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Congestion games model several interesting applications, including routing and network formation games,
and also possess attractive theoretical properties, including the existence of and convergence of natural
dynamics to a pure Nash equilibrium. Weighted variants of congestion games that rely on sharing costs
proportional to players’ weights do not generally have pure-strategy Nash equilibria. We propose a new way
of assigning costs to players with weights in congestion games that recovers the important properties of the
unweighted model. This method is derived from the Shapley value, and it always induces a game with a
(weighted) potential function. For the special cases of weighted network cost-sharing and weighted routing
games with Shapley value-based cost shares, we prove tight bounds on the price of stability and price of
anarchy, respectively.
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1. Introduction. Congestion games are a well-studied generalization of several game-
theoretic models, including some fundamental network formation games and routing games. In the
standard model [22], there is a ground set of resources, and each player has a set of allowable strate-
gies, each of which is a subset of resources. For example, the strategies of a player could correspond
to the paths of a network with a given source and sink. Each resource has a per-user cost that
depends on the number of players that use it, and the goal of each player is to minimize the sum
of the resources’ costs in its strategy, given the strategies chosen by the other players. In atomic
selfish routing games [23, 26], strategies correspond to paths and the per-unit cost function ce(·) of
each resource e is nondecreasing. In network cost-sharing games [2], strategies correspond to paths
and the (decreasing) cost functions have the form ce(xe) = γe/xe, where γe is the fixed installation
cost of edge e and xe is the number of players that share it.

A pure Nash equilibrium (PNE) is a strategy profile such that no player can decrease its cost via
a unilateral deviation. Many games, such as “Rock-Paper-Scissors”, have no PNE. Rosenthal [22]
used a potential function argument to show that every congestion game — and thus every atomic
selfish routing and network cost-sharing game — has at least one PNE. Moreover, best-response
dynamics is guaranteed to converge to a PNE [18].
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Every player of a congestion game imposes the same load on a resource. There are many
motivations for relaxing this assumption and allowing non-uniform resource consumption. For
example, in a network context, players could have different durations of resource usage, different
bandwidth requirements, or different contracts with the network provider. Almost all research to
date has modeled non-uniform players in congestion-type games through proportional cost shar-
ing [1, 2, 3, 4, 5, 8, 11, 12, 17, 18]. The first assumption in proportional cost sharing is that
each player i has a positive weight wi, with larger weights indicating larger resource usage. To
explain the second assumption in a general way, let Ce(Se) denote the joint cost incurred by the
subset Se of users of the resource e. For example, in a network cost-sharing game, Ce(Se) is the
fixed cost γe provided Se is non-empty (and is 0 otherwise). In (weighted) atomic selfish rout-
ing, Ce(Se) is xe · ce(xe), where ce(·) is the per-flow unit resource cost function and xe =

∑
i∈Se

wi

is the total weight of the players using e. Proportional cost sharing dictates that each player i∈ Se

pays a wi/
∑

j∈Se
wj fraction of Ce(Se) for the resource e.

Unfortunately, most of the attractive theoretical properties of congestion games do not carry
over to their weighted counterparts with proportional cost sharing. Network cost-sharing games
with at least three players need not have a PNE [5]. Even when PNE do exist in such games, they
can be much costlier (relative to an optimal solution) than in the unweighted case [2, 5]. Atomic
selfish routing games with weighted players do not generally have PNE [9, 11, 23], except when all
cost functions are affine [7] and in some other isolated special cases [11].

Guaranteed existence of PNE is an important property. There are, of course, more general equi-
librium concepts like the mixed-strategy Nash equilibrium that are guaranteed to exist in every
finite game, but randomized solution concepts suffer from well-known drawbacks in interpretation
and implementation (see e.g. [21, §3.2]). Particularly when designing or influencing the game being
played, there is good reason to make design decisions that guarantee the existence of and conver-
gence of natural dynamics to a PNE. Previous works have studied how to design systems with such
guarantees in the domains of queuing [19, 20, 28], network cost-sharing [6, 10], and distributed
resource allocation [16].

1.1. Our Contributions. We propose a new way of assigning costs to players with weights
in congestion-type games, which is derived from the Shapley value. We call the resulting class of
games SV weighted congestion games. Extending work of Hart and Mas-Colell [13], we show that
every SV weighted congestion game admits a (weighted) potential function. The existence of and
convergence of natural dynamics to a PNE in every such game follow immediately.

For example, for the special case of atomic selfish routing games, we derive the cost shares for the
users Se of edge e by applying the standard Shapley value (defined in the next section) to the cost
function Ce(·) above with the player set Se. Since the incremental effect of a player on the joint cost
is increasing in its weight, so is its cost share. These Shapley value-based cost shares coincide with
proportional shares when all per-user cost functions are affine, but not otherwise (Figure 1(a)).
These results explain the previously mysterious fact that the traditional proportional cost shares
always yield a potential game if and only if all cost functions are affine [7, 11].

For the special case of network cost-sharing games, the symmetric joint cost function Ce(·) is
insensitive to players’ weights. To introduce weight-dependent cost shares, we use the weighted
Shapley value [14, 27], which averages over orderings of the players in a non-uniform way (see the
next section for a definition). The resulting cost shares are increasing in weight, and coincide with
proportional shares (for all weight vectors) if and only if there are at most two players (Figure 1(b)).
These facts explain why, with proportional cost shares, PNE always exist with two players [2] but
not with at least three [5].

We also provide tight bounds on the inefficiency of equilibria in SV weighted network cost-sharing
and atomic selfish routing games. For weighted atomic selfish routing games, we give tight bounds
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Figure 1. Comparison of traditional proportional cost shares with the Shapley value cost shares proposed in the
present work.

Table 1. The POA in weighted routing games with
polynomial cost functions with nonnegative coeffi-
cients, for proportional cost shares (when PNE exist)
and for Shapley cost shares.

Degree Proportional Shapley

1 2.618 2.618
2 9.909 12.626
3 47.82 101.58
4 277.0 1,117.78
5 1,858 15,195
6 14,099 244,399
7 118,926 4,536,010
8 1,101,126 95,410,300

d Θ( d
log d

)d+1 Θ(d)d+1

on the worst-case price of anarchy (POA) [15] — the ratio between the cost of the worst PNE and
of an optimal outcome — with respect to every set of convex cost functions and a worst-case set of
player weights. This worst-case POA is slightly larger than that in weighted congestion games with
proportional cost shares that have PNE. For example, in routing games with cost functions that are
polynomials with degree at most d and nonnegative coefficients, the POA with proportional cost
shares is ≈ (c1d/ lnd)d+1 (when PNE exist) [1] and with Shapley value cost shares is ≈ (c2d)d+1,
where c1 ≈ 1.3 and c2 ≈ 0.9 are constants independent of d. See also Table 1. We establish these
POA upper bounds with a “smoothness proof” in the sense of Roughgarden [24], so these upper
bounds apply more generally to all mixed Nash, correlated, and coarse correlated equilibria of
these games. Thus, Shapley cost shares restore PNE to weighted routing games at the expense of
modestly more inefficiency.

