contain points (λ, µ) with
µ < 0. See also Example 5.4 and Figure 2 for an illustration. The set A(C, n) is non-empty because
it includes the point (maxc∈C

c(n+1)
c(1) , 0). Define

γ(C, n) = inf
{

λ

1− µ
: (λ, µ) ∈ A(C, n)

}
. (41)

Because A(C, n) is generally not bounded, this infimum need not be attained.
The following technical but key lemma asserts “first-order conditions” for optimal smoothness

parameters: if the value γ(C, n) is attained by some point of A(C, n), then this point is the in-
tersection of two equality constraints of the form (35) that have particular properties. See also
Example 5.4. These two constraints encode the cost functions, optimal resource loads, and equi-
librium resource loads used in the lower-bound construction of Section 5.3.

Lemma 5.3 (Optimality Conditions) Let C be a finite set of strictly positive cost functions and
n a positive integer. Suppose there exist (λ̂, µ̂) ∈ A(C, n) such that

λ̂

1− µ̂
= γ(C, n).

Then there exist c1, c2 ∈ C, x1, x2 ∈ {0, 1, . . . , n}, x∗1, x∗2 ∈ {1, 2, . . . , n}, and η ∈ [0, 1] such that

cj(xj + 1)x∗j = λ̂ · cj(x∗j )x∗j + µ̂ · cj(xj)xj (42)

for j = 1, 2; and

η · c1(x1 + 1)x∗1 + (1− η) · c2(x2 + 1)x∗2 = η · c1(x1)x1 + (1− η) · c2(x2)x2. (43)

Proof: Write
Hc,x,x∗ = {(λ, µ) : c(x+ 1)x∗ ≤ λ · c(x∗)x∗ + µ · c(x)x}

for the halfplane corresponding to c ∈ C, x ∈ {0, 1, . . . , n}, and x∗ ∈ {1, 2, . . . , n}. Write ∂Hc,x,x∗
for its boundary, meaning the points (λ, µ) that satisfy the inequality with equality. Define

βc,x,x∗ =
c(x)x

c(x+ 1)x∗
, (44)

which is well defined because x∗ ≥ 1 and cost functions are strictly positive. If x ≥ 1, then we can
uniquely express λ in terms of µ along the line ∂Hc,x,x∗ and derive

λ

1− µ
=
c(x+ 1)
c(x∗)

1− (βc,x,x∗)µ
1− µ

(45)
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Figure 2: Example 5.4. The halfplanes that define the parameter γ(C, n).

for points of ∂Hc,x,x∗ . The only non-redundant constraint with x = 0 has the formHc,0,1 = {(λ, µ) :
λ ≥ 1}. In this case, βc,0,1 = 0 and λ

1−µ = 1
1−µ for points in ∂Hc,0,1. In any case, as λ increases

and µ decreases along the line ∂Hc,x,x∗ , the value λ
1−µ is strictly decreasing if βc,x,x∗ < 1, strictly

increasing if βc,x,x∗ > 1, and constant if βc,x,x∗ = 1. We accordingly call a line ∂Hc,x,x∗ decreasing,
increasing, or constant.

By assumption, there is a point (λ̂, µ̂) that attains the infimum in (41). The optimality of (λ̂, µ̂)
has several implications. Since λ/(1− µ) is strictly decreasing in both λ and µ, (λ̂, µ̂) inhabits the
boundary of A(C, n). In particular, it belongs to at least one line segment of the form A(C, n) ∩
∂Hc,x,x∗ , and these choices of c, x, x∗ satisfy equation (42). In the lucky event that (λ̂, µ̂) is contained
in a constant line ∂Hc,x,x∗ — and thus βc,x,x∗ = 1 and c(x+1)x∗ = c(x)x — we can take c1 = c2 = c,
x1 = x2 = x, x∗1 = x∗2 = x∗, and an arbitrary value of η ∈ [0, 1] to satisfy (43).

If (λ̂, µ̂) does not belong to a constant line, then it is an endpoint of the line segment A(C, n)∩
∂Hc,x,x∗ — the endpoint with minimum µ-value if ∂Hc,x,x∗ is decreasing, or with maximum µ-
value if ∂Hc,x,x∗ is increasing. Hence, (λ̂, µ̂) is also an endpoint of a second boundary segment
A(C, n) ∩ ∂Hc′,y,y∗ , with ∂Hc′,y,y∗ increasing (decreasing) if ∂Hc,x,x∗ is decreasing (increasing).

Relabel c, c′, x, x∗, y, y∗ so that (λ̂, µ̂) is the endpoint of A(C, n) ∩ ∂Hc1,x1,x∗1
with minimum

µ-value and the endpoint of A(C, n)∩∂Hc2,x2,x∗2
with maximum µ-value. Equation (42) is satisfied.

Since βc1,x1,x∗1
< 1 and βc2,x2,x∗2

> 1, c1(x1 + 1)x∗1 > c1(x1)x1 while c2(x2 + 1)x∗2 < c2(x2)x2.
Choosing a suitable η ∈ [0, 1] then satisfies equation (43). �

Example 5.4 (C = {c(x) = x} and n = 2) Consider the special case in which n = 2 and C con-
tains only the identity function c(x) = x. Not counting the constraint that µ < 1, there are six con-
straints in the definition (36) of γ(C, n), corresponding to the two and three permitted values of x∗

and x, respectively. Three of these are redundant, leaving the feasible choices of (λ, µ) constrained
by the inequalities λ ≥ 1, corresponding to x = 0, x∗ = 1; λ+ µ ≥ 2, corresponding to x = x∗ = 1;
and λ + 4µ ≥ 3, corresponding to x = 2 and x∗ = 1. See Figure 2. Since βc,1,1 < 1 < βc,2,1, the
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value γ(C, n) is attained at the intersection of the two corresponding lines, with (λ̂, µ̂) = (5
3 ,

1
3).

Hence, γ(C, n) = 5
2 .

The next lemma complements Lemma 5.3 by addressing cases where the infimum in (41) is not
attained by any point of A(C, n).6

Lemma 5.5 (Necessary Condition for γ(C, n) To Not Be Attained) Let C be a finite set of
strictly positive cost functions and n a positive integer. Suppose no point (λ, µ) ∈ A(C, n) satisfies
λ

1−µ = γ(C, n). Then there exists c ∈ C such that

γ(C, n) =
c(n)n
c(1)

(46)

and
c(n)n < c(n+ 1). (47)

Proof: We use the notation and terminology from the proof of Lemma 5.3. The key point is to
show that the infimum in (41) is not attained only when A(C, n) has an unbounded boundary face
A(C, n)∩ ∂Hc,x,x∗ for which ∂Hc,x,x∗ is decreasing, meaning that the value βc,x,x∗ defined in (44) is
less than 1.

