
1 Introduction

1.1 Sel�sh Routing

What route should you take to work tomorrow? All else being equal, most of us

would opt for the one that allows us to wake up at the least barbaric time|that

is, most of us would prefer the shortest route available. As any morning commuter

knows, the length of time required to travel along a given route depends crucially

on the amount of traÆc congestion|on the number of other commuters who choose

interfering routes. In selecting a path to travel from home to work, do you take into

account the additional congestion that you cause other commuters to experience?

Not likely. Almost certainly you choose your route sel�shly, aiming to get to work as

quickly as possible, without regard to the consequences your choice has for others.

Naturally, you also expect your fellow commuters to behave in a similarly egocentric

fashion. But what if everyone cooperated by coordinating routes? Is it possible to

limit the interference among routes, thereby improving commute times? If so, by

how much?

This book studies the loss of social welfare due to sel�sh routing|sel�sh,

uncoordinated behavior in networks. Part II of the book develops techniques for

quantifying the worst-possible loss of social welfare from sel�sh routing, called the

price of anarchy. Part III uses these techniques to evaluate di�erent approaches

to coping with sel�shness|reducing the price of anarchy with a modest degree of

centralized control.

1.2 Two Motivating Examples

This section motivates the questions studied in this book by informally exploring

two important examples. These examples are treated rigorously in Chapter 2. Pigou

discovered the �rst example in 1920; Braess discovered the second in 1968.

1.2.1 Pigou's Example

Posit a suburb s and a nearby train station t, connected by two noninterfering

highways, and a �xed number of drivers who wish to commute from the suburb s

to the train station t at roughly the same time. Suppose the �rst highway is short

but narrow, with the time needed to drive along it increasing sharply with the

number of drivers who use it. Suppose the second is wide enough to accommodate all

traÆc without any crowding, but it takes a long, circuitous route. For concreteness,
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Figure 1.1
Pigou's example. A cost function c(x) describes the travel time experienced by drivers on a road
as a function of the fraction x of the overall traÆc using that road.

assume that all drivers on the latter highway require 1 hour to drive from s to

t, irrespective of the number of other drivers on the road. Further suppose that

the time needed to drive using the short narrow highway is equal, in hours, to the

fraction of the overall traÆc that chooses to use it. Figure 1.1 shows this network

pictorially. Call the functions c(�) cost functions; in this example they describe the

travel time experienced by drivers on a road as a function of the fraction of the

traÆc that uses the road. The upper edge in Figure 1.1 thus represents the long,

wide highway, and the lower edge the short, narrow one.

Assuming that all drivers aim to minimize the driving time from s to t, we have

good reason to expect all traÆc to follow the lower road and therefore, because

of the ensuing congestion, to require one hour to reach the destination t. Indeed,

each driver should reason as follows: the lower route is never worse than the upper

one, even when it is fully congested, and it is superior whenever some of the other

drivers are foolish enough to take the upper route.

Now suppose that, by whatever means, we can choose who drives where. Can the

power of centralized control improve over the sel�sh routing outcome? To see that

it can, consider assigning half of the traÆc to each of the two routes. The drivers

forced onto the long, wide highway experience one hour of travel time, and are thus

no worse o� than in the previous outcome. On the other hand, drivers allowed to

use the short, narrow road now enjoy lighter traÆc conditions, and arrive at their

destination after a mere 30 minutes. The state of a�airs has therefore improved for

half of the drivers while no one is worse o�. Moreover, the average travel time has

dropped from 60 to 45 minutes, a signi�cant improvement. The interested reader

might want to ponder whether or not other outcomes are possible in which the
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(b) Augmented network

Figure 1.2
Braess's Paradox. The addition of an intuitively helpful edge can adversely a�ect all of the traÆc.

average travel time is less than 45 minutes.

Pigou's example demonstrates a well known but important principle:

sel�sh behavior need not produce a socially optimal outcome.

This observation motivates the work described in Part II, which analyzes the price of

anarchy: how much worse can a sel�sh outcome be relative to a socially optimal one?

As Part II shows, Pigou's example plays a crucial role in answering this question.

1.2.2 Braess's Paradox

Pigou's example illustrates an important principle: the outcome of sel�sh behavior

need not optimize social welfare. However, it may not be surprising that the

result of local optimization by many individuals with con
icting interests does not

possess any type of global optimality. The next example, called Braess's Paradox,

is decidedly less intuitive.

