
Simpler and Better Approximation Algorithms for Network
Design

Anupam Gupta∗ Amit Kumar† Tim Roughgarden‡

ABSTRACT
We give simple and easy-to-analyze randomized approximation al-
gorithms for several well-studied NP-hard network design prob-
lems. Our algorithms improve over the previously best known ap-
proximation ratios. Our main results are the following.

• We give a randomized 3.55-approximation algorithm for the
connected facility location problem. The algorithm requires
three lines to state, one page to analyze, and improves the
best-known performance guarantee for the problem.

• We give a 5.55-approximation algorithm for virtual private
network design. Previously, constant-factor approximation
algorithms were known only for special cases of this prob-
lem.

• We give a simple constant-factor approximation algorithm
for the single-sink buy-at-bulk network design problem. Our
performance guarantee improves over what was previously
known, and is an order of magnitude improvement over pre-
vious combinatorial approximation algorithms for the prob-
lem.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Algorithms, Performance, Design, Theory

∗Department of Computer Science, Carnegie Mellon University.
This work was done while the author was visiting Lucent Bell
Labs and was partly supported by a DIMACS grant. Email: anu-
pamg@cs.cmu.edu.
†Lucent Bell Labs, 600 Mountain Avenue, Murray Hill NJ 07974.
Email: amitk@research.bell-labs.com.
‡Department of Computer Science, Cornell University, Ithaca NY
14853. Supported by ONR grant N00014-98-1-0589. Email:
timr@cs.cornell.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

Keywords
Network design, randomized algorithms, approximation algorithms

1. INTRODUCTION
We give simple and easy-to-analyze randomized approximation

algorithms for three well-studied NP-hard network design prob-
lems. Our algorithms improve over the previously best known ap-
proximation ratios. We first give the definitions of these problems,
deferring both their applications and related work to the end of the
section.

Connected Facility Location (CFL). In the connected facility lo-
cation problem (CFL), we are given an undirected graph G =
(V, E) with non-negative costs ce on edges, a set D ⊆ V of de-
mands, and a parameter M > 1. Each demand j ∈ D has a
non-negative weight dj . A solution to an instance of CFL consists
of a set F ⊆ V of facilities to be opened, an assignment of de-
mands to open facilities, and a subgraph T of G spanning F (with-
out loss of generality, T is a tree). If such a solution assigns the
demand j to the open facility i(j) ∈ F , the cost of the solution is
defined as

�
j∈D

dj · `(j, i(j)) + M
�

e∈T
ce, where `(·, ·) de-

notes the shortest-path distance between two vertices in G (w.r.t.
edge lengths ce). Connected facility location is thus the classical
uncapacitated facility location problem, with no costs for opening
facilities but with the additional constraint that open facilities must
be connected together.

Virtual Private Network Design (VPND). In an instance of Vir-
tual Private Network design (VPND) we are again given an undi-
rected network with non-negative edge costs, a set D ⊆ V of de-
mands, and two non-negative thresholds bin(j) and bout(j) for
each demand j ∈ D. These thresholds specify the maximum
amount of traffic that demand j will receive from and send to other
demands. A D×D matrix describing the amount of (directed) traf-
fic between each pair of demands is valid if it respects all thresh-
olds. A feasible solution to an instance of VPND is given by a
path Pij for each (ordered) demand pair (i, j) and by capacities ue

on edges sufficient to support all valid traffic matrices, with traffic
from i to j routed on the path Pij . The objective is to find a feasible
solution minimizing the cost

�
e∈E

ceue.

Single-Sink Buy-at-Bulk Network Design (SSBB). In an instance
of single-sink buy-at-bulk network design (SSBB), we are given an
undirected graph with non-negative edge costs, a sink vertex t, and
a set D ⊆ V of demands. We are also given K types of cables,
each specified by a capacity and a cost (per unit length). We seek a
minimum-cost way of installing sufficient capacity on the edges so
that a prescribed amount of flow can be sent simultaneously from
each demand to the sink t. The cost per unit of capacity of a ca-

ble (the “bang for your buck”) typically decreases as the cable cost
increases, in accordance with economies of scale.

Our Results
Our main results are the following.

1. We give a randomized approximation algorithm for CFL with
a performance bound of 2+ρST , using a ρST -approximation
algorithm for the Steiner tree problem; the currently smallest
available value for ρST is 1.55 [23]. This simple, intuitive
and easily analyzed algorithm improves over the previously
best known guarantee of 3 + ρST , due to Swamy and Ku-
mar [25].

2. We resolve the main open question posed in [13] by giv-
ing a 5.55-approximation algorithm for virtual private net-
work design. Previously, constant-factor approximation al-
gorithms were known only for special cases of this prob-
lem [9, 13]; the best known algorithm for the general case
was a O(log n log log n) algorithm obtained by applying the
tree embeddings of [6].

3. We give a simple constant-factor approximation algorithm
for the single-sink buy-at-bulk network design problem. Our
performance guarantee improves over what was previously
known [26] by roughly a factor of 3, and gives an even-
greater improvement over previous combinatorial approxi-
mation algorithms for the problem [12].