Since C is a finite set of positive cost functions, A(C, n) is non-empty and γ(C, n) is finite.
Consider a sequence {(λk, µk)} in A(C, n) with λk

1−µk ↓ γ(C, n). Since λ
1−µ is increasing in both

arguments, we can assume that every point (λk, µk) lies on the boundary of A(C, n). Instantiat-
ing (35) with x = 0 and x∗ = 1 proves that λk ≥ 1 for every k. Since limµ↑1

1
1−µ = +∞, we can

assume that the µk’s are bounded above by some b < 1. Since {(λ, µ) ∈ A(C, n) : µ ≤ b} is closed,
λ

1−µ is continuous on this set, λk
1−µk ↓ γ(C, n), and γ(C, n) is not attained, the sequence {(λk, µk)}

has no limit point.
Every halfplane boundary ∂Hc,x,x∗ has compact intersection with {(λ, µ) ∈ A(C, n) : µ ≤ b},

except for a single constraint with a boundary with the least negative slope − c(x∗)x∗

c(x)x . Since cost
functions are positive and nondecreasing, this constraint boundary necessarily has the form ∂Hc,n,1
for some c ∈ C. We complete the proof by showing that this cost function c satisfies (46) and (47).

Since {(λk, µk)} has no limit point and there are only finitely many constraints, this sequence
is eventually contained in ∂Hc,n,1 ∩ A(C, n), with λk → +∞ and µk → −∞ as k → +∞. Using
equation (45), we have

γ(C, n) = lim
k→∞

λk
1− µk

= βc,n,1 ·
c(n+ 1)
c(1)

=
c(n)n
c(1)

,

which verifies condition (46). Moreover, since λk
1−µk is strictly decreasing in k, equation (45) implies

that βc,n,1 < 1 or, equivalently, c(n)n < c(n + 1). This verifies condition (47) and completes the
proof. �

5.3 Lower Bound Construction: The Finite Case

We now present the main lower bound construction. In this section, we continue to assume that C
is a finite set of strictly positive cost functions, and that there is an upper bound on the maximum
load of a resource. The next section treats the general case.

6This can occur if, for example, C contains only a rapidly growing function like the factorial function.
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Constructing a congestion game with POA equal to γ(C, n) is tantamount to constructing a game
in which the inequalities in (38)–(40) hold with equality. The plan is to construct a congestion game
in which each player has two strategies, one that uses a small number of resources, and a disjoint
strategy that uses a large number of resources. In the optimal outcome, all players use their small
strategies and incur low cost. This outcome is also a pure Nash equilibrium. In the suboptimal
pure Nash equilibrium, all players use their large strategies, thereby “flooding” all resources and
incurring a large cost. How can this suboptimal outcome persist as a Nash equilibrium? If a
player deviates unilaterally, it enjoys the benefit of fewer resources in its strategy, but the load on
each of the new resources is one more than that on the previously used resources. We show that,
implemented optimally, this construction produces a congestion game and a pure Nash equilibrium
of it with cost λ̂

1−µ̂ times that of the optimal outcome, where (λ̂, µ̂) are the optimal smoothness
parameters identified in the previous section. See also Example 5.7.

Theorem 5.6 (Main Construction) Let C be a non-empty finite set of strictly positive cost func-
tions and n a positive integer. There exist congestion games with cost functions in C and (pure)
POA arbitrarily close to γ(C, n).

Proof: We first dispense with the case in which the value γ(C, n) is not attained by any point (λ, µ) ∈
A(C, n). Let c ∈ C be the cost function guaranteed by Lemma 5.5, which satisfies conditions (46)
and (47). Define a congestion game as follows. (See also Example 5.7 and Figure 3 below for
a concrete example.) Let E = {e1, . . . , en+1} and introduce n + 1 players, where player i’s two
strategies are {ei} and E \ {ei}. If players choose their singleton strategies, then the resulting
outcome has cost (n+1)·c(1). If players choose their non-singleton strategies, then every resource is
used by all by one player and the cost is (n+1)·c(n)n. Condition (47) implies that the latter outcome
is a Nash equilibrium. By condition (46), the POA of this game is at least c(n)n/c(1) = γ(C, n),
as required.

For the rest of the proof, we assume that there is a point (λ̂, µ̂) ∈ A(C, n) with λ̂
1−µ̂ = γ(C, n).

Choose c1, c2, x1, x2, x∗1, x∗2, η as in Lemma 5.3. Define a congestion game as follows. The ground set
E1∪E2 should be thought of as two disjoint “cycles,” where each cycle has k = max{x1+x∗1, x2+x∗2}
resources that are labeled from 1 to k. Resources from E1 and E2 are each given the cost function
η · c1(x) and (1 − η) · c2(x), respectively. There are also k players, each with two strategies.
Player i’s first strategy Pi uses precisely xj consecutive resources of Ej (for j = 1, 2), starting with
the ith resource of each cycle and wrapping around to the beginning, if necessary. Player i’s second
strategy Qi uses x∗j consecutive resources of Ej (for j = 1, 2), ending with the (i− 1)th resource of
each cycle and wrapping around from the end, if necessary. We have chosen k large enough that,
for each i, the strategies Pi and Qi are disjoint.

Let y and y∗ denote the outcomes in which each player selects the strategy Pi and Qi, respec-
tively. By symmetry, ye = x1 and y∗e = x∗1 for resources e ∈ E1, while ye = x2 and y∗e = x∗2 for
resources e ∈ E2. Thus, for example, the value x1 serves both as the cardinality of every set Pi∩E1,
and as the load ye of every resource e ∈ E1 in the outcome y.
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To verify that y is a pure Nash equilibrium, fix a player i and derive

Ci(y) =
∑

e∈Pi∩E1

η · c1(ye) +
∑

e∈Pi∩E2

(1− η) · c2(ye)

= η · c1(x1)x1 + (1− η) · c2(x2)x2

= η · c1(x1 + 1)x∗1 + (1− η) · c2(x2 + 1)x∗2 (48)

=
∑

e∈Qi∩E1

η · c1(ye + 1) +
∑

e∈Qi∩E2

(1− η) · c2(ye + 1)

= Ci(y∗i ,y−i), (49)

where equation (48) follows from requirement (43) in Lemma 5.3, and equation (49) follows from
the disjointness of Pi and Qi.