For network cost-sharing games, we focus on the price of stability (POS) [2], which is the ratio
between the cost of the best PNE and of an optimal solution. The worst-case POA is uninteresting
in such games because it equals k, the number of players, no matter how players’ cost shares are
defined [6, Proposition 4.12]. Our main result here is a characterization of the POS as a function
of the weight vector w. For every w, we give an explicit lower bound on the POS and prove a
matching upper bound for all networks. The special case of w = (1,1, . . . ,1) — where the worst-
case POS is the kth Harmonic number — is one of the main results in Anshelevich et al. [2]. Our
lower bound is a straightforward extension of that in [2], but our matching upper bound requires a
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fundamentally new argument. The upper bound in [2] for unweighted players follows directly from
the proximity between the potential and objective functions; with weighted players, the difference
between these two functions can be arbitrarily larger than the POS. Our characterization implies,
for example, that the POS remains O(logk) if players’ weights differ by a constant factor, and
is O(

√
k) when wi = i for i = 1,2, . . . , k. With proportional cost shares, when PNE exist, the

POS can be as large as the sum of the players’ weights (assuming that mini wi = 1) [5]. In this
sense, weighted Shapley cost shares both restore PNE to weighted network cost-sharing games and
decrease the inefficiency of such equilibria.

2. The Weighted Shapley Value. We first recall the weighted Shapley value [14, 27]. Con-
sider a set S of players and a cost function C : 2S →R. (For us, S is the users of a resource and C(T )
is the joint cost that would be incurred if the players of T ⊆ S were its sole users.) For a given
ordering π of the players, let ∆i(π) denote C(Si(π) ∪ {i})− C(Si(π)), where Si(π) denotes the
players preceding i in π.

Each player has a positive weight wi and a sampling parameter λi set to 1/wi [14, 27]. We use
the λi’s to define a distribution over orderings of players, as follows. (When all λi’s are equal, we
recover the uniform distribution and the usual Shapley value.) We first choose the final player in the
ordering, with probabilities proportional to the λi’s; given this choice, we choose the penultimate
player randomly from the remaining ones, again with probabilities proportional to the λi’s; and so
on. The weighted Shapley value of player i is defined as the expected value of ∆i(π) with respect
to this distribution over orderings π.

3. Congestion Games with Shapley Value Cost Shares. Sections 3.1 and 3.2 propose
novel cost shares with weighted players in network cost-sharing games and routing games, respec-
tively, which ensure the existence of pure-strategy Nash equilibria. Section 3.3 explains the general
construction for arbitrary congestion games.

3.1. Network Cost-Sharing Games. In an SV network cost-sharing game, each player i =
1,2, . . . , k has a weight wi ≥ 1 and a sampling parameter λi = 1/wi. We can assume that w1 ≤
w2 ≤ . . .≤ wk and we do so for the rest of the paper. Player i aims to construct a path Pi from
a given node si to a given node ti in a directed graph G = (V,E), where every e ∈E has a fixed
nonnegative cost γe. With respect to a fixed path vector P , we write Se for the users of edge e.
The cost function Ce corresponding to edge e is Ce(Se) = γe if Se 6= ∅ and Ce(Se) = 0 if Se = ∅.

We next give a probabilistic representation of weighted Shapley cost shares and the corresponding
potential function, in terms of independent exponentially distributed random variables. Let T be
a subset of the players. For every player i ∈ T , let Xi be an exponentially distributed random
variable with rate λi. We then define the per-unit weighted Shapley share of i on an edge e used
by the players T as the probability that Xi is the largest random variable among those associated
with T .

Definition 3.1. In an SV network cost-sharing game, the weighted Shapley share of player i∈
Se for using the edge e is

χi,e(Se) = γe ·Pr
[
Xi = max

j∈Se

Xj

]
. (1)

For the joint cost functions under discussion (equal to γe for every non-empty set), Definition 3.1
coincides with the definition given in Section 2. Precisely, the distribution over orderings π described
in Section 2 is the same as the distribution induced by the relative values of exponential random
variables with rates λi, sorted from largest to smallest [14]. Since the value ∆i(π) is γe for the first
player of π and 0 otherwise, the equivalence follows.
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Weighted Shapley shares are always increasing in a player’s weight. If a set Se contains at most
two players, then the cost shares of Definition 3.1 are proportional to the players’ weights. This is
not generally true with three or more players.

Example 3.1. Suppose γe = 1 and Se = {1,2} with w1 = 1 and w2 = 2. Since the edge has unit
cost, the weighted Shapley share of player 1 is the probability that 1 is first in the random ordering
described in Section 2. Hence it is equal to the probability that 2 is picked in the first sampling
step, which gives us

χ1,e({1,2}) =
1

w2

1
w1

+ 1
w2

=
1
3
.

Similarly, χ2,e({1,2}) = 2/3, and the cost shares are proportional to the players’ weights. Now
suppose that player 3 with w3 = 1 joins edge e. The weighted Shapley share of 1 is again the
probability that 1 is first in the random ordering. This is now

χ1,e({1,2,3}) =
1

w2

1
w1

+ 1
w2

+ 1
w3

·
1

w3

1
w1

+ 1
w3

+
1

w3

1
w1

+ 1
w2

+ 1
w3

·
1

w2

1
w1

+ 1
w2

=
7
30

.

Since w3 = w1, we also have χ3,e({1,2,3}) = 7/30, and then χ2,e({1,2,3}) = 1−2 · 7
30

= 8/15. These
cost shares are not proportional to the players’ weights.

We next show that every SV network cost-sharing game with the cost shares of Definition 3.1
admits a (weighted) potential function. Define the function Φ by

Φ(P ) =
∑
e∈E

Φe(P ), (2)

where the edge potential Φe is defined as

Φe(P ) = γe ·E
[
max
j∈Se

Xj

]
.

Proposition 3.1. For every pair P and P ′ = (P−i,P
′
i ) of path vectors that differ only in the ith

component,
Φ(P ′)−Φ(P ) = wi · (Ci(P ′)−Ci(P )) , (3)

where Ci denotes the sum of the cost shares paid by player i.

Proof. We prove that every edge contributes the same amount to the left- and right-hand sides
of (3). If e ∈ Pi ∩ P ′

i or e /∈ Pi ∪ P ′
i , there is nothing to prove. By symmetry, we can assume

that e∈ P ′
i \Pi. We need to show that

Φe(P ′)−Φe(P ) = wi ·χi,e(Se ∪{i}), (4)

where Se is the set of players that use e in P .
The left-hand side of (4) is the difference between

Φe(P ′) = γe ·E
[

max
j∈Se∪{i}

Xj

]
and Φe(P ) = γe ·E

[
max
j∈Se

Xj

]
.

The maxima inside the expectations are different only when Xi is larger than the correspond-
ing random variable of every player of Se. Conditioning on this event and using the fact that
the exponential distribution is memoryless, the conditional expected difference between the two
maxima is 1/λi = wi. Hence Φe(P ′)−Φe(P ) = wi · γe ·Pr [Xi = maxj∈T Xj] = wi ·χi,e(Se ∪ {i}), as
claimed. �
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As in Rosenthal [22] and Monderer and Shapley [18], the existence of a weighted potential
function has immediate consequences. First, by (3), the outcome with minimum potential function
value is a PNE. Moreover, every iteration of best-response dynamics — in which a player switches
strategies to strictly decrease its cost — strictly decreases the potential function. Thus, best-
response dynamics converges, necessarily to a PNE.

Corollary 3.1. In every SV network cost-sharing game, best-response dynamics converges to
a PNE.

3.2. SV Atomic Selfish Routing. In a SV atomic selfish routing game, each player i =
1,2, . . . , k has a weight wi and selects a path Pi from a node si to a node ti in a given graph G =
(V,E). For every edge e∈E, the per-unit cost function ce(·) is nonnegative and nondecreasing. Its
users Se have to pay a joint cost of

Ce(Se) = xe · ce(xe), (5)

where xe is their total weight.
The joint cost function (5) is asymmetric, meaning that its value depends on the identities of the

players in the set Se and not just on |Se|. This in is a contrast with weighted network cost-sharing
games, where the asymmetry was exogenous to the (symmetric) joint cost function. For this reason,
the standard (unweighted) Shapley value already gives meaningful weight-dependent cost shares in
routing game with non-uniform player weights, and these are the cost shares proposed below. That
is, we take the sampling parameter λi from Section 2 to be 1 for every player i (and not 1/wi).
Section 3.3 outlines a natural generalization that accommodates both asymmetric cost functions
and exogenous player asymmetry.