Begin again with a suburb s, a train station t, and a �xed number of drivers

who wish to commute from s to t. For the moment, assume two noninterfering

routes from s to t, each comprising one long wide road and one short narrow road

as shown in Figure 1.2(a). The combined travel time in hours of the two edges in

one of these routes is 1+x, where x is the fraction of the traÆc that uses the route.

The routes are therefore identical, and traÆc should split evenly between them.

In this case, all drivers arrive at their destination 90 minutes after their departure

from s.

Now, an hour and a half is quite a commute. Suppose that, in an e�ort to
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alleviate these unacceptable delays, we harness the �nest available road technology

to build a very short and very wide highway joining the midpoints of the two existing

routes. The new network is shown in Figure 1.2(b), with the new road represented

by edge (v; w) with constant cost c(x) = 0, independent of the road congestion.

How will the drivers react?

We cannot expect the previous traÆc pattern to persist in the new network. As

in Pigou's example, the travel time along the new route s ! v ! w ! t is never

worse than that along the two original paths, and it is strictly less whenever some

traÆc fails to use it. We therefore expect all drivers to deviate to the new route.

Because of the ensuing heavy congestion on the edges (s; v) and (w; t), all of these

drivers now experience two hours of travel time when driving from s to t. Braess's

Paradox thus shows that the intuitively helpful action of adding a new zero-cost

link can negatively impact all of the traÆc!

Braess's Paradox raises several interesting issues. First, it furnishes a second

example of the suboptimality of sel�sh routing. Indeed, Braess's example demon-

strates this principle in a stronger form than does Pigou's: all drivers would strictly

prefer the coordinated outcome|the original traÆc pattern in the network of Fig-

ure 1.2(a)|to the one obtained noncooperatively. More importantly, Braess's Para-

dox shows that the interactions between sel�sh behavior and the underlying network

structure defy intuition and are not easy to predict. When we tackle algorithmic

approaches to coping with sel�shness in Part III, the counterintuitive moral of

Braess's Paradox will be a persistent thorn in our side:

with sel�sh routing, network improvements can degrade network performance.

1.3 Applications and Caveats

Although this introduction to sel�sh routing uses the language of road networks, the

model has an array of interpretations and applications, some of which this section

discusses. (For more, see Section 1.5.) Also, like every mathematical model, this

model of sel�sh routing has made some concessions to the demands of mathemat-

ical tractability, at the expense of perfect verisimilitude. We discuss the primary

disconnects between sel�sh routing and reality in Section 1.3.4.

1.3.1 Transportation Networks

Our �rst interpretation of sel�sh routing|as road traÆc|is consistent with the

chronology of its applications. Pigou described his 1920 example in terms of a road

network. The model has enjoyed a central position in theoretical transportation
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research since the 1950's. Hundreds, if not thousands, of papers have studied it and

its innumerable extensions. Sections 1.5 and 2.8 survey some of this work.

1.3.2 Computer Networks

More recently, researchers in computer science and electrical engineering discovered

two connections between sel�sh routing and methods of routing information in

computer networks, one obvious, the other less so. In order to emphasize the main

ideas behind these connections and avoid consideration of a number of details, the

following discussion is deliberately kept at a naive level.

The �rst interpretation of sel�sh routing for computer networks is for networks

that employ so-called source routing. Source routing means that if one computer

wants to send information to another, then the sender is responsible for selecting a

path of data links between the two machines. This task would typically be performed

by the computer's software, rather than manually by the actual computer user. In

networks with source routing, cost minimization is a natural goal for end users.

In this case, the road and computer network interpretations of sel�sh routing

correspond directly.

While the idea of source routing has generated a fair amount of research in

the computer networking community, for several reasons it is not common in real

networks. Routing is instead usually accomplished in a distributed fashion. In dis-

tributed routing, a computer selects only a single link along which to send infor-

mation. After the data crosses the link, it is then the next machine's responsibility

to see that the information continues toward its destination. The choice of this link

can depend on several factors, including the destination of the data and the current

network conditions.

