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1. Introduction

The optimal reserve price for a single-item auction is a function of the dis-
tribution of the bidders’ valuations. In more complex settings, such as with
multiple goods, the optimal selling procedure depends on the underlying valua-
tion distributions in still more intricate ways. What if good prior information is
expensive or impossible to acquire? What if a single procedure is to be re-used
several times, in settings with different or not-yet-known bidder valuations?
Can we avoid auction designs that depend on the details of the assumed dis-
tribution, in the spirit of “Wilson’s Doctrine” (Wilson, 1987)? Are there more
robust mechanisms, that are guaranteed to be near-optimal across a range of
environments?

This paper pursues auctions that are prior-independent.

The goal is to design an auction such that, whatever the underlying val-
uation distribution, its expected revenue is almost as large as that of an
optimal auction tailored for that distribution.

For example, consider a single-item auction with n bidders with valuations
drawn i.i.d. from a distribution F . The Vickrey or second-price auction is prior-
independent, because its description is independent of F . For well-behaved
distributions, the revenue-maximizing auction is the Vickrey auction, supple-
mented with a reserve price (Myerson, 1981). This reserve price depends on F ,
and optimal single-item auctions are not prior-independent.

Can there be non-trivial revenue guarantees for prior-independent auctions?
After all, this is tantamount to a single auction being simultaneously near-
optimal for every valuation distribution F .

1.1. Our Results
We propose the prior-independent Single Sample mechanism. This mecha-

nism is essentially the Vickrey-Clarke-Groves (VCG) mechanism, supplemented
with reserve prices chosen at random from participants’ bids. We prove that
under reasonably general assumptions, this mechanism simultaneously approxi-
mates all Bayesian-optimal mechanisms for all valuation distributions. Concep-
tually, our analysis shows that even a single sample from a distribution — some
bidder’s valuation — is sufficient information to obtain near-optimal expected
revenue.

In more detail, we consider n single-parameter bidders. Each bidder has an
independent private valuation for “winning”, drawn from a distribution that
satisfies a standard technical condition.4 We allow bidder asymmetry through
observable attributes. We assume that the valuations of bidders with a common

4Without any restriction on the tails of the valuation distributions, no prior-independent
auction has a non-trivial revenue guarantee. To see why, consider a single-item auction with n
bidders and valuations drawn i.i.d. from the following distribution Fp, for a parameter p: a
bidder has valuation p with probability 1/n2, and valuation 0 otherwise. For every p, the
optimal auction for Fp has expected revenue proportional to p/n. A prior-independent auction
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attribute are drawn i.i.d. from a distribution that is unknown to the seller.5 Bid-
ders with different attributes can have valuations drawn (independently) from
completely different distributions. For example, based on (publicly observable)
eBay bidding history, one might classify bidders into “bargain-hunters”, “typ-
ical”, and “aggressive.” The assumption is that bidders in the same class are
likely to have similar valuations, but nothing is assumed about how their val-
uations for a given item are distributed. We assume that the environment is
non-singular, meaning that there is no bidder with a unique attribute.6

Feasible allocations are described by a collection of bidder subsets, each rep-
resenting a set of bidders that can simultaneously win in the auction. For exam-
ple, in a single-item auction, the subsets are the singletons and the empty set. In
combinatorial auctions with single-minded bidders, feasible subsets correspond
to bidders seeking mutually disjoint bundles.7 We consider only “downward-
closed” environments, where every subset of a feasible set is again feasible.

Our first main result is that, for every non-singular downward-closed en-
vironment in which every valuation distribution has a monotone hazard rate
(as defined in Section 2.3), the expected revenue of the prior-independent Sin-
gle Sample mechanism is at least a constant fraction of the expected optimal
welfare (and hence revenue) in that environment. The approximation factor is
1
4 ·

κ−1
κ when there are at least κ ≥ 2 bidders of every present attribute, and

our analysis of our mechanism is tight (for a worst-case distribution) for each κ.
This factor is 1

8 when κ = 2 and quickly approaches 1
4 as κ grows. This gives, as

an example special case, the first revenue guarantee for combinatorial auctions
with single-minded bidders outside of the standard Bayesian setup with known
distributions (Ledyard, 2007; Hartline and Roughgarden, 2009).