Moreover, using (48) as a launching pad, we can derive

C(y) =
k∑
i=1

Ci(y)

= k · [η · c1(x1 + 1)x∗1 + (1− η) · c2(x2 + 1)x∗2]

= kη ·
(
λ̂ · c1(x∗1)x∗1 + µ̂ · c1(x1)x1

)
+ k(1− η) ·

(
λ̂ · c2(x∗2)x∗2 + µ̂ · c2(x2)x2

)
(50)

= λ̂ · k · (η · c1(x∗1)x∗1 + (1− η) · c2(x∗2)x∗2) + µ̂ · k · (η · c1(x1)x1 + (1− η) · c2(x2)x2)
= λ̂ · C(y∗) + µ̂ · C(y),

where (50) follows from condition (42) in Lemma 5.3. Rearranging gives a lower bound of

C(y)
C(y∗)

=
λ̂

1− µ̂
= γ(C, n)

on the POA of this congestion game.
This construction uses resource cost functions η ·c1(x) and (1−η)·c2(x) that are scalar multiples

of cost functions c1, c2 that lie in the given set C. The construction can be extended to use only the
original cost functions c1, c2 via standard scaling and replication tricks, as in [95]. In more detail, η
and (1− η) can be approximated by nonnegative rational numbers so that the outcome y remains
a Nash equilibrium and the POA goes down by an arbitrarily small amount. Then, scaling all cost
functions so that η and (1 − η) are integers does not change the POA of the constructed game.
Finally, replacing each resource with cost function m · c(x) by a set of m resources, each with cost
function c(x), and modifying players’ strategy sets accordingly, does not change the POA. This
completes the proof. �

Example 5.7 (C = {c(x) = x} and n = 2, Continued) The proof of Theorem 5.6, specialized to
Example 5.4, regenerates a construction by Christodoulou and Koutsoupias [35, Theorem 2] that
gives a matching lower bound on the POA of pure Nash equilibria. Awerbuch et al. [11, Theorem
3.5] independently gave a slightly different construction that provides the same lower bound. First,
recall the relevant two halfplanes from Example 5.4, with x = x∗ = 1 and with x = 2, x∗ = 1.
The unique value of η that satisfies condition (43) of Lemma 5.3 is 1

2 . Define a congestion game
with three players 0, 1, 2 and six resources u0, u1, u2, v0, v1, v2, all with the cost function c(x) = x/2.
(Using the function c(x) = x instead yields an equivalent example.) Player i has two strategies,
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Figure 3: Example 5.7. There are six resources, each with cost function c(x) = x/2. Solid and
dashed ovals denote the strategies used in the optimal and bad Nash equilibrium outcomes, respec-
tively. The two strategies of a player contain disjoint sets of resources.

{ui, vi} and {ui+1, vi+1, vi+2}, where all arithmetic is modulo 3. See also Figure 3. If all players
use their smaller strategies, each incurs cost 1. If all players use their larger strategies, each incurs
cost 1

2 + 2 · 2
2 = 5

2 . Since a unilateral deviation would also yield cost 2
2 + 3

2 = 5
2 to the deviator, this

outcome is a pure Nash equilibrium. The POA in this game is at least 5/2.

5.4 Lower Bound Construction: The General Case

We now generalize Theorem 5.6 to arbitrary sets of nondecreasing cost functions and arbitrarily
many players.

Theorem 5.8 (Tightness of Congestion Games) For every non-empty set C of cost functions,
the set of congestion games with cost functions in C is tight.

Proof: We first observe that if C contains a cost function that is not strictly positive, then there
is a congestion game with cost functions in C and infinite POA. Suppose c ∈ C satisfies c(z) = 0
and c(z + 1) > 0, with z ≥ 1. Mimic the main construction in the proof of Theorem 5.6 with c1 =
c2 = c, η = 1

2 , x1 = x∗1 = x∗2 = z, and x2 = z + 1. The outcome y∗ has cost kc(z)z = 0. The
outcome y has cost k

2c(z)z + k
2c(z + 1)(z + 1) > 0. Since

Ci(y∗i ,y−i) = 1
2(zc(z + 1) + zc(z + 2)) ≥ 1

2(z + 1)c(z + 1) = Ci(y),

the outcome y is a Nash equilibrium. The POA of this congestion game is infinite.
For the rest of the proof, we can assume that C contains only strictly positive cost functions.

For now, we assume that C is countable. Order the cost functions of C and let Cn denote the first n
functions. Theorem 5.6 applies to each (non-empty) set A(Cn, n).
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We now proceed in several steps. The first four steps address cases in which the worst-case
POA of congestion games with cost functions in C is unbounded (and γ(C) = +∞). The final two
steps handle sets of cost functions for which this worst-case POA is finite.

1. Suppose that, for infinitely many n, γ(Cn, n) is not attained by a point of A(Cn, n). Then,
Theorem 5.6 and condition (46) imply that there are congestion games with cost functions
in C and arbitrarily large POA. We can therefore assume that, for all sufficiently large n,
there is a pair (λn, µn) ∈ A(Cn, n) with λn

1−µn = γ(Cn, n).

2. Instantiating constraint (35) with an arbitrary cost function c ∈ Cn, x = n, and x∗ = 1 shows
that

λ ≥ c(n+ 1)− µc(n)n
c(1)

≥ 1− µn

for all (λ, µ) ∈ A(Cn, n). Thus, λn
1−µn > n

2 whenever µn < −1. By Theorem 5.6, we can
assume henceforth that µn ≥ −1 for all sufficiently large n.

3. If λn grows without bound and µn ≥ −1 for all sufficiently large n, then Theorem 5.6 provides
a sequence of congestion games with arbitrarily large POA. We can therefore assume that,
for some constant M , λn ≤M for all sufficiently large n.

4. Recall that λ ≥ 1 for every point in A(C, n). Thus, for all sufficiently large n, (λn, µn) lies
in the compact set [1,M ] × [−1, 1]. Consider a convergent subsequence, with limit (λ∗, µ∗).
If µ∗ = 1, then there is an infinite sequence of values (λn, µn) with λn ≥ 1 and µn → 1.
Applying Theorem 5.6 to this sequence yields a sequence of congestion games with arbitrarily
large POA.