A serious problem with distributed routing is that traÆc can travel in circles,

never arriving at its destination. Ignoring a host of implementation challenges, the

following is a solution to this problem. Each computer decides on a positive length

for the links that emanate from it. Each such link could have a �xed length, or the

lengths could be sensitive to the amount of congestion in the network. The length of

a path is the sum of the lengths of its individual links, and a shortest path between

two points is a path with length equal to or less than the length of every other

path. Since edge lengths are positive, a shortest path will not cycle back on itself.

Routing on shortest paths therefore avoids cycles. Moreover, practical distributed

implementations of algorithms that compute shortest paths between all pairs of

machines in a network exist, including some that form the basis of popular Internet

routing protocols.

Shortest-path routing leaves a key parameter unspeci�ed: the length of each
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edge. A direct correspondence between sel�sh routing and shortest-path routing

exists if and only if the edge cost functions coincide with the lengths used to de�ne

shortest paths. In other words, when an x fraction of the overall network traÆc is

using an edge with cost function c(�), then the corresponding shortest-path routing

algorithm should de�ne the length of the edge as the number c(x). If the cost

function c is nonconstant, then this is a congestion-dependent de�nition of the edge

length. In this case, shortest-path routing will route traÆc exactly as if it is a

network with sel�sh routing (or source routing). This establishes an equivalence

between sel�sh routing and the distributed routing common in real-life computer

networks. Section 1.5 gives pointers to rigorous proofs of this equivalence.

For example, the cost function c(x) of an edge might model the average delay

of traÆc on the edge, given that an x fraction of the network traÆc uses it. Sel�sh

routing with these cost functions models networks in which users pick paths with

minimum total delay. Shortest-path routing with these cost functions corresponds

to computers de�ning the length of each outgoing edge as the current average delay

experienced by data crossing the edge. The aforementioned equivalence implies that

traÆc is routed identically in these two di�erent scenarios.

1.3.3 Mechanical and Electrical Networks

Sel�sh routing also can be relevant in systems that have no explicit notion of traÆc

whatsoever, as an analogue of Braess's Paradox (Section 1.2.2) in a mechanical

network of strings and springs shows.

In the device pictured in Figure 1.3, one end of a spring is attached to a �xed

support, and the other end to a string. A second identical spring is hung from the

free end of the string and carries a heavy weight. Finally, strings are connected,

with some slack, from the support to the upper end of the second spring and from

the lower end of the �rst spring to the weight. Assuming that the springs are ideally

elastic, the stretched length of a spring is a linear function of the force applied to

it. We can therefore view the network of strings and springs as a traÆc network,

where force corresponds to traÆc and physical distance corresponds to cost.

With a suitable choice of string and spring lengths and spring constants, the

equilibrium position of this mechanical network is described by Figure 1.3(a).

Perhaps unbelievably, severing the taut string causes the weight to rise, as shown

in Figure 1.3(b)! An explanation for this curiosity follows. Initially, the two springs

are connected in series, and each bears the full weight and is stretched out to great

length. After cutting the taut string, the two springs are only connected in parallel.

Each spring then carries only half of the weight, and accordingly is stretched to only

half of its previous length. The rise in the weight is the same as the improvement
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(a) Before (b) After

Figure 1.3
Strings and springs. Severing a taut string lifts a heavy weight.

in the sel�sh outcome obtained by deleting the zero-cost edge of Figure 1.2(b) to

obtain the network of Figure 1.2(a). Because such systems of strings and springs

are essentially the same as networks with sel�sh routing, the bounds on the price of

anarchy that Chapter 3 describes also limit the largest-possible magnitude of this

counterintuitive e�ect.

Similarly, removing a conducting link from an electrical network can increase

its conductivity. Electrical networks are again the same as networks with sel�sh

routing, so bounds on the price of anarchy translate to limits on this increase of

conductivity.

1.3.4 Caveats

This section has demonstrated that sel�sh routing is a versatile model that captures

key features of a diverse collection of applications. The model does, however, possess

some weaknesses, especially in the context of routing in Internet-like computer

networks. Two of these follow, along with a critique of the price of anarchy. While

this is not an exhaustive list of the model's 
aws, these are arguably the most

fundamental. Many other assumptions made by the model can be removed, as
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A possibly unstable network.

Chapter 4 shows.

The �rst criticism of sel�sh routing applies to both the road and computer

network interpretations of the model: the model is static, while the world is dynamic.