Definition 3.2. In an SV atomic selfish routing game, the Shapley share of player i ∈ Se on
edge e is

χi,e(Se) = E
[
Ce(Si

e(πe)∪{i})−Ce(Si
e(πe))

]
,

where Si
e(πe) denotes the players preceding i in πe, a uniformly random ordering of Se.

The cost shares in Definition 3.2 are generally proportional to players’ weights if and only if the
per-unit cost function ce is affine.

Example 3.2. Suppose ce(x) = x and Se = {1,2} with w1 = 1 and w2 = 2. Then the joint cost
that the players have to share is (w1 +w2)2 = 9. The Shapley share of player 1 is

χ1,e({1,2}) =
1
2
·w2

1 +
1
2
·
(
(w1 +w2)2−w2

2

)
= 3.

Similarly we get χ2,e = 6 and see that the cost shares are proportional. Now suppose that ce(x) = x2

and Se remains the same. The joint cost is (w1 +w2)3 = 27 and

χ1,e({1,2}) =
1
2
·w3

1 +
1
2
·
(
(w1 +w2)3−w3

2

)
= 10, and

χ2,e({1,2}) =
1
2
·w3

2 +
1
2
·
(
(w1 +w2)3−w3

1

)
= 17;

thus, the cost shares are not proportional.

Define a function Φ by
Φ(P ) =

∑
e∈E

Φe(P ),
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where the edge potential Φe is defined as

Φe(P ) =
∑
i∈Se

χi,e(Si
e(π)∪{i}) (6)

for some ordering π on Se. For this definition to make sense, it must be the case that the right-
hand side of (6) is independent of the ordering π. This is a special case of a result of Hart and
Mas-Colell [13] (see Section 3.3), for which we give a direct proof.

Proposition 3.2. For every joint cost function C with player set S, the value of∑
i∈S

Eτ i

[
C(Si(π, τ i)∪{i})−C(Si(π, τ i))

]
(7)

is the same for every ordering π of S, where τ i is a permutation of Si(π)∪ {i} chosen uniformly
at random and Si(π, τ i) denotes the players of S that precede i in both π and τ i.

Proof. For a fixed ordering π of the players, the quantity in (7) can be written as a sum of
the form

∑
T⊆S aT c(T ) for some set {aT}T⊆S of coefficients. We now explicitly compute these

coefficients and show that they do not depend on π.
Fix a subset T ⊆ S. With respect to the ordering π, let i denote the last player of T , say in

position `. There is a positive contribution to the coefficient aT from the `th summand of (7),
and a negative contribution from all subsequent summands. The positive contribution equals the
probability that, among all random orderings of the players of Si(π)∪ {i}, the players of T come
first and player i is the last of these. This probability is

(|T | − 1)!(`− |T |)!
`!

.

Let ij denote the jth player in the ordering π for some j > `. The negative contribution to the
coefficient aT by the jth summand of (7) equals the probability that, among all random orderings
of the first j players under π, the players of T come first and are immediately followed by player ij.
This probability is

|T |!(j− |T | − 1)!
j!

.

Summing over all players j > ` after T under π and rewriting, we obtain

aT = (|T | − 1)!

[
1

`(`− 1) · · · (`− |T |+1)
−

k∑
j=`+1

|T |
j(j− 1) · · · (j− |T |+1)(j− |T |)

]
, (8)

where k is the number of players in S. Since

|T |
j(j− 1) · · · (j− |T |+1)(j− |T |)

=
(

1
(j− 1) · · · (j− |T |+1)(j− |T |)

− 1
j(j− 1) · · · (j− |T |+1)

)
for every j > `, the sum in (8) telescopes and hence

aT =
(|T | − 1)!

k(k− 1) · · · (k− |T |+1)
,

which is a function only of the sizes k and |T | and is independent of the position ` of the final
element of T in π. We conclude that the sum (7) is the same for every ordering π of the players S.

�
The fact that the function Φ is a potential function now follows easily.
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Proposition 3.3. For every pair P andP ′ = (P−i,P
′
i ) of path vectors that differ only in the ith

component,
Φ(P ′)−Φ(P ) = Ci(P ′)−Ci(P ). (9)

Proof. As in the proof of Proposition 3.1, we can focus on a single edge e∈ P ′
i \Pi. By Proposi-

tion 3.2, we can compute the contribution of e to the left-hand side of (9) using an ordering π of
the players in which i follows all of the players of Se. Then, edge e contributes exactly χi,e(Se∪{i})
to both sides of (9). �

Corollary 3.2. In every SV atomic selfish routing game, best-response dynamics converges
to a PNE.

3.3. Arbitrary Congestion-Type Games The (weighted) Shapley shares in Definitions 3.1
and 3.2 can be generalized to arbitrary congestion-type games. Consider a resource set E and a
player set S = {1,2, . . . , k}, where each resource e has a joint cost functions Ce : 2S → R defined
on the subsets of S, and each player i has a strategy set Pi ⊆ 2E and a positive weight wi. For a
resource e, subset Se of players, and a player i∈ Se, define the weighted Shapley share χi,e(Se) of i
for resource e when its users are Se as its weighted Shapley value (Section 2) in the game with
player set Se and cost function Ce restricted to 2Se . The cost Ci(P ) to a player i in a strategy
profile P is then defined as the sum of its cost shares:

Ci(P ) =
∑
e∈Pi

χi,e(Se),

where Se = {j ∈ S : e∈ Pj} denotes the users of resource e in the profile P .
We claim that every game defined in this way admits a weighted potential function and hence

best-response dynamics converges to a PNE. The argument follows that in Section 3.2. Define a
function Φ =

∑
e∈E Φe(P ) in which the edge potential Φe is defined as

Φe(P ) =
∑
i∈Se

wi ·χi,e(Si
e(π)∪{i}) (10)

for some ordering π on the players Se using e in P . Hart and Mas-Colell [13] proved that the right-
hand side of (10) is independent of the ordering π, for every joint cost functions Ce and positive
weight vector w. The proof that Φ is a weighted potential function is the same as in the proof of
Proposition 3.3.

4. The Price of Stability in SV Network Cost-Sharing Games. This section provides
tight bounds on the price of stability in SV network cost-sharing games — the ratio between the
cost of the best PNE and the minimum-cost outcome. It is easy to see that, for every weight vector
with k players, the worst PNE of such a game can cost k times as much as an optimal solution,
and that this is tight [6].

Section 4.1 generalizes a construction of Anshelevich et al. [2] to players with general weights.
Section 4.2 is the primary contribution of this section, a matching upper bound for every positive
weight vector.

4.1. POS Lower Bound. Consider a graph G = (V,E) and players i = 1,2, . . . , k with distinct
source vertices s1, . . . , sk and a common sink vertex t; see also Figure 2. As usual, we assume
that w1 ≤w2 ≤ · · · ≤wk. The graph has one additional vertex v. There is an edge from v to t with
cost 1 + ε, where ε > 0 is arbitrarily small. For each i, there is a zero-cost edge from si to v. For
each i, the edge from si to t is set to the weighted Shapley share of the ith player for a unit-cost
edge shared by players with weights w1,w2, . . . ,wi; we denote the quantity by ci({w1,w2, . . . ,wi}).
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c1({w1})

w1

v

t

w2 wk1 + ε

0

. . .