5. If µ∗ < 1, then, by continuity of the function λ/(1 − µ) on [1,M ] × [−1, µ∗], Theorem 5.6
yields a sequence of congestion games with POA arbitrarily close to λ∗

1−µ∗ .

6. To complete the proof for countable sets of cost functions, we claim that (λ∗, µ∗) ∈ A(C)
when µ∗ < 1, and hence γ(C) ≤ λ∗

1−µ∗ . For if not, there is a cost function c ∈ C, a nonnegative
integer x, and a positive integer x∗ with c(x + 1)x∗ > λ∗c(x∗)x∗ + µ∗c(x)x. By continuity,
c(x + 1)x∗ > λnc(x∗)x∗ + µnc(x)x for all sufficiently large n. But c ∈ Cn and x, x∗ ≤ n
eventually, contradicting the fact that (λn, µn) ∈ A(C, n) for every n.

Finally, we reduce general sets of (strictly positive) cost functions to the case of countable
sets via a density argument. For a rational number r ∈ (0, 1), we say that a cost function c̃ is
a rational r-approximation of a strictly positive cost function c if it can be constructed by the
following inductive process: c̃(1) is a rational number in the open interval (c(1), (1 + r)c(1)); and
for x = 2, 3, 4, . . ., c̃(x) is a rational number that is at least c̃(x − 1), strictly greater than c(x),
and strictly less than c̃(x−1)

c(x−1)c(x). The purpose of rational r-approximations is to approximate cost
functions in a manner that preserves certain pure Nash equilibria. The next four properties follow
from the definition of such approximations.

1. For every strictly positive and nondecreasing cost function c and rational number r > 0, a
rational r-approximation of c can be constructed by induction.

2. Every rational r-approximation of a strictly positive and nondecreasing cost function is again
strictly positive and nondecreasing.
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3. Every rational r-approximation has a countable domain and range.

4. For every rational r-approximation c̃ of a cost function c and positive integer x,

1 <
c̃(x+ 1)
c(x+ 1)

<
c̃(x)
c(x)

< 1 + r.

Fix an arbitrary set C of strictly positive cost functions, and a parameter δ > 0. Let Cδ denote
the set of rational r-approximations of cost functions in C for all rational r ∈ (0, δ). By the third
property of rational r-approximations, the set Cδ is countable. Thus, there is a sequence G̃1, G̃2, . . .
of congestion games with cost functions in Cδ and POA arbitrarily close to γ(Cδ). We can assume
that each game G̃i was produced by one of the two constructions in the proof of Theorem 5.6.

Consider the congestion game G̃i and let y and y∗ denote its bad Nash equilibrium and optimal
outcome, respectively, as constructed in the proof of Theorem 5.6. Obtain the game Gi from G̃i
by replacing each resource cost function c̃ by a cost function c ∈ C for which c̃ is a rational r-
approximation with r < δ. The fourth property of rational r-approximations implies that: the
cost of y in Gi is at least 1

1+δ times that in G̃i; the cost of y∗ in Gi is at most that in G̃i; the
equilibrium condition that holds for y in G̃i — condition (47) or (49), depending on the construction
— continues to hold, as an inequality, for y in Gi. Thus, y is a Nash equilibrium of Gi and the
POA of the game is at least 1

1+δ times that of G̃i. This shows that there are congestion games with

cost functions in C and POA arbitrarily close to γ(Cδ)
1+δ , where δ > 0 is an arbitrarily small rational

number.
We complete the proof by arguing that γ(Cδ) ≥ γ(C) for every rational number δ > 0. Choose

c ∈ C, a nonnegative integer x, and a positive integer x∗. By continuity, a pair (λ, µ) satisfies the
corresponding constraint (35) only if it satisfies the analogous constraints for the same integers x, x∗

and for every rational r-approximation c̃ of c for every rational number r ∈ (0, δ). That is, A(Cδ) ⊆
A(C) and hence γ(Cδ) ≥ γ(C). �

5.5 Universal Proofs and Universal Worst-Case Examples

Our proof of Theorem 5.8 gives two characterizations of the worst-case POA of congestion games
with cost function restricted to a set C. These give, in particular, the first bounds on the POA in
congestion games with non-polynomial cost functions.

First, Theorem 5.8 shows that the worst-case POA in congestion games with cost functions in C
is precisely γ(C), the best POA upper bound provable using the smoothness arguments generated
by Proposition 5.2. Of course, computing the exact value of γ(C) is not trivial, even for simple
sets C. Aland et al. [2] and Olver [90] provide a (complex) closed-form expression for γ(C) when
C is a set of polynomials with nonnegative coefficients. Similar computations should be possible
for some other simple sets C. More broadly, the proof of Lemma 5.3 indicates how to compute
good lower bounds on γ(C) when there is a particular set C of interest. Computing the exact value
of γ(C, n) for a finite set C reduces to computing the upper envelope of O(n2|C|) lines. Taking n
sufficiently large and a sufficiently representative finite subset of cost functions should typically
permit close approximation of γ(C), the worst-case POA of congestion games with cost functions
in C.

Second, Theorem 5.8 provides a characterization of the worst-case POA in congestion games
via a class of “universal” worst-case examples. The proof of Theorem 5.8 only requires congestion
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games that comprise a “cycle” or the product of two cycles of the same size (a “double-cycle”),
where every resource on the same cycle has the same cost function. These congestion games can be
realized as network congestion games using a bidirected cycle network, provided zero-cost edges are
also permitted; see Gairing [55, Figure 5.2]. Thus, the worst-case POA of congestion games with
cost functions in C equals the worst-case POA of such double-cycles. This observation is analogous
to a simpler such characterization in nonatomic congestion games —- in which there is a continuum
of players, each of negligible size — where under modest assumptions on C, the worst-case POA is
always achieved in two-node two-link networks [41, 101].

Remark 5.9 (Necessity of Double-Cycles) The proof of Theorem 5.8 shows that double-cycle
congestion games are universal worst-case examples for the POA. Could there be a simpler set
of universal worst-case examples? In general, the answer is “no.” The basic reason is that, in
light of Theorem 5.8, a congestion game is a worst-case example only if all of the inequalities in
Proposition 5.2 hold with equality.