Related Work
The connected facility location problem has received considerable
recent attention both in the operations research literature [17, 19]
and in the computer science community [13, 15, 16]. In addi-
tion to modeling the basic scenario of facility location in which
some infrastructure among facilities must also be built, the prob-
lem naturally arises as a subroutine in several network design al-
gorithms (see [13, 15]). Karger and Minkoff [15], motivated by
the so-called maybecast problem, gave the first constant-factor ap-
proximation algorithm for the problem. This algorithm is simple
and combinatorial, but has a relatively large performance guaran-
tee. Gupta et al. [13] subsequently employed an LP-rounding ap-
proach to improve the approximation ratio. Very recently, Swamy
and Kumar [25] discovered a primal-dual 4.55-approximation al-
gorithm for the problem.

The virtual private network design problem considered in this
paper was defined by Fingerhut et al. [9] and, subsequently and in-
dependently, by Duffield et al. [8]. It was later studied by Gupta
et al. [13] with an eye toward approximation algorithms. Prior to
the present work, constant-factor approximations were only known
for restricted versions of VPND, such as the special case with
bin(j) = bout(j) for all demands j [9, 13], and the case in which
feasible solutions are restricted to route traffic on a tree [13].

Buy-at-bulk network design has been intensively studied from
the viewpoint of approximation algorithms over the past few years.
After the problem was introduced by Salman et al. [24], a long line
of papers—that we will not review in detail here—have presented
successively superior algorithms for increasingly general versions
of the problem [1, 2, 6, 10, 11, 12, 18, 20, 21, 26]. For the SSBB

problem considered here, the first nontrivial approximation was
found by Awerbuch and Azar [2], using the tree embeddings of
Bartal [5], and the first constant-factor approximation was given by
Guha et al. [12]. The performance guarantee of the combinatorial
algorithm of [12] was not stated explicitly, though Talwar [26] es-
timated it to be roughly 2000. Talwar [26] subsequently gave an

LP-rounding algorithm with an improved performance guarantee
of 216. For the special case of “access network design,” Meyerson
et al. [21] gave a simple randomized algorithm with a constant fac-
tor guarantee, but it is unclear how to extend the analysis of their
algorithm to the more general case.

Finally, we note that many of these problems have also been
studied in an online setting. Indeed, an online version of the al-
gorithm of Section 2 is known to be O(log n)-competitive for the
so-called “rent-or-buy” problems [3, 4, 7], which are closely related
to the CFL problem that we study here.1 However, these techniques
were not previously known to lead to constant-factor approxima-
tion algorithms for any of these offline problems.

Organization
In Section 2 we describe our (2 + ρST)-approximation algorithm
for connected facility location. Building on the techniques used
to analyze this algorithm, in Section 3 we give the first constant-
factor approximation algorithm for VPN design. In Section 4 we
present a simple 72.8-approximation algorithm for the single-sink
buy-at-bulk network design problem.

2. CONNECTED FACILITY LOCATION
In this section, we present an intuitive and easy-to-implement

randomized approximation algorithm for CFL with performance
guarantee 2 + ρST , using a ρST -approximation algorithm for the
Steiner tree problem. With the Steiner tree algorithm of Robins
and Zelikovsky [23], we obtain a 3.55-approximation, improving
upon the primal-dual 4.55-approximation algorithm of Swamy and
Kumar [25].

We recall from Section 1 that in an instance of CFL, we are given
an undirected graph G = (V, E) with non-negative edge costs ce,
a set D ⊆ V of demands, and a parameter M > 1. The objective
is to identify a subset F of the vertices V as open facilities, and to
build a Steiner tree T connecting F to minimize

�

j∈D

dj · `(i(j), j) + M · c(T),

where i(j) is the closest open facility to demand i, ` is shortest-
path distance (w.r.t. edge lengths ce), dj is the weight of demand j,
and c(T) is the cost of the edges in the Steiner tree T . We will call
the first term of the objective function the connection cost, and the
second term the Steiner cost. We will refer to edges in the Steiner
tree as bought, and edges in a shortest path between a demand j
and its nearest open facility i(j) as rented.

We assume knowledge of a root facility r ∈ V that is assuredly
open in some optimal solution. This assumption is without loss of
generality, since all |V | “guesses” for a root r can be tried one by
one, with the best of all solutions obtained returned as output. We
also assume for simplicity that dj = 1 for all demands j ∈ D; this
assumption is easy to remove, as we show at the end of the section.
Let C∗, S∗ be the connection and Steiner costs of some optimal
solution OPT that opens facility r. Let Z∗ = C∗ + S∗ denote the
cost incurred by OPT, F ∗ ⊆ V the facilities opened in OPT, and
T ∗ the Steiner tree on F ∗ in OPT.

We now state our approximation algorithm for CFL. The algo-
rithm can be viewed as a randomized reduction of CFL to the prob-
lem of finding a good Steiner tree, followed by the construction of
a shortest-path tree.

1Precisely, the single-sink rent-or-buy network design problem,
also known as the network leasing problem, is identical to con-
nected facility location except for the additional constraint that a
root vertex is required to be open in any feasible solution.

2.1 The Algorithm SIMPLECFL

C1. Mark each demand j ∈ D with probability 1/M , and let
D′ ⊆ D denote the set of marked demands.

C2. Construct a ρST -approximate Steiner tree on F = D′ ∪{r},
and buy the edges of this tree.

C3. Assign each demand to its closest facility in F .

Our main theorem in this section is the following.

THEOREM 2.1. The algorithm SIMPLECFL is a (2 + ρST)-
approximation algorithm for CFL.

The theorem will follow directly from the next two lemmas,
which bound the expected Steiner cost and the expected connec-
tion cost separately.

LEMMA 2.2. The expected cost of Step (C2) is at most ρST ·Z
∗.