0 0

ck({w1, w2, . . . , wk})c2({w1, w2})

Figure 2. Proof of Proposition 4.1. The worst-case price of stability is at least the expression in (11).

In the graph G, each player i can either use the path si → v→ t, or use the direct edge from si

to t. The optimal solution, in which every player i chooses the path si → v → t, has cost 1 + ε.
We claim that in the unique PNE of this SV network cost-sharing game, every player i chooses
the direct si-t edge. To see this, consider the player k with the largest weight. The smallest cost
it could have by taking the two-hop path is (1 + ε) · ck({w1,w2, . . . ,wk}), which occurs when all
players share the edge from v to t. This is larger than the cost of its one-hop path. Hence, in
every PNE, player k uses its one-hop path and does not share the edge from v to t. The same
reasoning applies inductively, showing that in every PNE, every player uses its one-hop path. This
construction gives the following lower bound for every positive weight vector w.

Proposition 4.1. For every set of k players with positive nondecreasing weight vector w, the
worst-case price of stability in SV network cost-sharing games with weight vector w is at least

k∑
i=1

ci({w1,w2, . . . ,wi}). (11)

Setting w = (1,1, . . . ,1) recovers the well-known lower bound of Hk on the price of stability with
unweighted players [2].

4.2. POS Upper Bound. The goal of this section is to prove that the lower bound in
Proposition 4.1 is tight for every weight vector w.

Theorem 4.1. For every SV network cost-sharing game with player set S = {1,2, . . . , k} and
positive nondecreasing weight vector w, the price of stability is at most

k∑
i=1

ci({w1,w2, . . . ,wi}). (12)

The special case of unweighted players, where the bound (12) is the kth Harmonic number Hk,
has a short proof: the potential function Φ in (2) is always at least and never more than Hk times
the cost of an outcome, so the potential function minimizer (a PNE) has cost at most Hk times
that of an optimal outcome. With weighted players, the weighted potential function (2) need not
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approximate the cost of an outcome to any non-trivial factor, and a different argument is called
for.

The high-level plan is as follows. We consider a minimum-cost outcome P ∗ and the outcome P
that minimizes the weighted potential function Φ (2). To bound the cost of P in terms of P ∗, we
transform P ∗ into P one component at a time, in decreasing order of player weight. The change in
outcome cost is the change in the deviating player’s cost, which we can bound using the weighted
potential function, plus the change in other players’ cost. We argue that the worst case occurs
when the deviating player abandons all edges it was using previously and switches only to edges
that were previously unused. Bounding the cost of this worst case yields the theorem.

Before proceeding to the formal proof of Theorem 4.1, we prove a technical lemma. It states that
the upper bound in (12) is nondecreasing in the player set. This is not obvious, as deleting a player
removes one summand from (12) but also increases the value of some of the remaining summands.

Lemma 4.1. For every set S = {1,2, . . . , k} of players with nondecreasing positive weight vec-
tor w, and every player j ∈ S,

k∑
i=1

ci({w1,w2, . . . ,wi})≥
j−1∑
i=1

ci({w1,w2, . . . ,wi})+
k∑

i=j+1

ci({w1,w2, . . . ,wj−1,wj+1, . . . ,wi}). (13)

Proof of Lemma 4.1. The first j − 1 summands on both sides are the same. Only the left-hand
side of (13) has a summand with i = j, namely cj({w1,w2, . . . ,wj}). For i > j, the ith summand
on the left-hand side (ci({w1,w2, . . . ,wi})) is smaller than the corresponding summand on the
right-hand side (ci({w1,w2, . . . ,wj−1,wj+1, . . . ,wi})). To calculate the difference, we turn to the
probabilistic representation of weighted Shapley shares in terms of exponentially distributed ran-
dom variables X1, . . . ,Xk (Section 3.1).

In the right-hand side summand, the random variable Xi does not have to compete with Xj

in order to be the largest. Hence, the event that Xi is smaller than Xj but larger than
every other player’s random variable contributes to ci({w1,w2, . . . ,wj−1,wj+1, . . . ,wi}) but not
to ci({w1,w2, . . . ,wi}). We denote this probability by pj(i). Recalling the density and distribution
functions of exponentially distributed random variables, we have

pj(i) =
∫ ∞

0

λie
−λixe−λjx

j−1∏
l=1

(
1− e−λlx

) i−1∏
l=j+1

(
1− e−λlx

)
dx.

Recalling that w1 ≤ w2 ≤ · · · ≤ wk and hence λ1 ≥ λ2 ≥ · · · ≥ λk, the difference ∆ between the
left-hand and right-hand sides of (13) is

∆ = cj({w1,w2, . . . ,wj})−
k∑

i=j+1

pj(i)

=
∫ ∞

0

λje
−λjx

j−1∏
l=1

(1− e−λlx)−
k∑

i=j+1

λie
−λixe−λjx

i−1∏
l=1,l 6=j

(1− e−λlx)dx

≥
∫ ∞

0

λje
−λjx

j−1∏
l=1

(1− e−λlx)

[
1−

k∑
i=j+1

e−λjx

i−1∏
h=j+1

(1− e−λhx)

]

≥
∫ ∞

0

λje
−λjx

j−1∏
l=1

(1− e−λlx)

[
1− e−λjx

k∑
i=j+1

(1− e−λjx)i−j−1

︸ ︷︷ ︸
≤e

−λjx·eλjx
=1

]

≥ 0.

This concludes the proof of the lemma. �
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We now prove Theorem 4.1

Proof of Theorem 4.1. Let P ∗ and P denote a minimum-cost outcome and an outcome that
minimizes the weighted potential function Φ in (2), respectively. For the analysis, we imagine each
player i deviating from P ∗

i to Pi in nonincreasing weight order, i.e., in the order k,k − 1, . . . ,1.
Let T i

e denote the players using edge e before player i switches strategies, and let ∆Φi denote
the change in Φ when i switches strategies. By Proposition 3.1, the change in player i’s cost is
exactly (∆Φi)/wi. To compute the change in other players’ costs, recall that the sum of the weighted
Shapley shares of an edge used by at least one player always equals the cost of that edge. Thus,
for every edge e∈ P ∗

i \Pi with |T i
e | ≥ 2, player i’s withdrawal from edge e increases the sum of the

cost shares of the players of T i
e \{i} by χi,e(T i

e). Symmetrically, for every edge e∈ Pi \P ∗
i , player i’s

arrival to edge e decreases the sum of cost shares of players in T i
e (if any) by χi,e(T i

e ∪{i}). Overall,
when player i switches from P ∗

i to Pi, the outcome cost increases by at most

∆Φi

wi

+
∑

e∈P∗
i \Pi : |T i

e |≥2

χi,e(T i
e).

Summing over all players i, we obtain

C(P )−C(P ∗)≤
k∑

i=1

∆Φi

wi

+
k∑

i=1

∑
e∈P∗

i \Pi : |T i
e |≥2

χi,e(T i
e). (14)

To bound the first term of the right-hand side of (14), write

k∑
i=1

∆Φi

wi

=
1
wk

k∑
j=1

∆Φj︸ ︷︷ ︸
≤0

+
k−1∑
i=1

 1
wi

− 1
wi+1︸ ︷︷ ︸

≥0


i∑

j=1

∆Φj︸ ︷︷ ︸
≤0

.