When we prove bounds on the price of anarchy, we will assume that the network

has reached an \equilibrium." We already have an informal sense of what this

means from the examples in Section 1.2; Section 2.2 de�nes the notion formally.

Conceptually, the hope is that traÆc will experiment over time and reach an

equilibrium, but it is not clear that this will always occur, especially in networks

where parameters such as the traÆc rate are changing rapidly over time. For a

contrived example, replace the long, wide highway in Pigou's example with a second

short, narrow one (Figure 1.4). Imagine a computer at s that routes traÆc using

shortest-path routing with the cost functions c. Perhaps at �rst the computer routes

all of the traÆc on the upper route. Then, �nding that the upper edge has cost 1

and the lower edge cost 0, the computer reconsiders and routes all of the traÆc on

the lower edge. This undesirable oscillation can continue unabated.

In defense of studying equilibria, a variety of reasonably weak conditions are

known to be suÆcient for a network with sel�sh routing to settle into an equilibrium.

In the contrived example above, the obvious solution is to restrict the amount of

traÆc that can be rerouted at each time step.

Second, shortest-path routing in computer networks, and in the Internet in

particular, poses a particular challenge for the model. A network like the Internet

is volatile. Its traÆc patterns can change quickly and dramatically, and data links

and machines are constantly failing. The assumption of a static model is therefore

particularly suspect in such networks. Indeed, early versions of the Internet used

variants of delay-based distributed routing and su�ered from unstable behavior.
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Moreover, routing in the Internet today is often not sensitive to congestion. In

addition to its relative stability, this naive routing is common because economic

factors tend to overwhelm performance-based ones: cheap links are used even when

they are very congested. Of course, there is little hope of proving anything about

performance-ignorant routing. Indeed, recent experiments have demonstrated that

current routing in the Internet is highly ineÆcient. Because of this, congestion-

sensitive routing has been making a bit of a comeback, at least within the research

community. If widely adopted, this would improve the accuracy of the correspon-

dence between sel�sh routing and distributed routing in large, real-life networks.

See Section 1.5 for references on these developments.

As a �nal critique, the price of anarchy|de�ned in Section 2.3 as the worst-

possible ratio between the average travel time of a sel�sh solution and the smallest

achievable average travel time|is by de�nition a worst-case measure. Worst-

case analysis has long inspired heated debate. Worst-case bounds are of course

compelling when they exist, but worst-case analysis can focus undue attention on

contrived bad examples|akin to ignoring a lush forest for the sake of a few dead

trees. On the other hand, alternatives to worst-case analysis usually must de�ne

what a \typical case" or an \average-case analysis" means, and no such de�nition is

without its own controversy. Also, these alternatives are often less mathematically

tractable than their worst-case counterparts.

Most of this book adopts the worst-case approach. Fortunately, interesting

worst-case bounds can usually be established for the price of anarchy. Moreover,

Part II demonstrates that worst-case examples are often similar to networks that

can arise in practice. Nevertheless, the pursuit of alternatives to worst-case analysis

remains an important and largely unexplored research direction.

1.4 How to Read this Book

1.4.1 Prerequisites

This book has few prerequisites, other than mathematical maturity. On occasion it

assumes a bit more, as follows. A few proofs assume that the reader remembers

some basic calculus and analysis, mostly to use derivatives to approximate a

function, and to use the fact that a continuous real-valued function de�ned on

closed and bounded subset of Euclidean space attains its minimum. The reader with

no exposure to mathematical programming should skip the proofs in Sections 2.4

and 2.6 and that of Lemma 4.3.6. The reader is assumed to be familiar with the

theory of NP-completeness only in Sections 5.3 and 6.6, although the language of
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Table 1.1
Prerequisites needed for particular sections of the book.

Prerequisite Needed for parts of. . .

Calculus/Analysis Sections 2.4, 2.6, 3.2, 3.5 and 4.3

Convex Programming Sections 2.4, 2.6, and 4.3

NP-Completeness Sections 5.3 and 6.6

complexity theory also occurs in a few other places. To navigate these, the reader

unfamiliar with computational complexity can simply translate \polynomial-time"

as \computationally eÆcient," \NP-complete" and \NP-hard" as \computationally

intractable," and take P 6= NP as an axiom. See Table 1.1 for a summary of these

prerequisites.