PROOF. It suffices to show that the expected cost of a min-cost
Steiner tree on the (random) set of facilities F is at most Z∗. We
will prove this by using T ∗, the Steiner tree on F ∗ in OPT, to
exhibit a (random) Steiner tree T on F with expected cost at most
Z∗.

We define the Steiner tree T on F as the union of the edges of T∗

and the edges on shortest j-i∗(j) paths for all j ∈ F \ {r} ⊆ D,
where j is assigned to i∗(j) in OPT. The cost of T ∗ ⊆ T is
deterministically S∗. For a demand j ∈ D, the cost incurred for
buying the shortest j-i∗(j) path is M · `(j, i∗(j)) with probability
1/M (if j ∈ F) and 0 otherwise (if j /∈ F). In the worst case, all
of the bought j-i∗(j) shortest paths are edge-disjoint; linearity of
expectation then implies the lemma:

E [c(T)] ≤ S∗ +
�

j∈D

(1/M) M `(j, i∗(j)) = S∗ + C∗ = Z∗.

LEMMA 2.3. The expected cost of Step (C3) is at most 2 · Z∗.

PROOF. We first observe that the expected cost of the connec-
tions made in Step (C3) is independent of the particular Steiner tree
constructed in Step (C2). We can therefore assume in our analysis,
without loss of generality, that the Steiner tree of Step (C2) is given
by the minimum spanning tree (in the graph of shortest-path dis-
tances) on D.

We now view the algorithm SIMPLECFL, employing the MST
heuristic, in a new but essentially equivalent way. Instead of flip-
ping coins for all demands at once, the new algorithm considers the
demands one by one in some order and flips a coin for each in turn.
Depending on the outcome of the coin flip, the demand is either (a)
marked, added to F , and joined to the preexisting Steiner tree, or
(b) connected to some previously marked vertex in F .

To decide the order on the vertices, we maintain two sets. At the
beginning of step t, let At be the set of vertices previously consid-
ered by the algorithm, and Bt ⊆ At those that have been marked.
Initially, A1 = B1 = {r}. In step t, we pick the vertex vt ∈ V \At

that is closest to Bt and flip a coin for it. With probability 1/M (the
outcome we call “heads”), we define At+1 and Bt+1 by adding vt

to both the sets At and Bt, and we update our Steiner tree by buy-
ing the shortest path from vt to its nearest neighbor in Bt. If the
coin reads “tails”, we set At+1 = At ∪ {vt} and Bt+1 = Bt, and
assign vt to its nearest neighbor in Bt.

A key observation is that the incremental process by which the
Steiner tree T is constructed on the marked facilities F is noth-
ing more than Prim’s MST algorithm [22], running in the graph of

shortest-path distances among vertices in F . Thus, this new ran-
domized process faithfully implements the first two steps of SIM-
PLECFL. The connection cost incurred by this process is no less
than that incurred by SIMPLECFL; we now complete the proof by
showing that the expected connection cost for this new algorithm is
at most 2Z∗.

Let the random variable Xt denote the cost from renting (as-
signing vt to its nearest neighbor in Bt) minus the cost of buying
(adding vt to Bt and connecting it to the existing Steiner tree) in
step t of the algorithm. Let X =

�
i
Xi denote the connection cost

minus the Steiner cost of the solution produced. The expected value
of Xt, conditioning on the first t − 1 coin flips so that vt and Bt

are deterministically known, is (1−1/M) · `(vt, Bt)− (1/M)M ·
`(vt, Bt) ≤ 0. This inequality holds for any outcome of the first
t − 1 coin flips and hence holds unconditionally: E [Xt] ≤ 0
for all t. By linearity of expectation, E [X] ≤ 0 and the ex-
pected connection cost incurred by the incremental algorithm is at
most the expected cost of the MST on F . The latter is at most
2Z∗ by Lemma 2.2, since the MST heuristic is well known to 2-
approximate the min-cost Steiner tree. The proof is complete.

2.2 Extensions
Our analysis of algorithm SIMPLECFL is flexible and permits

several extensions, as follows.

1. A naive way to allow non-uniform integral (or, by scaling,
rational) demands, that will also be useful in later sections, is
to modify Step (C1) so that dj coins are flipped for a demand
j with weight dj ; the demand is marked if at least one coin
reads heads. Conceptually, we replace j by dj co-located
demands, each with weight 1. Since this is equivalent to
flipping a coin for j that comes up heads with probability
1−(1−1/M)dj , this process can be implemented efficiently
even when demand weights are not polynomially bounded.

A simpler solution for connected facility location, that does
not require integral demands, is to mark a demand j ∈ D
with probability min{1, dj/M}. Only cosmetic changes are
required to generalize the proof of Theorem 2.1 to handle this
modification.

2. The running time of the algorithm can be improved by a fac-
tor |V | by choosing a root vertex r uniformly at random from
vertices in D. Modifying the above analysis gives a perfor-
mance guarantee of α(2 + ρST) for this faster algorithm,
where α = 1+M/|D| is, without loss of generality, at most
2.

3. If facilities cannot be opened at arbitrary vertices of the graph
(equivalently, facilities have costs that are either 0 or +∞),
relocating each demand to the nearest potential facility and
running SIMPLECFL provides a (4 + ρST)-approximation.
With general facility costs, a constant-factor approximation
can be obtained from algorithm SIMPLECFL by comput-
ing an (approximate) Steiner Tree-Star [16, 25] instead of
a Steiner tree in Step C2. The performance guarantee is
slightly inferior to that of the 8.55-approximation algorithm
of Swamy and Kumar [25], and the details of this reduction
are omitted from this extended abstract.