Since w1 ≤ w2 ≤ · · · ≤ wk, every term ( 1
wi
− 1

wi+1
) is nonnegative. Every term

∑i

j=1 ∆Φj is the
total potential function change of a sequence of moves that terminates in the outcome P that
minimizes Φ, and hence is nonpositive. We conclude that the term

∑
i

∆Φi
wi

in (14) is nonpositive.
We next upper bound the contribution of each edge e to the second term in (14). Let S∗

e denote
the set of players that use e in P ∗, and Si

e = S∗
e ∩{1,2, . . . , i}. We claim that∑

i : e∈P∗
i \Pi,|T i

e |≥2

χi,e(T i
e)≤

∑
i∈S∗

e : |Si
e|≥2

χi,e(Si
e). (15)

The right-hand side of (15) corresponds to the scenario in which every user of e in P ∗ abandons e
when switching to its strategy in P .

Inequality (15) follows from three observations. First, for each ` = 2,3, . . . , |S∗
e |, the right-hand

side of (15) contains exactly one summand χi,e(Si
e) in which |Si

e| = `. The corresponding set Si
e

contains the ` lowest-indexed — and hence lowest-weight — players of S∗
e , of which i has maximum

weight. Second, for each ` = 2,3, . . . , |S∗
e |, the left-hand side of (15) contains at most one sum-

mand χj,e(T j
e ) in which |T j

e |= `. The corresponding set T j
e contains h≥ 0 players with index higher

than j, who have already deviated to another path that contains e, and the `− h lowest-weight
players of S∗

e , of which j has maximum weight. Third, Definition 3.1 implies that the weighted
Shapley share of a player is increasing in its own weight and decreasing in other players’ weights.
Thus, for every ` = 2,3, . . . , |S∗

e |, the summand on the right-hand side of (15) with |Si
e| = ` is at

least the summand on the left-hand side with |T j
e |= ` (if any).
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Combining our inequalities, applying Lemma 4.1, and using the fact that C(P ∗) =
∑

e :S∗
e 6=∅

γe,
we have

C(P )−C(P ∗) ≤
∑
e∈E

∑
i∈S∗

e : |Si
e|≥2

χi,e(Si
e)

=
∑

e∈E :S∗
e 6=∅

∑
i∈S∗

e

χi,e(Si
e)− γe


≤

∑
e∈E :S∗

e 6=∅

γe

(
k∑

i=1

ci(w1,w2, . . . ,wi)− 1

)
,

and hence

C(P )≤C(P ∗) ·
k∑

i=1

ci(w1,w2, . . . ,wi),

which proves the theorem. �

As a special case, if players’ weights are within a constant factor of each other,
then ci(w1,w2, . . . ,wi) = Θ(1/i) for every i and the POS is O(logk). In contrast, when PNE exist
under proportional cost shares, the POS in this case can be Θ(k) [5].

More generally, the POS bound in Proposition 4.1 and Theorem 4.1 approaches k as the play-
ers’ weights become more dramatically spread out. For example, when wi = i for i = 1,2, . . . , k,
calculations show that the POS is O(

√
k).

5. The Price of Anarchy in SV Atomic Selfish Routing Games. This section gives
matching upper and lower bounds on the worst-case price of anarchy in SV atomic selfish routing
games. Section 5.1 covers preliminaries. Section 5.2 proves a POA upper bound that is parameter-
ized by the set of resource cost functions. Section 5.3 evaluates this upper bound for cost functions
that are polynomials with nonnegative coefficients. Section 5.4 gives a construction showing that,
for every set of cost functions satisfying some mild technical conditions, this POA upper bound is
tight in the worst case.

5.1. Preliminaries. The worst-case POA in SV atomic selfish routing games depends on
the set of allowable cost functions. For example, with cost functions that are polynomials with
degree at most d and nonnegative coefficients, we prove that the worst-case POA is exponential
in d, but independent of the network size and the number of players. This dependence motivates
parameterizing our POA bounds by the class C of allowable resource cost functions. We do not
expect the worst-case POA to admit a closed-form expression for every set C, and instead seek
a relatively simple characterization of this value. Throughout this section, we make the following
assumptions.

1. Every cost function c∈ C is nonegative and nondecreasing.
2. For every c ∈ C and w ≥ 0, c(x + w)(x + w)− c(x)x is a convex and nondecreasing function

of x. This condition holds if, for example, the function c is twice differentiable with nondecreasing
first and second derivatives.

3. The set C is closed under scaling and dilation, meaning that if c(x) ∈ C and a, b > 0, then a ·
c(bx)∈ C.

5.2. POA Upper Bound. Our upper bound approach is an instantiation of the “smoothness
framework” articulated in [24]. We call a pair (λ,µ) of real numbers feasible for a cost function c
if µ < 1 and if

1
2
c(x+x∗)(x+x∗)+

1
2
c(x)x+

1
2
c(x∗)x∗ ≤ λc(x∗)x∗ +µc(x)x (16)
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for every x,x∗ ≥ 0. We use A(C) to denote the set of pairs (λ,µ) that are feasible for every cost
function c∈ C. Define

ζ(C) = inf
(λ,µ)∈A(C)

λ
1−µ

,

or as +∞ if A(C) = ∅.
Under the assumptions described in Section 5.1, ζ(C) is an upper bound on the POA of every

SV atomic selfish routing game with cost functions in C.

Theorem 5.1. Let C be a set of nonnegative, nondecreasing cost functions with c(x + w)(x +
w)− c(x)x convex and nondecreasing in x for every w ≥ 0 and c ∈ C. Then the POA of every SV
atomic selfish routing game with cost functions in C is at most ζ(C).

Proof. Let P and P ∗ denote a PNE and an arbitrary outcome of such a routing game with
players S = {1,2, . . . , k}. Since P is a PNE, we have

C(P ) =
k∑

i=1

∑
e∈Pi

χi,e(Se)

≤
k∑

i=1

∑
e∈P∗

i

χi,e(Se ∪{i}), (17)

where Se denotes the players using edge e in P . By Definition 3.2,

χi,e(Se ∪{i}) = E[(Xi,e +wi) · ce(Xi,e +wi)−Xi,e · ce(Xi,e)], (18)

where wi is the weight of player i and Xi,e is the total weight of the players preceding i in a
uniformly random ordering of the players in Se ∪{i}.

Let xe denote the total weight of the players in Se. Pairing up subsets of Se with their comple-
ments, the right-hand side of (18) is a convex combination of terms of the form 1

2
[ce(z + wi)(z +

wi)−ce(z)z]+ 1
2
[ce((xe−z)+wi)((xe−z)+wi)−ce(xe−z)(xe−z)]. Since ce(x+wi)(x+wi)−ce(x)x

is assumed convex and nondecreasing in x, each of these terms is maximized when z = xe. Thus,

C(P ) ≤
k∑

i=1

∑
e∈P∗

i

[ 1
2
(ce(xe +wi)(xe +wi)− ce(xe)xe)+ 1

2
ce(wi)wi]

≤
∑
e∈E

[ 1
2
(ce(xe +x∗e)(xe +x∗e)− ce(xe)xe)+ 1

2
ce(x∗e)x

∗
e],

where x∗e denotes the total weight of players using edge e in P ∗, with the second inequality following
from the fact that the function c(x+w)(x+w)− c(x)x is superadditive in w for every fixed x.