Prior exposure to the language of graphs, as provided by an undergraduate

course in algorithms or in combinatorics, will also be very useful. Experience with

network 
ow or combinatorial optimization is ideal. The presentation here is self-

contained, but it will probably seem a bit terse to readers without this background.

Finally, while the book sometimes uses the language of game theory, no prior

knowledge of the �eld is required. The chapter notes also discuss some of the

connections between the work described in this book and classical game theory.

1.4.2 Dependencies

Chapter 2 is a prerequisite for all that follows, though most of its sections are

required only for a subset of the rest of the book. This breakdown is discussed in

detail in the chapter's introduction. Chapters 3, 5, and 6 can be read independently

of each other, although Chapter 5 uses some of the results from Chapter 3. Chapter 4

is meant to be read after Chapter 3.

1.5 Notes

Section 1.1

The term \sel�sh routing" is originally due to Roughgarden and Tardos [347], though the
mathematical model that it refers to is much older. This model was discussed qualitatively
by Pigou [320] and Knight [227] in the 1920s. In the 1950s, Wardrop [394] and Beckmann,
McGuire, and Winsten [40] formalized the model, and sel�sh routing has been intensely
studied ever since. Chapter 2 discusses this history in much greater detail. There have
also been innumerable other applications of game theory to networks over the past several
decades. See the end of Section 3.7; the papers by Shenker [360], Altman et al. [10], and
Linial [258]; and the references therein for many examples.
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The concept of the price of anarchy originated in Koutsoupias and Papadimitriou [239],
where it was called the coordination ratio. Section 3.7 discusses in depth the model studied
in [239]. The phrase \price of anarchy" was coined by Papadimitriou [303]. There were
several precursors to this concept, however, as Section 2.8 discusses.

\Coping with sel�shness" is meant to parallel the expression \coping with NP-
completeness," which was popularized by Garey and Johnson [172] and refers to methods
for evading the (presumed) worst-case computational intractability of important NP-
complete problems. Part III of this book describes only two of the many known ways
to reduce the price of anarchy; for example, the vast and important topic of economic
incentives, such as taxes and subsidies, will be touched on only brie
y in Sections 5.3
and 6.7.

Section 1.2

Pigou's example and Braess's Paradox �rst appeared in Pigou [320] and Braess [64], re-
spectively. Murchland [285] was the �rst to describe Braess's Paradox in English. The
quantitative details in Section 1.2, such as the network cost functions, are somewhat di�er-
ent than in Pigou's and Braess's original formulations. They are taken from Roughgarden
and Tardos [348] and L. Schulman (personal communication, October 1999), respectively.
Chapter 5 studies Braess's Paradox in depth.

The �rst moral of Section 1.2, that sel�sh behavior need not yield a socially optimal
outcome, is arguably as old as economics itself. In the language of economics, this moral
states that a sel�sh outcome can be Pareto ineÆcient|there can be a di�erent outcome in
which someone is better o� while no one is worse o�. Perhaps the most canonical example
in game theory of the Pareto ineÆciency of sel�sh behavior is the Prisoner's Dilemma.
In the Prisoner's Dilemma, two prisoners have been captured and are to be interrogated
separately by the authorities. Each prisoner has to plead guilty or not guilty to the charges
and is aware of the following possible outcomes. If both prisoners plead not guilty, the
authorities lack suÆcient evidence to convict them, and they will both go free. If both
plead guilty, then both receive moderate jail terms. If exactly one of them pleads guilty,
then the confessor is set free and given a reward for the information, while the other
prisoner is given a draconian jail sentence. If the prisoners could coordinate, they would
both plead not guilty. In the absence of cooperation, however, the incentives are clear:
each prisoner is strictly better o� by confessing, no matter what the other prisoner says.
We therefore expect sel�sh behavior to result in both prisoners confessing and serving
time. As in Braess's Paradox, everyone su�ers in the sel�sh outcome, relative to what can
be achieved with cooperation. For more on the Prisoner's Dilemma and its history, see
Rai�a [325] and the book by Rapoport and Chammah [326]. For further discussion of the
Pareto ineÆciency of sel�sh behavior, see Dubey [128] or Cohen [81].

Analogues of the second moral of Section 1.2 are also known in many di�erent contexts;
some of these are surveyed in Section 5.4.