For example, consider a finite set C of cost functions and a value of n so that, in the language of
the proof of Lemma 5.3, λ̂

1−µ̂ = γ(C, n) for some (λ̂, µ̂) ∈ A(C, n). If the halfplanes defining A(C, n)

are in general position, then (λ̂, µ̂) satisfies at most two of them with equality. Call these hy-
perplanes Hc1,x1,x∗1

and Hc2,x2,x∗2
. Inequality (39) holds with equality only if, for every resource e

on which the worst pure Nash equilibrium or optimal outcome incurs non-zero cost, there is an
i ∈ {1, 2} such that ce = ci and the equilibrium and optimal loads on e are xi and x∗i , respectively.
If the value βci,xi,x∗i in (44) equals 1 for one of i = 1, 2, then there is a single-cycle congestion game
that uses only the cost function ci and realizes the worst-case POA. The construction is similar to
the first one in the proof of Theorem 5.6.

In general, however, βci,xi,x∗i 6= 1 for i = 1, 2 (cf., Example 5.4). Here, a single-cycle construction
— with cost function ci, equilibrium load xi, and optimal load x∗i on every resource — does not work.
If βci,xi,x∗i < 1, then this construction does not satisfy inequality (38) with equality. If βci,xi,x∗i > 1,
then it does not satisfy inequality (38) at all, and hence fails to produce the bad Nash equilibrium.
Thus, two groups of resources with distinct cost functions are generally necessary to construct
congestion games that realize the worst-case POA.

6 Related Work

This section surveys the large body of research that is related to, inspirational for, or motivated by
the present work and its conference version [97].

The Price of Anarchy. The price of anarchy was first studied by Koutsoupias and Papadim-
itriou [76] for the makespan minimization objective in scheduling games. This is not a sum objective
function, and the worst-case POA in this model was immediately recognized to be different for dif-
ferent equilibrium concepts [21, 43, 75, 76]. See Vöcking [108] for a survey of the literature on this
model, and Heydenreich et al. [69] for results on the POA in other scheduling models.

The POA with a sum objective was first studied by Roughgarden and Tardos [100] in the
nonatomic selfish routing games of Wardrop [109], which are discussed further below. Most work
to date on the POA concerns sum objective functions. Extensively studied problem domains include
congestion games and their variants (see Roughgarden [96] and below), network design and utility
games (see Tardos and Wexler [106]), and auction games (see below).
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The POA in Congestion Games. The first general results on the POA of pure Nash equilibria
for the congestion games of Rosenthal [93] and their weighted variants [83] are by Awerbuch et
al. [11] and Christodoulou and Koutsoupias [35], who independently gave tight bounds for games
with affine cost functions and qualitatively similar upper and lower bounds for games with polyno-
mial cost functions with nonnegative coefficients. Subclasses of congestion games with affine cost
functions were studied earlier by Lücking et al. [80] and Suri et al. [103]. Matching upper and
lower bounds for both unweighted and weighted congestion games with polynomial cost functions
with nonnegative coefficients were given by Aland et al. [2] and, subsequently but independently,
Olver [90]. The lower bound construction in Section 5 generalizes those in [2, 90].

The POA of Mixed Nash, Correlated, and Coarse Correlated Equilibria. The impor-
tance of POA bounds that apply beyond Nash equilibria was first articulated by Mirrokni and
Vetta [82]. Most of the previous works that established more general POA bounds relied on argu-
ments that can be recast as smoothness proofs (as in Examples 2.5–2.7). Our extension theorems
reproduce, and in some cases strengthen, these previously proved bounds.

In more detail, the authors in [2, 11, 107] extend most of their upper bounds on the worst-
case POA of pure Nash equilibria in congestion or valid utility games to mixed Nash equilibria.
These are important precursors to the present work. Christodoulou and Koutsoupias [34] show that
the worst-case POA of correlated equilibria is the same as for pure Nash equilibria in unweighted
and weighted congestion games with affine cost functions. Blum et al. [21] rework and generalize
several bounds on the worst-case POA of pure Nash equilibria to show that the same bounds hold
for the average objective function value of no-regret sequences. Their applications include valid
utility games [107] and the (suboptimal) bounds of [11, 35] for unweighted congestion games with
polynomial cost functions, and also a constant-sum location game and a fairness objective, which
falls outside of our framework.

Another line of work identifies games in which POA bounds for pure Nash equilibria cannot be
extended to more general equilibrium concepts. Recall from Example 3.1 that all of the inclusions
in Figure 1 can be strict, even in simple games such as congestion games with affine cost functions
and symmetric singleton strategies (i.e., networks of parallel links). More generally, there are
specific such games in which the worst-case cost of an equilibrium is different for each of the
four equilibrium concepts shown in Figure 1; see Ashlagi et al. [8], Blum et al. [21], Bradonjić et
al. [23], and Kleinberg et al. [73] for some concrete examples. These examples do not contradict
our tightness result for congestion games (Theorem 5.8), which only precludes such separations for
worst-case congestion games for a given set of cost functions.

There are also interesting classes of games for which, in contrast to congestion games, the
worst-case POA is different for different equilibrium concepts. In addition to the two examples in
Section 2.5 and the makespan minimization games mentioned above, where there is already a gap
between the worst-case POA of pure and mixed Nash equilibria, recent work by Roughgarden and
Schoppmann [99] and Bhawalkar et al. [16] identified natural classes of games with a sum objective
in which the worst-case POA is the same for pure Nash, mixed Nash, and correlated equilibria, but
is strictly larger for coarse correlated equilibria.

Nonatomic Congestion Games. Previous work that bounds the POA in nonatomic congestion
games, where there is a fixed mass of infinitesimal players, can be viewed as a precursor to and
special case of our smoothness framework. These games were introduced by Roughgarden and
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Tardos [101], motivated by the nonatomic routing games of Wardrop [109] and Beckmann et al. [14]
and the congestion games of Rosenthal [93]. Tight POA bounds for almost all classes of cost
functions are also in [101]. The relationship between POA bounds for these games and smoothness
arguments is clearest in the work of Correa et al. [42], who generalized and gave different proofs of
the results in [101].

The POA in nonatomic congestion games can be bounded above using the same ideas as in
Example 2.5 and Section 5. In this sense, the optimal POA analyses for nonatomic and atomic
congestion games follow the same template. We next highlight the main differences.