Now choose (λ,µ)∈A(C). Since (λ,µ) satisfies (16) for all c∈ C and x,x∗ ≥ 0, we have

C(P ) ≤
∑
e∈E

[ 1
2
(ce(xe +x∗e)(xe +x∗e)− ce(xe)xe)+ 1

2
ce(x∗e)x

∗
e]

≤
∑
e∈E

[λce(x∗e)(x
∗
e)+µce(xe)xe]

= λC(P ∗)+µC(P );

rearranging terms completes the proof. �
Remark 5.1. The POA upper bound in Theorem 5.1 is a “smoothness proof” in the sense of

Roughgarden [24]. Informally, this means that the hypothesis that P is a PNE is used only in the
inequality (17), with hypothetical deviations P ∗

i that are independent of the choice of P . This fact is
interesting because POA bounds that are proved with smoothness arguments extend automatically
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to numerous other equilibrium concepts. Specifically, the POA upper bound of ζ(C) applies more
generally to mixed-strategy Nash equilibria, correlated equilibria, and outcome sequences gener-
ated by no-regret learners [24]. Approximate Nash equilibria and polynomial-length best-response
sequences also approximately obey the ζ(C) bound [24]. Finally, the POA bound of ζ(C) extends
to all Bayes-Nash equilibria of incomplete information SV selfish routing games, where players’
weights and source-sink pairs are drawn from an arbitrary product prior distribution [25, 29].

5.3. Example: Polynomial Cost Functions. This section explicitly evaluates the POA
upper bound in Theorem 5.1 for the special case in which C is the set of polynomials with nonneg-
ative coefficients and maximum degree d.

Elementary calculus shows that, for every positive integer d, the function

gd(x) = 3xd+1− 1− (x+1)d+1 (19)

has a unique positive root, which we denote by χd. This section establishes the following theorem.

Theorem 5.2. If C is the set of polynomials with nonnegative coefficients and maximum
degree d, then the POA of a SV atomic selfish routing game with cost functions in C is at
most χd+1

d = (Θ(d))d+1.

Remark 5.2 shows that the bound of χd+1
d is tight in the worst case, for every positive integer d. For

comparison, the worst-case POA with proportional (rather than SV) cost-sharing, in such games
that happen to possess PNE, is the slightly smaller quantity Θ((d/ lnd)d+1).

Before presenting the proof of Theorem 5.2, we examine the asymptotic behavior of χd.

Proposition 5.1. As d→∞, χd = Θ(d).

Proof. Note that

gd(d) = 3dd+1− 1− (d+1)d+1 = 3dd+1− 1− dd+1(1+1/d)(1+1/d)d.

Similarly,

g(d/2) = 3(d/2)d+1− 1− (d/2)d+1(1+2/d)
(
(1+2/d)d/2

)2
.

Since limx→∞(1+1/x)x = e,

lim
d→∞

gd(d) > 0 and lim
d→∞

gd(d/2) < 0.

Since gd is increasing on [1,∞), χd ∈ (d/2, d) for all sufficiently large d. More careful computations
of this type show that χd tends to infinity as roughly 0.9d. �

We now prove Theorem 5.2.

Proof of Theorem 5.2. We exhibit values (λ,µ) that are feasible for every cost function c∈ C —
recall (16) — and that satisfy λ/(1−µ)≤ χd+1

d . The theorem then follows from Theorem 5.1.
Define

λj =
(χj +1)j +1

2
and µj =

(
χ−1

j +1
)j − 1

2
for j = 1,2, . . . , d,

λ = maxj λj, and µ = maxj µj. It is evident that λ = λd.
We begin by showing that (λ,µ) is feasible. To see that µ < 1, recall that, by definition,

3χj+1
j = 1+ (χj +1)j+1. (20)
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If µj ≥ 1, then (χ−1
j +1)j ≥ 3, which implies that (1+χj)j ≥ 3χj

j and hence (1+χj)j+1 ≥ 3χj
j +3χj+1

j .
Combining this with (20) yields the contradiction 3χj

j ≤−1.
To see that (λ,µ) satisfies (16) for every cost function c∈ C, fix such a function c(x) =

∑d

j=0 ajx
j.

By linearity, the condition (16) reduces to proving that

(x+x∗)j+1

2
− xj+1

2
+

(x∗)j+1

2
≤ λ(x∗)j+1 +µxj+1. (21)

for every j = 1,2, . . . , d and x,x∗ ≥ 0. Every λn, µn pair clearly satisfies inequality (21) when x∗ = 0.
Assume that x∗ > 0 and set r = x/x∗. Rewrite inequality (21) as

(2µj +1)rj+1− (1+ r)j+1 +(2λj − 1)≥ 0, for all r≥ 0. (22)

Considering the left-hand side of (22) as a function of r and taking the derivative, we can see
that the minimizer is r =

(
(2µ+1)1/j − 1

)−1
= χj. With these values of r,λj, µj, the left-hand side

of (22) equals 0, which verifies inequality (22) (and (21)). Inequality (21) clearly remains valid
for λ≥ λj and µ≥ µj, and so (λ,µ) form a feasible pair.

To prove that λ/(1− µ) ≤ χd+1
d , recall that λ = λd and write µ = µ` for some ` ∈ {1,2, . . . , d}.

Then,

λ

1−µ
=

(χd +1)d +1
3− (χ−1

` +1)`

=
1
3

3χ`+1
` ((χd +1)d +1)

3χ`+1
` −χ`(χ` +1)`

=
1
3

(χ` +1)`+1 +1
(χ` +1)` +1

(
(χd +1)d +1

)
,

where the last step follows from (20). The last expression is clearly increasing in `. Hence, setting ` =
d and using (20) once again, we derive λ/(1−µ)≤ χd+1

d , as required. �

5.4. POA Lower Bound. The upper bounds presented in Section 5.2 are tight in the worst
case. The construction that proves this is simplest to present in the context of general congestion
games where players have strategy sets that are arbitrary subsets of the edges and not necessarily
paths. It is not difficult to convert the construction into an atomic selfish routing network.

Theorem 5.3. For every class C that is closed under scaling and dilation, the POA of a SV
atomic congestion game with cost functions in C can be arbitrarily close to ζ(C).

Our construction resembles one used previously to prove POA lower bounds for weighted con-
gestion games with proportional cost shares [4], but some of the technical details differ. Our proof
of Theorem 5.3 requires the following technical lemma. It identifies the cost functions and the
equilibrium and optimal edge loads that are the necessary ingredients in any worst-case example.

Lemma 5.1. Let C be a class of cost functions with ζ(C) > 1. For every positive ε < ζ(C)− 1,
at least one of the following conditions holds.

1. There exist c∈ C, x≥ 0, x∗ > 0 such that

1
2
· (x+x∗) · c(x+x∗)− 1

2
·x · c(x)+

1
2
·x∗ · c(x∗)≥ x · c(x)

and

x · c(x)
x∗ · c(x∗)

≥ ζ(C)− ε.
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2. There exist c1, c2 ∈ C, x1, x2 ≥ 0, x∗1, x
∗
2 > 0, and λ,µ such that

1
2
· (x1 +x∗1) · c1(x1 +x∗1)−

1
2
·x1 · c1(x1)+

1
2
·x∗1 · c1(x∗1) = λ ·x∗1 · c1(x∗1)+µ ·x1 · c1(x1);

1
2
· (x2 +x∗2) · c2(x2 +x∗2)−

1
2
·x2 · c2(x2)+

1
2
·x∗2 · c2(x∗2) = λ ·x∗2 · c2(x∗2)+µ ·x2 · c2(x2);

1
2
· (x1 +x∗1) · c1(x1 +x∗1)−

1
2
·x1 · c1(x1)+

1
2
·x∗1 · c1(x∗1)≤ x1 · c1(x1);

1
2
· (x2 +x∗2) · c2(x2 +x∗2)−

1
2
·x2 · c2(x2)+

1
2
·x∗2 · c2(x∗2)≥ x2 · c2(x2);

and

λ

1−µ
> ζ(C)− ε.