3. VPN DESIGN
Motivated by the shortcomings of estimating or assuming knowl-

edge of a fixed traffic matrix for a network, researchers proposed
the problem of virtual private network (VPN) design [8, 9]. Recall

from Section 1 that in this problem we are given thresholds bin(j)
and bout(j) on the amount of traffic that enters and leaves a demand
j ∈ D ⊆ V of a network G = (V, E) with edge costs ce. The ob-
jective is to design a network which can handle all traffic patterns
that respect the specified upper bounds. Formally, traffic is speci-
fied by a D × D matrix of non-negative real numbers, with entry
dij denoting the amount of traffic sent from demand i to demand j.
A traffic matrix is valid if the traffic incoming to any node

�
i dij is

at most bin(j); also, the outgoing traffic
�

i
dji should be bounded

above by bout(j). We assume that thresholds are integral.
A solution to a VPND instance reserves bandwidth ue on edge

e in the graph, and fixes paths Pij between each ordered pair i, j
of demand nodes such that all valid traffic matrices can be routed
using these paths without violating the reserved capacities. The
cost of a solution is

�
e
ceue and we seek a solution of minimum

cost.
In this section, we give a simple 5.55-approximation algorithm

for this problem. Prior to our work, the best known solution was a
straightforward application of Bartal’s tree embeddings [6]; this ap-
proach only guarantees an O(log n log log n)-approximation, where
n = |V | is the number of vertices. For the special case when
bin(j) = bout(j) for all demands j, a 2-approximation is known [9,
13], and Gupta et al. [13] gave a 10-approximation for the special
case in which the the union of the routing paths {Pij} is required
to form a tree.

Before stating our approximation algorithm, we make a couple
of simplifying assumptions. By making many copies of each de-
mand, we can assume that each demand j is one of two types:
a sender with bin(j) = 0 and bout(j) = 1, or a receiver with
bin(j) = 1 and bout(j) = 0. As in Subsection 2.2, with a little
more care this reduction can be efficiently implemented even when
thresholds are not polynomially bounded. We will also assume that
the receivers, R, outnumber the senders, S. The algorithm and
analysis when |R| ≤ |S| is symmetric. We will let M denote the
number |S| of senders.

The following algorithm, which we call SIMPLEVPN, builds a
high-bandwidth “core” on one sender and a subset of the receivers,
and routes all other senders and receivers to it using shortest paths.

V1. Choose a sender s uniformly at random.

V2. Mark each receiver j with probability 1/M , and let R′ be the
set of marked receivers.

V3. Construct a ρST -approximate Steiner tree Ts on F = R′ ∪
{s}; install capacity M on all edges of Ts.

V4. For all senders and receivers j not in the tree Ts, install one
unit of capacity on the shortest path between j and the set F .

In Step (V4), the effect of installing capacity on different shortest
paths is cumulative; put differently, the capacity installed on an
edge outside of Ts is precisely the number of such shortest paths in
which it is contained.

To begin the analysis, let T denote the (random) set of edges that
are assigned a nonzero capacity by SIMPLEVPN. With a consistent
tie-breaking rule for shortest paths in Step (V4), T will be a tree.
The following lemma is straightforward.

LEMMA 3.1. With probability 1, the tree T produced by SIM-
PLEVPN is a feasible solution.

We now bound the expected cost of the solution produced by
algorithm SIMPLEVPN. We will do this by bounding three parts
of the cost separately: the expected cost of Step (V3), the expected

cost due to receivers in Step (V4), and the expected cost due to
senders in Step (V4).

LEMMA 3.2. The expected cost incurred in Step (V3) is at most
ρST ·Z

∗, where Z∗ is the cost of an optimal VPND solution OPT.

PROOF. We begin with an equivalent description of the random
selection performed in Steps (V1) and (V2). Each receiver picks a
sender uniformly at random, and we denote by Ds the random set
of demands picking sender s. We then pick a sender s uniformly at
random, and the Steiner tree instance of Step (V3) is then defined
on Ds ∪ {s}. The first two steps of SIMPLEVPN can be viewed
as these same two (independent) selection steps, with the sender
selected first and the random assignments of receivers to senders
second (recall there are M senders in all). To prove the lemma,
it therefore suffices to prove that the expected cost of an optimal
solution to a random Steiner tree instance on Ds ∪ {s} is at most
Z∗/M . We will prove this inequality for an arbitrary fixed asso-
ciation of receivers to senders; the unconditional inequality then
follows.

Fix a partition {Ds}s∈S of the receivers, and let T ∗
s denote a

min-cost Steiner tree on Ds ∪ {s}. Showing that T ∗
s has expected

cost at most Z∗/M (over the M choices for s) is tantamount to
proving that OPT can be “decomposed” into M trees, each capable
of handling any communication between a sender and its associated
receivers:

�

s

c(T ∗
s) ≤ Z∗.

To prove this inequality, first recall that the optimal solution OPT

must specify a path Prs between each sender s and receiver r. For
a sender s, let Gs be the subgraph ∪r∈DsPrs. Since Gs spans
Ds ∪ {s}, c(T ∗

s) ≤ c(Gs). If edge e appears in k ≥ 0 subgraphs
of the form Gs, then it is a member of k sender-receiver paths that
share no endpoints. Since simultaneous routing of traffic on these
k paths must be supported, OPT must install at least k units of
capacity on e. Therefore,

Z∗ ≥
�

s

c(Gs) ≥
�

s

c(T ∗
s),

which proves the lemma.