For our second main result, we weaken our assumptions about the valua-
tion distributions but add additional restrictions to the structure of the feasible
sets. Precisely, we consider matroid environments, where bidders satisfy a sub-
stitutes condition (Section 2.1). Examples of such environments include k-unit
auctions and certain matching markets. Here, we again prove an approximation
factor of 1

4 ·
κ−1
κ , assuming only that every valuation distribution is regular — a

condition that is weaker than the monotone hazard rate condition and permits
distributions with heavier tails. When all bidders have a common attribute and
thus have i.i.d. valuations, we modify the mechanism and analysis to achieve an
approximation factor of 1

2 for every κ ≥ 2.

essentially has to “guess” the value of p — since bids are almost always zero, they almost never
provide any information about Fp — and cannot have expected revenue within a constant
factor of p/n for every Fp.

5We only consider dominant-strategy incentive-compatible mechanisms. Thus, the valua-
tion distributions can also be unknown to the mechanism participants.

6No prior-independent auction has a non-trivial approximation guarantee when there is
a bidder with a unique attribute. The argument is similar to the one above for arbitrary
valuation distributions; see also Goldberg et al. (2006).

7In such an auction, there are n bidders and m goods with unit supply. Each bidder i
wants a publicly known subset Si of goods — for example, a set of geographically clustered
wireless spectrum licenses — and has a private valuation vi for it.

3



Third, we extend the Single Sample mechanism to make use of multiple sam-
ples and provide better approximation guarantees when κ is large. Specifically,
provided κ is sufficiently large — at least a lower bound that is polynomial in
ε−1 and independent of the underlying valuation distributions — we show how
to improve the above approximation factors of 1

4
κ−1
κ , 1

4
κ−1
κ , and 1

2 to 1
e (1− ε),

1
2 (1− ε), and (1− ε), respectively. (Here e denotes 2.718 . . ..)

1.2. Motivation: The Bulow-Klemperer Theorem
To develop intuition for our techniques, and more generally the possibility of

good prior-independent auctions, we review a well-known result of Bulow and
Klemperer (1996). This result concerns single-item auctions and states that,
for every n ≥ 1 and valuation distribution F that is regular in the sense of
Section 2.3, the expected revenue of the Vickrey auction with n + 1 bidders
with valuations drawn i.i.d. from F is at least that of a revenue-maximizing
auction with n such bidders.

First, we observe that the Bulow-Klemperer theorem is an interesting rev-
enue guarantee for a prior-independent auction: with one extra bidder, the
prior-independent Vickrey auction is as good as the revenue-maximizing auc-
tion tailored to the underlying distribution.

Next, we give a novel interpretation of the Bulow-Klemperer theorem when n =
1. Fix a valuation distribution F . The optimal auction for one bidder simply
posts a monopoly price — a price p that maximizes p ·(1−F (p)). In the Vickrey
auction, each of the two bidders contributes the same expected revenue. Each
bidder effectively faces a reserve price equal to the other bidder’s valuation — a
random reserve price drawn from F . Thus, the Bulow-Klemperer theorem with
n = 1 is equivalent to the following statement: for a bidder with a valuation
drawn from a regular distribution F , the expected revenue from a random posted
price drawn from F is at least half that from an optimal posted price.8 At least
in single-item auctions, a random reserve price is an effective surrogate for an
optimal one.

1.3. The Main Ideas
Our general results are proved in two parts. The interface between the two is

the VCG mechanism with “lazy” monopoly reserves (VCG-L). This mechanism
is prior-dependent, in that the valuation distribution Fi of bidder i is known.
The VCG-L mechanism first runs the VCG mechanism to obtain a tentative set
of winning bidders, and then removes every bidder i with valuation below the
monopoly price for Fi.