Proof. For a cost function c∈ C, x≥ 0, and x∗ > 0, let Hc,x,x∗ denote the half-plane

1
2
· (x+x∗) · c(x+x∗)− 1

2
·x · c(x)+

1
2
·x∗ · c(x∗)≤ λ ·x∗ · c(x∗)+µ ·x · c(x)

and ∂Hc,x,x∗ the boundary of this half-plane. Recall from (16) that these are the half-planes that
define the set A(C) of feasible pairs (λ,µ) for the set C of cost functions. Also, define

βc,x,x∗ =
x · c(x)

1
2
· (x+x∗) · c(x+x∗)− 1

2
·x · c(x)+ 1

2
·x∗ · c(x∗)

and

ζc,x,x∗ =
x · c(x)

x∗ · c(x∗)
.

Fix a positive ε < ζ(C)− 1 and let ζ ′ = ζ(C)− ε/2. If ζ(C) is not finite, set ζ ′ = 1/ε. We write Lζ′

for the line λ+ ζ ′ ·µ = ζ ′ in the λ,µ plane.
If we think of a boundary line ∂Hc,x,x∗ as specifying µ as a function of λ, then this line has slope

−1/ζc,x,x∗ and µ-intercept 1/βc,x,x∗ . The half-space Hc,x,x∗ consists of everything “northeast” of its
boundary.

Consider the half-planes with βc,x,x∗ ≤ 1. In the lucky event that there is such a half-plane with
ζc,x,x∗ ≥ ζ ′, we are done: this choice of c,x,x∗ satisfies the conditions of the first case of the lemma.
For the rest of the proof, we assume that ζc,x,x∗ < ζ ′ for every half-plane with βc,x,x∗ ≤ 1.

We consider two cases. To define them, pick an arbitrary cost function c1 with c1(1) > 0 — since
C is closed under dilation, such a function exists — and a sufficiently large value of x1 so that
ζc1,x1,1 > ζ ′. Our standing assumption implies that βc1,x1,1 > 1. Define (λ̂, µ̂) as the unique point of
intersection of ∂Hc1,x1,1 and Lζ′ . Since the former line has a larger slope (−1/ζc1,x1,1 vs.−1/ζ ′) and
a smaller µ-intercept (1/βc1,x1,1 vs. 1) than the latter, λ̂ > 0 and hence µ̂ < 1.

For the first case, we assume that there exists a half-plane Hc2,x2,x∗2
with βc2,x2,x∗2

< 1 whose
boundary intersects the line Lζ′ at a point (λ2, µ2) with µ2 < µ̂. Equivalently, the line ∂Hc2,x2,x∗2
intersects Lζ′ to the right of where ∂Hc1,x1,1 intersects Lζ′ . Since the µ-intercepts of ∂Hc2,x2,x∗2

and
∂Hc1,x1,1 (namely, 1/βc2,x2,x∗2

> 1 and 1/βc1,x1,1 < 1) are on either side of that of Lζ′ (namely, 1)
and λ̂ > 0, this implies that the intersection (λ,µ) of ∂Hc1,x1,1 and ∂Hc2,x2,x∗2

lies on the “northeast
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side” of Lζ′ . It follows that λ + ζ ′µ≥ ζ ′. Thus, c1, c2, x1, x2,1, x∗2, λ,µ satisfy the conditions in the
second case of the lemma.

Finally, assume that all half-planes Hc,x,x∗ with βc,x,x∗ < 1 have boundaries that intersect the line
Lζ′ at points (λ,µ) with µ≥ µ̂. Let µ∗ denote the infimum of all µ-coordinates of such intersections.
Under our standing assumption, every such boundary ∂Hc,x,x∗ has a smaller slope (−1/ζc,x,x∗

vs.−1/ζ ′) and a larger µ-intercept (1/βc1,x1,1 vs. 1) than Lζ′ , and hence intersects Lζ′ at a point
(λ,µ) with 1 > µ≥ µ̂. Thus, 1 > µ∗ ≥ µ̂.

We now find appropriate (c1, x1, x
∗
1) and (c2, x2, x

∗
2) with βc1,x1,x∗1

≥ 1 and βc2,x2,x∗2
< 1, such that

the corresponding half-plane boundaries intersect Lζ′ at points (λ1, µ1) and (λ2, µ2) with µ1, µ2

very close to µ∗. Let δ = ε·(1−µ∗)

4·ζ′−ε
> 0. Consider the point (ζ ′ · (1−µ∗ + δ), µ∗− δ) of Lζ′ . This point

is feasible for all constraints corresponding to (c,x,x∗) with βc,x,x∗ < 1. Since ζ ′ < ζ(C), this point
cannot belong to the feasible set A(C) and hence there exists (c1, x1, x

∗
1) with βc1,x1,x∗1

≥ 1 such that
the point (ζ ′ · (1−µ∗ + δ), µ∗− δ) violates the corresponding constraint. Note that the point (0,1)
of Lζ′ lies in Hc1,x1,x∗1

. This implies that ∂Hc1,x1,x∗1
intersects Lζ′ at a point (λ1, µ1) with µ1 ≥ µ∗−δ.

Moreover, λ1 + ζ ′ ·µ1 = ζ ′.
If µ1 > µ∗, then we can find (c2, x2, x

∗
2) with βc2,x2,x∗2

< 1 that intersects Lζ′ at (λ2, µ2) with µ∗ ≤
µ2 ≤ µ1. Then, similarly to the previous case, ∂Hc1,x1,x∗1

and ∂Hc2,x2,x∗2
intersect at a point (λ,µ)

such that λ/(1−µ)≥ ζ ′, completing the proof.
We can now assume that µ∗ − δ ≤ µ1 ≤ µ∗. By the definition of µ∗, there exist (c2, x2, x

∗
2) such

that ∂Hc2,x2,x∗2
intersects Lζ′ at (λ2, µ2), with µ∗ ≤ µ2 ≤ µ∗+δ. Note that µ2 ≥ µ1 and λ2+ζ ′ ·µ2 = ζ ′.

Let (λ,µ) be the point where ∂Hc1,x1,x∗1
and ∂Hc2,x2,x∗2

intersect. Both these boundaries have
negative slopes, which means (λ,µ) lies in the triangle formed by the points (λ1, µ1), (λ2, µ2),
and (λ2, µ1). Then λ/(1−µ)≥ λ2/(1−µ1). Since λ1−λ2 = ζ ′ · (µ2−µ1)≤ 2 · ζ ′ · δ, we have

λ2

1−µ1

=
λ1

1−µ1

− λ1−λ2

1−µ1

≥ ζ ′− 2 · ζ ′ · δ
1−µ∗ + δ

≥ ζ ′− ε

2
.