For a set C of allowable cost functions, define the set A(C) as the parameters (λ, µ) with µ < 1
that satisfy

c(x)x∗ ≤ λ · c(x∗)x∗ + µ · c(x)x (51)

for every cost function c ∈ C and nonnegative real numbers x∗, x. The difference between (51) and
its atomic analog (35) is that the “+1” on the left-hand side has disappeared. This reflects the
negligible size of every player. Also, x and x∗ are no longer constrained to be integral. Analogous
to Proposition 5.2, for every (λ, µ) ∈ A(C), the POA of every nonatomic congestion game with cost
functions in C is at most λ

1−µ .
A remarkable property of nonatomic congestion games is that, assuming only that the set C

contains at least one function that is positive at zero, there is a pair (λ̂, µ̂) ∈ A(C) of optimal
smoothness parameters with λ̂ = 1 [41, 101]. For instance, if C is the set of affine cost functions,
then the optimal smoothness parameters are λ = 1 and µ = 1

4 , leading to a POA upper bound
of 4

3 . For this reason, early work on the POA in nonatomic congestion games did not suggest the
two-parameter smoothness framework developed in this paper.

A second special property of nonatomic congestion games is that equilibria are essentially
unique. Precisely, it follows from Blum et al. [20] that all coarse correlated equilibria of a nonatomic
congestion game have the same cost. This renders our extension theorem (Theorem 3.2) superfluous
for such games — bounds on the POA of pure Nash equilibria automatically extend to the other
equilibrium sets in Figure 1, simply because all of the sets are essentially identical.

Further Precursors of Smoothness. Several previous papers gave special cases of our two-
parameter smoothness definition, in each case for a specific model and without any general ap-
plications to robust POA guarantees: Perakis [92] for a nonatomic selfish routing model with
non-separable cost functions; Christodoulou and Koutsoupias [34] for congestion games with affine
cost functions; Aland et al. [2] for congestion games with polynomial cost functions and nonnega-
tive coefficients; Harks [64] for splittable congestion games; and Gairing et al. [58], Dumrauf and
Gairing [45], Harks and Végh [66], and Farzad et al. [51] for different variants of selfish routing
games. Awerbuch et al. [10] defined a “β-nice” condition for potential games that is essentially
a single-parameter instantiation of our smoothness definition, and gave general guarantees for the
performance of BRD in such games (cf., Section 4.3). The parameter β in [10] corresponds to the
value λ

1−µ in our framework.

The POA of Approximate Nash Equilibria. The POA of approximate Nash equilibria was
first studied by Roughgarden and Tardos [100] and Weitz [110] in nonatomic selfish routing games.
Vetta [107, Theorem 8.1] extended his POA analysis of valid utility games to approximate Nash
equilibria (cf., Remark 4.4). Christodoulou et al. [37] compute precisely the POA of approximate
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Nash equilibria in both nonatomic and atomic congestion games with cost functions that are poly-
nomials with nonnegative coefficients.

Bicriteria Bounds. Bicriteria bounds like our Theorems 4.6 and 4.9 are sometimes called “re-
source augmentation bounds” or “pseudo-approximations.” Roughgarden and Tardos [100] proved
the first such bound for Nash equilibria: in every nonatomic selfish routing game, the cost of an
equilibrium is bounded above by that of an optimal solution that routes twice as much traffic. This
bound is tight for general edge cost functions, but Chakrabarty [28] and Correa et al. [42] showed
how to improve it for restricted sets of cost functions. The only previous results on bicriteria bounds
in atomic congestion games were negative [100].

Guarantees for Best-Response Dynamics. Mirrokni and Vetta [82] were the first to study the
performance of best-response dynamics (BRD), and they gave both positive and negative results
for valid utility games (Example 2.6). Goemans et al. [62] refined some of the results in [82]
and also proved that, in weighted congestion games, random BRD quickly reaches states that
approximately obey the robust POA bounds proved in [2, 90]. Awerbuch et al. [10] identified
general conditions under which several variants of BRD quickly reach states that approximately
satisfy the corresponding robust POA bounds. Our development in Section 4.3 is inspired by the
positive results in [10, 62, 82], and also arguments in [32].

Smoothness arguments do not seem to capture the upper bounds in [62] on the “price of sinking”
in weighted congestion games, which generally do not possess the potential function required by
Theorems 4.13 and 4.14 (see [65]).

For recent work that derives quantitative trade-offs between the number of BRD iterations and
the approximation factor of the state reached in different classes of smooth games, see Fanelli et
al. [50], Bilò et al. [18], and the references therein.

Guarantees with Irrational Players. Still another way to weaken the rationality assumptions
implicit in equilibrium analysis is to allow some players to behave irrationally. Ideally, the POA of
a game degrades gracefully with the fraction of irrational players.

Karakostas and Viglas [72] were the first to give POA bounds with irrational players, in
nonatomic selfish routing networks with some “malicious” traffic. Babaioff et al. [12] and Gair-
ing [56] analyzed other models of malicious players in routing games, while Moscibroda et al. [84]
studied similar issues in inoculation games. Blum et al. [21] and Roth [94] proposed a more general
model in which irrational players play arbitrary strategies, rather than optimizing a specific payoff
function meant to model malice, and gave POA bounds with such players for classes of congestion
games (Example 2.5), valid games (Example 2.6), and location games.

The smoothness framework of this paper can be used to derive some of these POA bounds with
irrational players. For example, consider a valid utility game G with a nondecreasing objective
function, rational players R, and irrational players I. Let sI denote an arbitrary strategy profile for
the players of I and sR an “induced Nash equilibrium,” meaning that no player of R can increase its
payoff via a unilateral deviation from (sR, sI). Blum et al. [21] proved that the welfare WG(sR, sI)
of such an induced Nash equilibrium of G is at least half of the welfare W

bG(s∗) of an optimal
solution s∗ in the game Ĝ induced by the rational players R. This guarantee also follows directly
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from Definition 4.8, which by (8)–(10) G satisfies with λ = µ = 1. Precisely, we have

WG(sR, sB) ≥
∑
i∈R

ΠG
i (sR, sB) ≥

∑
i∈R

ΠG
i (s∗i , s

R
−i, s

B) ≥W bG(s∗)−WG(sR, sB),

which implies the claimed bound. Following the proof of Theorem 3.3 extends this guarantee to
the average payoff of rational players over repeated play, with irrational players playing arbitrarily
at each time step, provided each rational player has vanishing average regret. A second example
of such a guarantee is provided by Lucier [77], for a natural class of smooth combinatorial auction
games.