The first part of our proof approach establishes conditions under which the
VCG-L mechanism with monopoly reserves has near-optimal expected revenue.
We do this using different arguments for each of the first two main results.
We also show that there is no common generalization of these two results, in

8See also Lemma 3.6 for a direct, geometric proof of this statement.
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that the VCG-L mechanism with monopoly reserves does not have near-optimal
expected revenue in every downward-closed environment with regular valuation
distributions.

The second part of our proof approach shows that the expected revenue of
the Single Sample mechanism is close to that of the VCG-L mechanism with
monopoly reserves. Since the Single Sample mechanism uses random reserves
and the VCG-L mechanism uses monopoly reserves, this is essentially a gener-
alization of the Bulow-Klemperer argument in Section 1.2.

Our third main result, which modifies the Single Sample mechanism to give
better bounds as the number of bidders of every attribute tends to infinity,
improves the analysis in the first part of the proof approach above. A weak
version of this result, which does not give quantitative bounds on the number
of bidders required, can be derived from the Law of Large Numbers. To prove
our distribution-independent bound on the number of bidders required, we show
that there exists a set of “quantiles” that is simultaneously small enough that
concentration bounds can be usefully applied, and rich enough to guarantee a
good approximation for every regular valuation distribution. Our arguments
rely on a geometric characterization of regular distributions.

1.4. Related Work
Most of the vast literature on revenue-maximizing auctions studies designs

tailored to a known distribution over bidders’ private information (see, e.g.,
Krishna (2002)). Here, we mention only the works related to approximation
guarantees for prior-independent auctions. Neeman (2003) considers single-item
auctions with i.i.d. bidders, and quantifies the fraction of the optimal welfare
extracted as revenue by the (prior-independent) Vickrey auction, as a function
of the number of bidders. Segal (2003) and Baliga and Vohra (2003) prove
asymptotic optimality results for certain prior-independent mechanisms when
bidders are symmetric, goods are identical, and the number of bidders is large.
As discussed in Section 1.2, the main result in Bulow and Klemperer (1996) is
a revenue guarantee for a prior-independent auction. For more general results
in the same spirit — that welfare-maximization with additional bidders yields
expected revenue (almost) as good as in an optimal mechanism — see Dughmi
et al. (2012); Hartline and Roughgarden (2009). Since the conference version
of the present work Dhangwatnotai et al. (2010), there have been a number
of follow-up papers in prior-independent auctions and related topics; see Azar
et al. (2013); Chawla et al. (2013); Devanur et al. (2011); Fu et al. (2013);
Roughgarden and Talgam-Cohen (2013); Roughgarden et al. (2012).

We only consider dominant-strategy incentive-compatible mechanisms and
make no assumptions about participants’ knowledge of the valuation distribu-
tions. An alternative approach is to assume that these distributions are known
to the participants but unknown to the seller, and to design Bayesian incentive-
compatible mechanisms. Caillaud and Robert (2005), for example, give a simple
ascending-price contest for a single-item that has a revenue-optimal Bayes-Nash
equilibrium. Such mechanisms demand much more from the strategic partici-
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pants than dominant-strategy implementations; see also the discussion in Berge-
mann and Morris (2005).

Valuation distributions are used in the analysis, but not in the design, of
prior-independent auctions. In prior-free auction design, distributions are not
even used to evaluate the performance of an auction — the goal is to design an
auction with good revenue for every valuation profile, rather than in expecta-
tion. A key challenge in prior-free auction design, first identified by Goldberg
et al. (2006), is to develop a useful competitive analysis framework. Goldberg
et al. (2006) proposed a revenue benchmark approach, which has been applied
successfully to a number of auction settings. The idea is to define a real-valued
function on valuation profiles that represents an upper bound on the maximum
revenue achievable by any “reasonable” auction. The most well-studied such
benchmark is F (2) for digital goods auctions — auctions with unlimited supply
and unit-demand bidders — defined for each valuation profile as the maximum
revenue achievable using a common selling price while selling to at least two
bidders (Goldberg et al., 2006).