This proves that the conditions of the second case in the statement of the lemma hold. �
Before proceeding with the proof of Theorem 5.3, we take note of some consequences of

Lemma 5.1. Suppose the second case of the lemma applies and offers two triples (c1, x1, x
∗
1) and

(c2, x2, x
∗
2) such that the corresponding half-plane boundaries intersect at (λ,µ) with λ/(1− µ) >

ζ(C)− ε. Scaling and dilating a cost function does not affect the corresponding constraint (16).
Thus, for every w > 0, we can find cost functions ĉ1 and ĉ2 such that

1
2
· ĉ1(w · (z1 +1)) · (z1 +1) =

(
λ− 1

2

)
· ĉ1(w)+

(
µ+

1
2

)
· z1 · ĉ1(w · z1);

1
2
· ĉ2(w · (z2 +1)) · (z2 +1) =

(
λ− 1

2

)
· ĉ2(w)+

(
µ+

1
2

)
· z2 · ĉ2(w · z2), (23)

where z1 = x1/x∗1 and z2 = x2/x∗2.
Moreover, since 1

2
· (1 + z1) · ĉ1(w · (1 + z1)) − 1

2
· z1 · ĉ1(w · z1) + 1

2
· ĉ1(w) ≤ z1 · ĉ1(z1 · w) and

1
2
· (1 + z2) · ĉ2(w · (1 + z2))− 1

2
· z2 · ĉ2(w · z2) + 1

2
· ĉ2(w)≥ z2 · ĉ2(z2 ·w), there is a constant η ∈ [0,1]

such that

η · z1 · ĉ1(w · z1)+ (1− η) · z2 · ĉ2(w · z2) =

η ·
[
1
2
· (1+ z1) · ĉ1(w · (1+ z1))−

1
2
· z1 · ĉ1(w · z1)+

1
2
· ĉ1(w)

]
+

(1− η) ·
[
1
2
· (1+ z2) · ĉ2(w · (1+ z2))−

1
2
· z2 · ĉ2(w · z2)+

1
2
· ĉ2(w)

]
. (24)
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We now give our lower bound construction.

Proof of Theorem 5.3. Our proof has two cases, corresponding to the two cases of Lemma 5.1.
First consider a set C and ε > 0 so that the second case of the lemma applies. For a positive
integer m, chosen later, we construct a game with player set S and edge set E — called resources
here to avoid confusion with the tree described below — as follows.

1. Player strategies: Organize the resources in a tree of depth m, comprising a complete binary
tree of depth m− 1 with each leaf extended by a path of length 1. For each non-leaf node i in the
tree, there is a player i with 2 strategies: either choose node i or all children of i.

2. Player weights: If i is the root, then wi = 1; otherwise, if node i is the left (right) child of
some node j, then wi = wj · z1 (wi = wj · z2). Let SL be the set of players connected to a leaf.

3. Cost functions: Cost functions are defined recursively:
(a) For the root, we pick any c∈ C with c(1) = 1. Since C is closed under scaling and dilation,

such a function exists.
(b) Consider resource e which is neither a leaf nor the root. Its cost function is ce and

the weight of the corresponding player is we. Let l, r be the left and right children of e, with
corresponding player weights wl = z1 ·we and wr = z2 ·we. Among all pairs of cost functions that
satisfy (23) for x∗ = we, pick a pair that also satisfies

cj(we · zj) · zj = ce(we) (25)

for j ∈ {1,2}. Since C is closed under scaling and dilation, such a pair exists. Let ηe be the corre-
sponding value for η in (24) and define

cl(x) = ηe · c1(x) and cr(x) = (1− ηe) · c2(x). (26)

(c) Every leaf resource gets the same cost function as its parent.
4. Nash strategies: The outcome P where each player chooses the resource closer to the root.
5. Optimal strategies: The outcome P ∗ where each player chooses the strategy further from the

root.
We claim that the POA of the above game is λ/(1− µ), where λ,µ are the parameters in the

second guarantee of Lemma 5.1. We first prove that P is a PNE. It is clear that a player in SL has
no incentive to deviate, since the leaf resource has the same cost as its current strategy. Consider
a player e∈ S \SL and let l, r be the left and right children respectively. Then, using (25) first and
(24), (26) subsequently, we get

χe,e({e}) = we · ce(we) = we · ηe · z1 · c1(we · z1)+we · (1− ηe) · z2 · c2(we · z2)

= we ·
[
1
2
· cr(we)+

1
2
· (1+ z2) · cr(we · (1+ z2))−

1
2
· z2 · cr(we · z2)

]
+we ·

[
1
2
· cl(we)+

1
2
· (1+ z1) · cl(we · (1+ z1))−

1
2
· z1 · cl(we · z1)

]
= χe,r({e, r})+χe,l({e, l}).

This completes the proof that P is a PNE. Also, combining the second line of the above equality
with (23), we get

χe,e({e}) = λ · (χe,l({e})+χe,r({e}))+µ ·χe,e({e}) which gives
χe,e({e}) ≥ (ζ(C)− ε) · (χe,l({e})+χe,r({e})). (27)

In the outcome P , the contribution of a non-leaf player e to the total cost C is equal to the
combined contributions of the players corresponding to the left and right children l and r of e.
This follows from (26) and (25):

z1 ·we · cl(z1 ·we)+ z2 ·we · cr(z2 ·we) = z1 ·we · ηe · c1(z1 ·we)+ z2 ·we · (1− ηe) · cr(z2 ·we) = we · ce(we).
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It follows that, in P , the combined contribution of each layer of players in the tree is the same.
Since the contribution of the root player is equal to 1, we get that C = m. Also,

C∗ =
∑
i∈S

wi ·
∑
e∈P∗

i

χi,e({i})

=
∑
i∈SL

wi ·
∑
e∈P∗

i

χi,e({i})+
∑

i∈S\SL

wi ·
∑
e∈P∗

i

χi,e({i})

=
∑
i∈SL

wiχi,i({i})+
∑

i∈S\SL

wi

χi,i({i})
ζ(C)− ε

= 1+
m− 1

ζ(C)− ε
,

where the last line follows from (27). The fact that limm→∞C/C∗ = ζ(C)− ε concludes the first
case of the proof.

Finally, consider a set C and ε > 0 so that the first guarantee of Lemma 5.1 applies. Thus, there
is a triple (c,x,x∗) with

1
2
· (x+x∗) · c(x+x∗)− 1

2
·x · c(x)+

1
2
·x∗ · c(x∗)≥ x · c(x)

and
x · c(x)

x∗ · c(x∗)
≥ ζ(C)− ε.

A similar construction yields the lower bound in this case. Let z = x/x∗. Then for w > 0 we have

1
2
· (z · (w +1)) · c(z · (w +1))− 1

2
· z ·w · c(z ·w)+

1
2
·w · c(w)≥ z ·w · c(z ·w)

and
z · c(z ·w)

c(w)
≥ ζ(C)− ε.

The resources are now organized on a path graph with a single player on each edge, who has
to pick between the two endpoints. One end of the path is considered the root and has a cost
function c such that c(1) = 1. The weight of the adjacent player is 1. For all subsequent players,
we multiply the weight by z, while each cost function ci+1 is a dilated version of the previous one,
satisfying z ·ci+1(z ·w) = ci(w). The leaf node has the same cost function as its parent. The optimal
profile has each player play further from the root, while in a PNE all players play closer to the
root. The equilibrium condition holds because a deviation incurs a cost of z · ci+1(z ·w +w), which
is at least z · ci+1(z ·w), which in turn equals ci(w). For all but the last player we get that the ratio
of the cost in equilibrium to the cost in the optimal is

ci(w)
ci+1(w)

=
z · ci+1(z ·w)

ci+1(w)
≥ ζ(C)− ε.

The last player has the same cost in both outcomes. The price of anarchy approaches ζ(C)− ε as
the number of players grows to infinity, completing the proof. �

Remark 5.2. Here we illustrate this construction in the special case of cost functions that are
polynomials with nonnegative coefficients and degree at most d. Note that for c(x) = xd, and x =
χd, x

∗ = 1, the conditions for the first case of Lemma 5.1 hold (using the fact (20) that 3 ·χd+1
d −1 =

(χd +1)d+1).
We can therefore apply the path construction from the second part of the proof of Theorem

5.3 with z = χd. The weight of the ith player is χi−1
d and the cost function of the jth resource is

χ
(1−j)·(d+1)
d · xd — except for the last one, which has the same cost function as its neighbor. The

POA in this example is χd+1
d , matching the upper bound in Theorem 5.2.
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