The expected cost of joining the receivers to the central core in
Step (V4) of SIMPLEVPN can be bounded above by 2Z∗ in a man-
ner identical to the proof Lemma 2.3; we omit further details.

LEMMA 3.3. The expected cost incurred in Step (V4) from in-
stalling capacity on r-F shortest paths for all receivers r is at most
2Z∗.

Our final lemma bounds the expected cost of joining senders to
the high-bandwidth core.

LEMMA 3.4. The expected cost incurred in Step (V4) from in-
stalling capacity on s′-F shortest paths for all senders s′ is at most
2Z∗.

PROOF. It suffices to show that, if a sender s is picked uniformly
at random, then

E � �
s′∈S

`(s, s′) � ≤ 2 Z∗,

where `(·, ·) denotes shortest-path distance in G. To prove this in-
equality, we fix a set R′ ⊆ R of M receivers. Any perfect matching
M of R′ and S naturally induces a valid traffic matrix that implies

a lower bound of
�

(r,s)∈M
`(r, s) on Z∗. Averaging over all M !

possible perfect matchings, we obtain

1

M

�

r∈R′,s∈S

`(r, s) ≤ Z∗,

since each receiver-sender pairing (r, s) appears in (M −1)! of the
M ! perfect matchings. It follows from this inequality that

Es∈S

�
�

r∈R′

`(r, s) � ≤ Z∗. (3.1)

Also,

�

s′∈S

`(s, s′) ≤
�

r∈R′

`(r, s) +
�

(r,s′)∈M

`(r, s′)

≤
�

r∈R′

`(r, s) + Z∗ (3.2)

for an arbitrary perfect matchingM of R′ and S. Combining (3.1)
and (3.2) yields the lemma.

Combining Lemmas 3.2–3.4 with the Steiner tree algorithm of
Robins and Zelikovsky [23] yields the main theorem of this section.

THEOREM 3.5. Algorithm SIMPLEVPN is a 5.55-approxima-
tion algorithm for the VPN design problem.

This resolves one of the main open questions from [13]. We had
already noted that, assuming consistent tie-breaking, the solution
output by SIMPLEVPN is a tree. Thus while tree solutions are not
in general optimal for VPND [13], some tree solution is always
near-optimal.

COROLLARY 3.6. Every instance of VPND admits a tree solu-
tion with cost no more than 5.55 times that of an optimal (graph)
solution.

4. SINGLE SOURCE BUY-AT-BULK NET-
WORK DESIGN

In this section we give a simple constant-factor approximation
algorithm for the widely studied SSBB problem. Our algorithm is
based on that of Guha et al. [12], but our randomized techniques
permit a simpler yet tighter analysis.

4.1 Notation and Preliminaries
Recall that in the SSBB problem we are given, in addition to

the usual undirected network with edge costs, a root vertex r and
a set D demands, with demand j wishing to send dj units of flow
to the root. As usual, we denote the length of an edge e by ce and
let ` denote shortest-path distance with respect to these lengths.
Finally, there are K cable types {1, 2, . . . , K}, with the ith cable
having capacity ui and cost σi per cable per unit length. We define
δi = σi/ui, which intuitively is the “incremental cost” of using
cable type i. We will assume that each ui and σi (and by definition
δi) is a power of 2. This assumption can be enforced while losing a
factor of 4 in the approximation ratio (round each capacity ui down
to the nearest power of 2, and each σi up to the nearest power of
2).

We now note that costs and capacities must obey some geometric
scaling properties. By reordering cable types, we can assume that
ui < uj and σi < σj for all i < j. (If ui ≤ uj and σi ≥ σj ,
we can eliminate cable type i from consideration.) Scaling, we can

assume that u1 = σ1 = 1. The incremental costs δi then scale as
well; note that

σk/uk < σj/uj for each j < k, (4.3)

since otherwise we can eliminate cable type k by replacing a cable
of type k by uk/uj copies of type j cables without increasing the
cost. Since δj = σj/uj is also a power of 2, this implies each
δj+1 ≤ δj/2 for all j, as uj+1 ≥ 2uj . Finally, we define gk =
σk+1

σk
uk; (4.3) implies that gk < uk+1, and hence

1 = u1 < g1 < u2 < g2 < . . . < uK < gK =∞. (4.4)

Let OPT denote an optimal solution with cost C∗ =
�

j
C∗(j),

where C∗(j) is the amount paid for cables of type j.
We would like to assume that all demand weights are integral.

This assumption is not without loss of generality, for we have al-
ready scaled cable capacities. Instead, we enforce this with the
following “redistribution lemma”. Roughly speaking, this lemma
shows how to take a “grouping parameter” U along with a tree with
weights on its vertices, and randomly move weights throughout the
tree so that the total weight at any node of the tree becomes either
0 or U . (For ensuring integral demands, we will take U to be 1).
Moreover, this random process has two important properties: the
probability that a vertex in the tree receives weight U is propor-
tional to its initial weight, and no edge of the tree carries too much
flow during the reallocation.

LEMMA 4.1 (Redistribution Lemma). Let T be a tree rooted
at r with each edge having capacity U . For each vertex j ∈ T , let
w(j) < U be the weight located at j with

�
j
w(j) a multiple of

U . Then there is an efficiently computable (random) flow on the
tree that redistributes weights without violating edge capacities, so
that each vertex receives a new weight w′(j) that is either 0 or U .
Moreover,

Pr � j has w′(j) > 0 � = w(j)/U ∀j. (4.5)

A deterministic version of this lemma appears in [14, Lemma 1].
The proof is fairly simple, and we give it here only for the sake of
completeness.