Analogous guarantees apply to cost-minimization games that satisfy Definition 4.5, although the
resulting upper bound on cost includes a term that depends on the irrational players’ strategies.
This significant performance degradation with irrational players is consistent with the negative
results in Roth [94] for congestion games with affine cost functions.

Further Applications. Recent applications of the smoothness framework presented here were
given by Bhawalkar et al. [15] and Kollias and Roughgarden [74] to congestion games with weighted
players and arbitrary cost functions; Bhawalkar and Roughgarden [17] to simultaneous second-price
auctions (Example 2.7) with bidders with subadditive valuations; Caragiannis et al. [25, 26] and
Lucier and Paes Leme [79] to the extensively-studied “generalized second price” sponsored search
auctions; Chen et al. [29] to games with altruistic players; Cole et al. [40] and Cohen et al. [39] to
coordination mechanisms [36] in scheduling; Hoeksma and Uetz [70] and Anshelevich et al. [7] to
classes of scheduling games; and Marden and Roughgarden [81] to subclasses of basic utility games
(Example 2.6).

Relaxing the Smoothness Condition. The fact that smoothness arguments do not always
provide optimal POA bounds motivates weakening the condition in Definition 2.1. As discussed in
Remark 2.3, a costless relaxation is to require the inequality (2) for some optimal outcome s∗ and all
outcomes s, rather than for all pairs s, s∗ of outcomes. Several papers noted this relaxation and gave
applications of it [70, 79, 87, 99]; the work of Christodoulou et al. [38] (Example 2.7) is a precursor
to this definition. Lucier and Paes Leme [79] called this relaxed condition “semi-smoothness.”

Two recent works propose relaxations of Definition 2.1 that result in weaker extension theorems.
Roughgarden and Schoppmann [99] proposed a “local smoothness” framework for games in which
players’ strategy sets and cost functions are convex. Local smoothness intuitively requires the
inequality (2) only for pairs of strategy profiles that are arbitrarily close to each other. They
were motivated by congestion games in which each player can split its weight fractionally over
multiple strategies, and showed that local smoothness arguments always give optimal POA bounds
while standard smoothness arguments do not [99]. Bhawalkar et al. [16] recently showed that
local smoothness arguments give optimal POA bounds for a class of opinion formation games
introduced by Bindel et al. [19], while standard smoothness arguments do not. The drawback of
local smoothness arguments is that the corresponding POA bounds extend automatically to the
correlated equilibria of a game but not, in general, to the coarse correlated equilibria [99]. Since
correlated equilibria can be learned efficiently with relatively simple online algorithms [52, 67], this
weaker extension theorem continues to significantly relax the assumptions needed to justify Nash
equilibrium analysis.
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To explain the second relaxation, recall that the outcome s∗ that supplies hypothetical unilateral
deviations in Definition 2.1 cannot depend on the outcome s. Syrgkanis and Tardos [105] proved
that, if the hypothetical deviation s∗i for player i depends on its strategy si in s but not on the
other strategies s−i, then every consequent POA bound extends to all correlated equilibria. This
relaxation is used in [105] to prove composition theorems stating that, under suitable assumptions
on bidders’ valuations, analyzing the robust POA of many single-item auctions, executed simulta-
neously or sequentially, reduces to analyzing the robust POA of a single such auction. All of the
standard single-item auctions, including first- and second-price auctions, admit good smoothness
bounds [68, 105].

The POA in Games of Incomplete Information. This paper, like most previous work on
the price of anarchy, has focused on full-information games, where players’ payoff functions are
common knowledge. It is also important to understand the POA of Bayes-Nash equilibria in games
of incomplete information, where players’ payoff functions are drawn from a prior distribution that
is common knowledge. Auctions, where each player has a private willingness-to-pay for each bundle
of goods, provide numerous motivating examples. Early examples of POA analyses of Bayes-Nash
equilibria include Gairing et al. [57], Georgiou et al. [59], and Gairing [56] for subclasses of congestion
games; Christodoulou et al. [38] for simultaneous single-item auctions; Lucier and Borodin [78] for
greedy combinatorial auctions; and Paes Leme and Tardos [91] for sponsored search auctions.

Several recent works proved extension theorems for games of incomplete information. Of these,
the extension theorem implicit in Lucier and Paes Leme [79] and explicit in Caragiannis et al. [26]
imposes the most stringent hypothesis and has the strongest conclusion. It gives conditions under
which POA bounds for pure Nash equilibria of full-information games extend to all Bayes-Nash
equilibria of the corresponding incomplete-information games, even when players’ payoff functions
are correlated. These conditions are met in the important case of sponsored search auctions [26, 79].
For most of the other games of incomplete information in which the POA has been studied, there
cannot be an extension theorem for arbitrary correlated prior distributions [17, 98]. Roughgar-
den [98] and Syrgkanis [104] gave significantly weaker conditions under which full-information pure
POA bounds extend to the Bayes-Nash equilibria of every corresponding game of incomplete infor-
mation with a product prior distribution. These extension theorems are general enough to capture
most previous results on the POA of Bayes-Nash equilibria.

Limits of Smoothness. Does the robust POA of a game apply to any outcome distributions
outside the set of coarse correlated equilibria? Nadav and Roughgarden [87] gave a precise answer
to this question. Inspecting the proofs of Theorems 3.2 and 3.3 shows that these extension theorems
continue to hold when the coarse correlated equilibrium and no-regret conditions, respectively, are
satisfied only on average over the players (rather than by every player). The conditions cannot be
weakened further: the robust POA with respect to an optimal solution s∗ of a game is precisely
the ratio between the worst-case expected cost of such a “no-average-regret” solution and the cost
of an optimal outcome [87].

7 Conclusions and Future Directions

Pure-strategy Nash equilibria — where each player deterministically picks a single strategy —
are easier to reason about than their more general cousins like mixed Nash equilibria, correlated
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equilibria, and coarse correlated equilibria. On the other hand, inefficiency guarantees for more
general classes of equilibria are crucial for several reasons: pure Nash equilibria do not always
exist; they can be intractable to compute; and even when efficiently computable by a centralized
algorithm, they can elude natural learning dynamics.