Approximation in this revenue benchmark framework is strictly stronger
than the simultaneous approximation goal pursued in the present paper. This
connection is made explicit in Hartline and Roughgarden (2008) and is pursued
further by Devanur and Hartline (2009); Hartline and Roughgarden (2009);
Hartline and Yan (2011); Leonardi and Roughgarden (2012). Advantages of our
prior-independent guarantees over the known prior-free results include the abil-
ity to handle asymmetric (non-i.i.d.) bidders and more general environments;
better approximation factors; and simpler mechanisms.

2. Preliminaries

This section reviews standard terminology and facts about Bayesian-optimal
mechanism design. We encourage the reader familiar with these to skip to
Section 3.

2.1. Environments
An environment is defined by a set E of bidders, and a collection I ⊆ 2E of

feasible sets of bidders, which are the subsets of bidders that can simultaneously
“win”. For example, in a k-unit auction with unit-demand bidders, I is all
subsets of E that have size at most k. We assume that the set system (E, I) is
downward-closed, meaning that if T ∈ I and S ⊆ T , then S ∈ I. Each bidder
has a publicly observable attribute that belongs to a known set A. We assume
that each bidder with attribute a has a private valuation for winning that is an
independent draw from a distribution Fa. We sometimes denote an environment
by a tuple Env = (E, I, A, (ai)i∈E , (Fa)a∈A). Every subset T ⊆ E of bidders
induces a subenvironment in a natural way, with feasible sets {S ∩ T}S∈I .

Some of our results concern the special case of a matroid environment, in
which bidders satisfy a substitutes condition. Precisely, the set system (E, I) is
a matroid if I is non-empty and downward-closed, and if whenever S, T ∈ I with
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|T | < |S|, there is some i ∈ S \ T such that T ∪ {i} ∈ I. This last condition is
called the “exchange property” of matroids. See, e.g., Oxley (1992). Examples
of matroid environments include digital goods (where I = 2E), k-unit auctions
(where I is all subsets of size at most k), and certain unit-demand matching
markets (corresponding to transversal matroids). Combinatorial auctions with
single-minded bidders, where feasible sets correspond to sets of bidders desiring
mutually disjoint bundles, induce downward-closed environments that are not
generally matroids.

An environment is non-singular if there is no bidder with a unique attribute,
and is i.i.d. if every bidder has the same attribute. An environment is regular
or m.h.r. if every valuation distribution is a regular distribution or an m.h.r.
distribution (as defined in Section 2.3), respectively.

2.2. Truthful Mechanisms
Name the bidders E = {1, 2, . . . , n}. A (deterministic) mechanism M com-

prises an allocation rule x that maps every bid vector b to a characteristic vector
of a feasible set (in {0, 1}n), and a payment rule p that maps every bid vector b
to a non-negative payment vector in [0,∞)n. We insist on individual rationality
in the sense that pi(b) ≤ bi · xi(b) for every i and b. We assume that every
bidder i aims to maximize its quasi-linear utility ui(b) = vi · xi(b) − pi(b),
where vi is its private valuation for winning. We call a mechanism M truthful
if for every bidder i and fixed bids b−i of the other bidders, bidder i maximizes
its utility by setting its bid bi to its private valuation vi. Since we only con-
sider truthful mechanisms, in the rest of the paper we use valuations and bids
interchangeably.

The efficiency or welfare of the outcome of a mechanism is the sum of the
winners’ valuations, and the revenue is the sum of the winners’ payments. By
individual rationality, the revenue of a mechanism outcome is bounded above
by its welfare.

A well-known characterization of truthful mechanisms in single-parameter
settings (Myerson, 1981; Archer and Tardos, 2001) states that a mechanism
(x,p) is truthful if and only if the allocation rule is monotone — that is,
xi(b′i,b−i) ≥ xi(b) for every i, b, and b′i ≥ bi — and the payment rule is given
by a certain formula involving the allocation rule. We often specify a truthful
mechanism by its monotone allocation rule, with the understanding that it is
supplemented with the unique payment rule that yields a truthful mechanism.
For deterministic mechanisms like those studied in this paper, the payment of
a winning bidder is simply the smallest bid for which it would remain a winner.