Section 1.3

Sel�sh routing was originally introduced to model transportation networks, and Chapter 2
discusses this history in detail. Its application to computer networks, with both source and
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distributed routing, is somewhat more recent. Cantor and Gerla [72], Gallager [170], and
Stern [375] are good early references on the topic. Bertsekas and Tsitsiklis [51]|especially
Sections 3.5, 5.6, and 7.6|is a nice textbook treatment. Both [72] and [51], and more
recently Friedman [164], give details on the equivalence between sel�sh and shortest-path
routing discussed in Section 1.3.

Most networking textbooks contain far more details about the nuts and bolts of imple-
menting a distributed routing protocol than are included in Section 1.3. Examples include
Bertsekas and Gallagher [50], Keshav [224], Peterson and Davie [318], and Walrand [393].

The mechanical and electrical network examples of Section 1.3.3 were �rst given
by Cohen and Horowitz [82]. Other connections between traÆc equilibria and these
physical networks were discussed earlier by DuÆn [129] and Enke [134]. Penchina and
Penchina [314] o�er advice on realizing the strings and springs system of Figure 1.3.

Just as the applications of Sections 1.3.1{1.3.3 are intended to demonstrate that sel�sh
routing is a useful and 
exible mathematical model, the caveats of Section 1.3.4 are meant
as a caution against overzealous interpretations of the results of this book. For example,
despite the connotations of a recent New York Times article [26], there is no easy way
to translate the theoretical work of this book into a better Internet. Nonetheless, the
techniques described in this book should �nd use as a tool to analyze congestion-sensitive
routing in a variety of network applications.

The �rst caveat of Section 1.3.4 is that the sel�sh routing model studied in this book
assumes convergence to an equilibrium; the example shown in Figure 1.4 is essentially
due to Friedman (see [26]). This issue is reasonably well understood for transportation
networks. First, there are numerous more general models of sel�sh routing that explicitly
account for dynamics; some of these are surveyed in Section 2.8. Second, convergence to the
static equilibrium in such networks has been veri�ed both experimentally and theoretically.
See [146, 156, 165, 251, 262, 291, 368, 405], for example, for further details.

Khanna and Zinky [226] and the references therein describe how delay-based dis-
tributed routing was implemented in the early Internet, and discuss how these implemen-
tations can fail to converge to an equilibrium. See also Keshav [224, x11.7]. On the other
hand, careful implementations can be proven to converge in networks that are not too
volatile. See, for example, Bertsekas and Tsitsiklis [51] and the related research papers
by Tsitsiklis and Bertsekas [385] and Tsai, Tsitsiklis, and Bertsekas [384]. Other ways to
improve the stability of congestion-sensitive shortest-path routing are given by, among
others, Khanna and Zinky [226] and Chen, Druschel, and Subramanian [76].

Savage et al. [352] describe experiments that demonstrate the ineÆciency of current
(congestion-insensitive) Internet routing and discuss some possible alternatives. The po-
tential bene�ts of congestion-sensitive routing in the Internet are also mentioned in many
other papers, including in [76, 226].

Worst-case analysis has long been central to theoretical computer science, dating back
to an early obsession with the worst-case running time of computer algorithms (see e.g. [4]).
For further discussion of its merits and drawbacks see, for example, Aho, Hopcroft, and
Ullman [4], Ahuja, Magnanti, and Orlin [5], or Kozen [240]. Chapters 5 and 6 of this book
consider approximation algorithms, which exemplify another type of worst-case analysis.
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Prerequisites

The following are some favorite references for the topics that Section 1.4.1 discusses. The
few facts from calculus and analysis used here are covered in Mardsen and Ho�man [268],
Rudin [350], and Spivak [371]. Hillier and Lieberman [193] and Peressini, Sullivan, and
Uhl [316] provide elementary introductions to mathematical programming. Garey and
Johnson [172] and Papadimitriou [302] are good references for NP-completeness. Ahuja,
Magnanti, and Orlin [5], Cook et al. [90], Papadimitriou and Steiglitz [306], and Tar-
jan [380] are among the many excellent texts on combinatorial optimization and network

ow. Lastly, standard introductions to game theory include Fudenberg and Tirole [166],
Mas-Colell, Whinston, and Green [270], Osbourne and Rubinstein [300], and Owen [301].
Also, StraÆn [377] is good for a quicker, less technical introduction to game theory.