PROOF. Let us replace each edge in T by two oppositely di-
rected arcs. We first show that the lemma holds in this bidirected
tree. First, we take an Euler tour of the vertices, yielding a cycle C.
We also pick a value Y drawn uniformly at random from (0, U].
We maintain a counter Q, which initially is set to 0.

We next go around the cycle, starting at the vertex j0 = r,
and visiting all the vertices j0, j1, . . . , jm in (say) clockwise or-
der. When we visit a vertex jk , we set Q← Q + w(jk). Suppose
the counter Q, just before reaching jk was Qold, and Qnew =
Qold + w(jk) is the value after accounting for jk. If xU + Y ∈
(Qold, Qnew] for some integer x—i.e., the counter crossed the point
Y modulo U—then we “mark” jk, and ask that it send Qnew −
(xU +Y) weight to the next marked vertex lying clockwise on the
cycle. In the other case, we ask that the vertex send all its weight
to the next marked vertex lying clockwise on the cycle. Note that
the construction ensures that each arc on the cycle carries at most
U units of weight; furthermore, a vertex j gets marked with proba-
bility w(j)/U , and this is exactly the probability that it has U units
of weight at the end of the process.

This process naturally induces a redistribution of weights in the
original tree as well; however, since each edge of the tree was re-
placed by two arcs, there is a danger that the capacity of an edge
may be violated by a factor of 2. This can be handled by rudimen-
tary flow canceling. Let us consider an edge e of the tree which was

replaced by two opposite arcs a and ā. Suppose both the arcs carry
flow, with a path from i to j using a, and one from i′ to j′ using ā.
We can now decrease the flow sent on these paths by ε, and instead
send ε flow from i to j′, and from i′ to j. This does not change the
amount of weight reaching a marked vertex, but decreases the total
flow crossing e. This process stops when each edge is used in only
one direction, at which point the flow crossing each edge of T is at
most U , completing the proof of the lemma.

With Lemma 4.1, we can build a ρST -optimal Steiner tree T0

with cables of capacity u = u1 = 1 that connects all the demands,
and use the procedure of Lemma 4.1 with w(j) being the fractional
part of dj to collect integral demands at some subset of vertices.
The cost of the network to do this rerouting is just the cost of the
Steiner tree built; since the tree built by the optimal solution is a
candidate Steiner tree, we incur cost at most ρST ×

�
j
C∗(j)/σj

(recall σ1 = 1). Duplicating vertices if necessary, we can now
assume that dj = 1 for all j. We also assume that the number of
demands |D| is a power of 2; if not, we can place dummy demands
at the root r to achieve this.

4.2 The Algorithm SIMPLESSBB

The algorithm we present closely follows that of Guha et al. [12],
where the network is designed incrementally in stages. At the tth
stage, we use the value ut+1 as an “aggregation threshold”, and
combine many demands (each of weight ut) into a single demand
of weight ut+1. We buy cables on the paths required for this ag-
glomeration. At the end of all these stages, the demand reaches the
root; the path in the SSBB solution for this demand is then defined
as the concatenation of the paths used in the aggregation stages.

To reiterate: at the beginning of the tth stage, there is a set Dt of
|D|/ut vertices with weight ut, and other vertices have weight 0.
(Initially D1 = D, and we have enforced that each demand j ∈ D
has weight dj = 1 = u1.) The steps of stage t are:

S1. Mark each demand in Dt with probability pt = ut/gt, and
let D′

t be the marked demands.

S2. Construct a ρST -approximate Steiner tree Tt on Ft = D′
t ∪

{r}. Install a cable of type (t + 1) on each edge of this tree.

S3. For each vertex j ∈ Dt, sends its ut weight to the nearest
member of Ft using cables of type t. Let wt(i) be the weight
collected at i ∈ Ft.

S4. A vertex i ∈ Ft receives ut weight each from wt(i)/ut ver-
tices of Dt. Divide these vertices into groups of ut+1/ut

vertices each, leaving bi = (wt(i)
ut

mod
ut+1

ut
) residual ver-

tices at the end. For each group of ut+1/ut vertices, send
the ut+1 weight emanating from the group back from i to a
random member of the group, building new cables of type
t + 1 to do so.

After rerouting weight back to vertices of Dt in this way for
all i ∈ Ft, we use Lemma 4.1 with T = Tt, wt(i) = biut

and U = ut+1 to aggregate the weight from residual vertices
into groups of weight exactly ut+1. For every i ∈ Ft that
receives ut+1 weight from this process, we send this weight
back to one of i’s bi residual vertices, chosen uniformly at
random, again building new cables of type t + 1 to do so.

We note that Dt+1 ⊆ Dt for all t. Also, if t = K, then pK = 0,
so in the final iteration no demands are marked and all weight is
sent to the root r in Step (S3). We now analyze the algorithm with
a sequence of simple lemmas.

LEMMA 4.2. For every non-root vertex j ∈ D and stage t,

Pr [j ∈ Dt] = 1/ut.