This paper presented an extension theorem, which extends, in “black-box” fashion, price of
anarchy bounds for pure Nash equilibria to the more general equilibrium concepts listed above.
Such an extension theorem can hold only under some conditions, and the key idea is to restrict the
method of proof used to bound the price of anarchy of pure Nash equilibria. We defined smooth
games to formalize a canonical method of proof, in which the Nash equilibrium hypothesis is used
in only a minimal way, and proved an extension theorem for smooth games. Many of the games in
which the price of anarchy has been studied are smooth games in our sense.

For the fundamental model of congestion games with arbitrarily restricted cost functions, we
showed that this canonical proof method is guaranteed to produce an optimal upper bound on the
worst-case POA. In this sense, POA bounds for congestion games are “intrinsically robust.”

There remain many opportunities for interesting work on smooth games. One important re-
search direction is to discover further natural game-theoretic models for which smoothness argu-
ments or variants thereof give good POA bounds. Given the diversity of examples thus far, we
expect there will be many more applications.

There are also several interesting open questions concerning the basic smoothness framework
and potential refinements.

1. Section 4.3 showed that, in potential games, several variants of best-response dynamics quickly
converge to outcomes that approximately obey the robust POA bound. Are more general
results possible? A construction of Mirrokni and Vetta [82] shows that the potential game
hypothesis cannot be dropped entirely, but the positive results in Goemans et al. [62] for
weighted congestion games and Lucier [77] for combinatorial auction games suggest that it
can be weakened significantly.

2. Which classes of games are tight in the sense of Definition 2.8? The known tightness results,
in Section 5 and [15, 81], employ domain-dependent constructions. Is it enough to have
“sufficiently rich” strategy sets?

3. The price of anarchy concerns, by definition, the worst-case equilibrium of a game. Many
other measures of inefficiency of game-theoretic equilibria have been studied, and some of these
should also admit a “canonical upper bound argument.” For example, the price of stability [6]
is the ratio between the objective function values of the best Nash equilibrium and an optimal
outcome. The hypothesis that an outcome s is the best Nash equilibrium seems hard to apply
in a generic way. However, most analyses of the price of stability concern potential games (see
Section 4.3) and analyze the global potential function optimizer, which may or may not be the
best Nash equilibrium. The analyses by Christodoulou and Koutsoupias [34] and Caragiannis
et al. [24] on the worst-case cost of potential function minimizers in congestion games with
affine cost functions suggests that a more general theory should be possible. Very recent
progress by Christodoulou and Gairing [33] provides further support for this possibility.

4. A strong Nash equilibrium is an outcome in which no coalition of players can collectively
change strategies to make them all better off. Can some of the existing analyses of the
corresponding “strong price of anarchy” [5, 31, 46] be unified via smoothness-type arguments,
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ideally with implications for larger sets of outcomes? See Bachrach et al. [13] for very recent
progress on this question.
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[18] V. Bilò, A. Fanelli, M. Flammini, and L. Moscardelli. Performance of one-round walks in linear
congestion games. Theory of Computing Systems, 49(1):24–45, 2011.

[19] D. Bindel, J. M. Kleinberg, and S. Oren. How bad is forming your own opinion? In Proceedings of the
52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 57–66, 2011.

[20] A. Blum, E. Even-Dar, and K. Ligett. Routing without regret: On convergence to Nash equilibria of
regret-minimizing algorithms in routing games. Theory of Computing, 6:179–199, 2010.

[21] A. Blum, M. Hajiaghayi, K. Ligett, and A. Roth. Regret minimization and the price of total anarchy.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pages 373–382,
2008.

[22] A. Blum and Y. Mansour. Learning, regret minimization, and equilibria. In Nisan et al. [89], chapter 4,
pages 79–101.
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[73] R. D. Kleinberg, G. Piliouras, and É. Tardos. Multiplicative updates outperform generic no-regret
learning in congestion games. In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing (STOC), pages 533–542, 2009.

[74] K. Kollias and T. Roughgarden. Restoring pure equilibria to weighted congestion games. ACM
Transactions on Economics and Computation, 2015. To appear.

[75] E. Koutsoupias, M. Mavronicolas, and P. G. Spirakis. Approximate equilibria and ball fusion. Theory
of Computing Systems, 36(6):683–693, 2003.

43



[76] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In Proceedings of the 16th Annual
Symposium on Theoretical Aspects of Computer Science (STACS), pages 404–413, 1999.

[77] B. Lucier. Beyond equilibria: Mechanisms for repeated combinatorial auctions. In Proceedings of the
First Conference on Innovations in Computer Science, pages 166–177, 2010.

[78] B. Lucier and A. Borodin. Price of anarchy for greedy auctions. In Proceedings of the 21st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 537–553, 2010.

[79] B. Lucier and R. Paes Leme. GSP auctions with correlated types. In Proceedings of the 12th ACM
Conference on Electronic Commerce (EC), pages 71–80, 2011.

[80] T. Lücking, M. Mavronicolas, B. Monien, and M. Rode. A new model for selfish routing. Theoretical
Computer Science, 406(3):187–206, 2008.

[81] J. R. Marden and T. Roughgarden. Generalized efficiency bounds in distributed resource allocation.
In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), pages 2233–2238, 2010.

[82] V. S. Mirrokni and A. Vetta. Convergence issues in competitive games. In Proceedings of the 7th
International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (AP-
PROX), pages 183–194, 2004.

[83] D. Monderer and L. S. Shapley. Potential games. Games and Economic Behavior, 14(1):124–143, 1996.

[84] T. Moscibroda, S. Schmid, and R. Wattenhofer. When selfish meets evil: Byzantine players in a virus
inoculation game. In Proceedings of the 25th ACM Symposium on Principles of Distributed Computing
(PODC), pages 35–44, 2006.

[85] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1996.

[86] H. Moulin and J. P. Vial. Strategically zero-sum games: The class of games whose completely mixed
equilibria cannot be improved upon. International Journal of Game Theory, 7(3/4):201–221, 1978.

[87] U. Nadav and T. Roughgarden. The limits of smoothness: A primal-dual framework for price of
anarchy bounds. In Proceedings of the 6th International Workshop on Internet and Network Economics
(WINE), pages 319–326, 2010.

[88] J. F. Nash. Equilibrium points in N -person games. Proceedings of the National Academy of Science,
36(1):48–49, 1950.
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