PROOF. The proof is by induction. The claim is clearly true for
t = 1. For stage t, consider j ∈ Dt. Suppose j sends its weight to
vertex i ∈ Ft in Step (S3). The vertex j is either a residual vertex of
i, or it is not. In the former case, Lemma 4.1 assigns ut+1 weight
to i with probability biut/ut+1, and j subsequently receives this
weight with probability 1/bi. In the latter case, j receives the group
of ut+1 weight collected at i to which it belongs with probability
ut/ut+1. In either case,

Pr [j ∈ Dt+1] = Pr [j ∈ Dt+1 | j ∈ Dt] Pr [j ∈ Dt] =

(ut/ut+1)(1/ut) = 1/ut+1.

As a corollary of this result, we get that a non-root vertex lies in
Ft with probability pt × 1/ut = 1/gt.

LEMMA 4.3. Let T ∗
t be the optimal Steiner tree on Ft, and

c(T ∗
t) =

�
e∈T∗

t
ce. Then

E [c(T ∗
t)] ≤

�

s>t

1

σs

C∗(s) +
�

s≤t

1

δs · gt

C∗(s). (4.6)

PROOF. We assume for simplicity that all demand weights were
initially 1 (i.e., that Lemma 4.1 was not needed as a preprocessing
step); the general case requires only a mildly more complicated
argument.

We will exhibit a (random) graph Gt spanning Ft that has low
expected cost. We first add to Gt all the edges in OPT possessing a
cable of type t+1 or higher. If Es is the set of edges with a cable of
type s, then c(Es) ≤ C∗(s)/σs, which gives the first summation
of (4.6).

We complete Gt by considering each vertex i ∈ Ft \ {r} ⊆ D
in turn. In OPT, demand i may use several i-r paths to send flow
to the root r. (We unfortunately cannot assume without loss of
generality that OPT is a tree). We randomly add to Gt one of these
paths, with a path chosen with probability equal to the fraction of
i’s weight that it carries.

Consider an edge e of G with no cable of type t + 1 or higher.
Suppose for simplicity that only one cable is installed on e, say of
type s ≤ t. Then e lies in Gt if and only if, for some i ∈ D
and some i-r flow path P containing e in OPT, i was selected
for Ft and then P was selected among all i-r flow paths. Since
each i ∈ D lies in Ft with probability 1/gt, it follows from the
Union Bound that e lies in Gt with probability at most fe/gt, where
fe is the amount of flow on e in OPT. Since fe ≤ us, edge e
contributes at most ceus/gt to the expected cost of Gt. On the
other hand, this cable of type s on edge e contributes σsce to C∗(s).
Thus the expected cost in Gt for edge e is 1/(gt δs) times what
OPT pays for the cable. For edges on which multiple cables are
installed, this same analysis can be performed on a cable-by-cable
basis. Summing over all edges with no cable of type t+1 or higher
now proves the lemma.

We now relate the cost of our algorithm to the cost of this random
Steiner tree on Ft.

LEMMA 4.4. The expected cost incurred in stage t is at most
(3 + ρST) σt+1 E [c(T ∗

t)] , where T ∗
t is the optimal Steiner tree

on Ft.

PROOF. The cost of the Steiner tree in Step (S2) is at most
ρST σt+1 c(T ∗

t), while the cost of Step (S3) is at most 2 σt+1 c(T ∗
t)

by an argument analogous to that proving Lemma 2.3.
We complete the proof by bounding the cost of redistributing the

flow back to randomly chosen demands in Step (S4). Lemma 4.1
ensures that the rerouting of weight from residual vertices can be
accomplished using the cables of type t+1 purchased in Step (S2),
and no new cables need be built. A group of ut+1 weight at a ver-
tex of Ft is returned to one the ut+1/ut vertices of Dt from which
the weight emanated. Since the vertex is chosen at random, the ex-
pected cost for the cables of type t +1 supporting this return trip is
the cost incurred for this weight in Step (S3), times δt+1/δt. Sum-
ming over all groups and using the scaling properties of incremental
costs, the total cost of the cables for routing flow back to random
vertices of Dt is at most (1/2) · 2 σt+1 c(T ∗

t) ≤ σt+1 c(T ∗
t), and

the lemma is proved.

THEOREM 4.5. Algorithm SIMPLESSBB is a 72.8-approxima-
tion algorithm for the SSBB problem.

PROOF. In our preprocessing step, we incur a factor 4 loss from
rounding the costs and the capacities to powers of 2. Furthermore,
we incur a cost of ρST

�
j
C∗(j)/σj to ensure that we have in-

tegral demands at each vertex. The cost incurred during the al-
gorithm proper is obtained by plugging (4.6) into the statement of
Lemma 4.4, and summing over all t. This shows that the coefficient
of C∗(s) is at most

4× (3 + ρST)× �� s−1�

t=0

σt+1/σs +
�

t≥s

δt/δs �� . (4.7)

Since the σt and δt are powers of 2, both sums are geometric and
are bounded above by 2. This implies a guarantee of (3 + ρST)×
4 × 4, which is at most 72.8.

5. CONCLUSIONS
We have exhibited several simple randomized approximation al-

gorithms for network design problems that improve over the previ-
ously best known performance guarantees. There are several nat-
ural questions that demand further study. Can our algorithms be
derandomized? Can the analysis of this paper be improved, or are
there tight examples demonstrating that our analysis of these algo-
rithms is best possible? Is the randomized framework of this paper
sufficiently powerful to tackle harder network design problems?

6. REFERENCES
[1] Matthew Andrews and Lisa Zhang. Approximation

algorithms for access network design. Algorithmica,
34(2):197–215, 2002. (Preliminary version in 39th FOCS,
1998.).

[2] Baruch Awerbuch and Yossi Azar. Buy-at-bulk network
design. In Proceedings of the 38th Annual IEEE Symposium
on Foundations of Computer Science, pages 542–547, 1997.

[3] Baruch Awerbuch, Yossi Azar, and Yair Bartal. On-line
generalized Steiner problem. In Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms
(Atlanta, GA, 1996), pages 68–74, New York, 1996. ACM.

[4] Yair Bartal. Competitive Analysis of Distributed On-line
Problems — Distributed Paging. PhD thesis, Tel-Aviv
University, Israel, 1994.

[5] Yair Bartal. Probabilistic approximations of metric spaces
and its algorithmic applications. In Proceedings of

the 37th Annual IEEE Symposium on Foundations of
Computer Science, pages 184–193, 1996.

[6] Yair Bartal. On approximating arbitrary metrics by tree
metrics. In Proceedings of the 30th Annual ACM Symposium
on Theory of Computing, pages 161–168, 1998.

[7] Yair Bartal, Amos Fiat, and Yuval Rabani. Competitive
algorithms for distributed data management. J. Comput.
System Sci., 51(3):341–358, 1995. (Preliminary version in
24th STOC, 1992).

[8] Nicholas G. Duffield, Pawan Goyal, Albert G. Greenberg,
Partho P. Mishra, K.K. Ramakrishnan, and Jacobus E.
van der Merwe. A flexible model for resource management
in virtual private networks. In Proceedings of the ACM
SIGCOMM, Computer Communication Review, volume 29,
pages 95–108, 1999.

[9] J. Andrew Fingerhut, Subhash Suri, and Jonathan S. Turner.
Designing least-cost nonblocking broadband networks. J.
Algorithms, 24(2):287–309, 1997.

[10] Naveen Garg, Rohit Khandekar, Goran Konjevod, R. Ravi,
F. Sibel Salman, and Amitabh Sinha. On the integrality gap
of a natural formulation of the single-sink buy-at-bulk
network design formulation. In Proceedings of the 8th IPCO,
LNCS vol 2081, pages 170–184, 2001.

[11] Sudipto Guha, Adam Meyerson, and Kamesh Munagala.
Hierarchical placement and network design problems. In
Proceedings of the 41th Annual IEEE Symposium on
Foundations of Computer Science, pages 603–612, 2000.

[12] Sudipto Guha, Adam Meyerson, and Kamesh Mungala. A
constant factor approximation for the single sink edge
installation problems. In Proceedings of the 33rd Annual
ACM Symposium on the Theory of Computing (STOC), pages
383–388, 2001.

[13] Anupam Gupta, Amit Kumar, Jon Kleinberg, Rajeev
Rastogi, and Bülent Yener. Provisioning a Virtual Private
Network: A network design problem for multicommodity
flow. In Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing, pages 389–398, 2001.

[14] Refael Hassin, R. Ravi, and F. S. Salman. Approximation
algorithms for a capacitated network design problem. In
APPROX, pages 167–176, 2000.

[15] David R. Karger and Maria Minkoff. Building Steiner trees
with incomplete global knowledge. In Proceedings of
the 41th Annual IEEE Symposium on Foundations of
Computer Science, pages 613–623, 2000.

[16] Samir Khuller and An Zhu. The general Steiner tree-star
problem. Information Processing Letters, 84:215–220, 2002.

[17] Tae Ung Kim, Timothy J. Lowe, Arie Tamir, and James E.
Ward. On the location of a tree-shaped facility. Networks,
28(3):167–175, 1996.

[18] Amit Kumar, Anupam Gupta, and Tim Roughgarden. A
constant-factor approximation algorithm for the
multicommodity rent-or-buy problem. In Proceedings of
the 43rd Annual IEEE Symposium on Foundations of
Computer Science, pages 333–342, 2002.

[19] Youngho Lee, Yuping Chiu, and Jennifer Ryan. A branch
and cut algorithm for a Steiner tree-star problem. INFORMS
Journal on Computing, 8(3):194–201, 1996.

[20] Adam Meyerson, Kamesh Munagala, and Serge Plotkin.
Cost-distance: Two metric network design. In Proceedings of
the 41st Annual IEEE Symposium on Foundations of
Computer Science, pages 624–630, 2000.

[21] Adam Meyerson, Kamesh Munagala, and Serge Plotkin.
Designing networks incrementally. In Proceedings of
the 42nd Annual IEEE Symposium on Foundations of
Computer Science, pages 406–415, 2001.

[22] Robert C. Prim. Shortest interconnection networks and some
generalizations. Bell System Technical Journal,
36:1389–1401, 1957.

[23] Gabriel Robins and Alexander Zelikovsky. Improved Steiner
tree approximation in graphs. In Proceedings of
the 11th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 770–779, 2000.

[24] F. Sibel Salman, Joseph Cheriyan, R. Ravi, and Sairam
Subramanian. Approximating the single-sink
link-installation problem in network design. SIAM Journal
on Optimization, 11(3):595–610, 2000.

[25] Chaitanya Swamy and Amit Kumar. Primal-dual algorithms
for the connected facility location problem. In Proceedings
of the 5th APPROX, LNCS vol 2462, pages 256–269, 2002.

[26] Kunal Talwar. Single-sink buy-at-bulk LP has constant
integrality gap. In Proceedings of the 9th IPCO, LNCS vol
2337, pages 475–486, 2002.