For example, the VCG mechanism, which chooses the feasible set S ∈ I that
maximizes the welfare

∑
i∈S vi, has a monotone allocation rule and can be made

truthful using suitable payments.
Two variants of the VCG mechanism are also important in this paper. Let ri

be a reserve price for bidder i. The VCG mechanism with eager reserves r
(VCG-E) works as follows, given bids v: (1) remove all bidders i with vi < ri; (2)
run the VCG mechanism on the remaining bidders to determine the winners; (3)
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charge each winning bidder i the larger of ri and its VCG payment in step (2).
In the VCG mechanism with lazy reserves r (VCG-L), steps (1) and (2) are
reversed.

Both the VCG-E and VCG-L mechanisms are feasible and truthful in every
downward-closed environment. The two mechanisms are equivalent in suffi-
ciently simple environments — see Corollary 3.4 — but are different in general.
For instance, suppose E = {1, 2, 3}, the maximal feasible sets are {1, 2} and
{3}, v1 = v2 = 2, v3 = 3, r1 = 3, and r2 = r3 = 0. Then, bidder 3 is the
winner in the VCG-E mechanism, while bidder 2 is the winner in the VCG-L
mechanism. In general, the welfare of the VCG-E mechanism is at least that of
the VCG-L mechanism. Each mechanism has larger revenue than the other in
some cases.

2.3. Bayesian-Optimal Auctions
Let F be (the cumulative distribution function of) a valuation distribution.

For simplicity, we assume that the distribution is supported on a closed interval
[l, h], and has a positive and smooth density function on this interval. When
convenient, we assume that l = 0; a simple “shifting argument” shows that this
is the worst type of distribution for approximate revenue guarantees. The virtual
valuation function of F is defined as ϕF (v) = v − 1

h(v) , where h(v) = f(v)
1−F (v)

is the hazard rate function of F . This paper works with two different com-
mon assumptions on valuation distributions. A regular distribution has, by
definition, a nondecreasing virtual valuation function. A monotone hazard rate
(m.h.r.) distribution has a nondecreasing hazard rate function. Several im-
portant distributions (exponential, uniform, etc.) are m.h.r.; intuitively, these
are distributions with tails no heavier than the exponential distribution. Reg-
ular distributions include all m.h.r. distributions along with some additional
distributions with heavier tails, such as some power-law distributions.

Myerson (1981) characterized the expected revenue-maximizing mechanisms
for single-parameter environments using the following key lemma.

Lemma 2.1 (Myerson’s Lemma) For every truthful mechanism (x,p), the
expected payment of a bidder i with valuation distribution Fi satisfies

Ev[pi(v)] = Ev[ϕFi(vi) · xi(v)].

Moreover, this identity holds even after conditioning on the bids v−i of the
bidders other than i.

In words, the (conditional) expected payment of a bidder is precisely its
(conditional) expected contribution to the virtual welfare. It follows that if
the distributions are regular, then a revenue-maximizing truthful mechanism
chooses a feasible set S that maximizes the virtual welfare

∑
i∈S ϕFi(vi). The

role of regularity is to ensure that this allocation rule is indeed monotone; oth-
erwise, additional ideas are needed (Myerson, 1981).
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3. Revenue Guarantees with a Single Sample

In this section, we design a prior-independent auction that simultaneously
approximates the optimal expected revenue to within a constant factor in every
non-singular m.h.r. single-parameter environment, and in every non-singular
regular matroid environment. Section 3.1 defines our mechanism. Section 3.2
introduces some of our main analysis techniques in the simpler setting of i.i.d.
matroid environments — here, we also obtain better approximation bounds.
Section 3.3 gives an overview of our general proof approach. Sections 3.4 and 3.5
prove our approximation guarantees for m.h.r. downward-closed and regular
matroid environments, respectively. Section 3.6 shows that there is no common
generalization of these two results, in that the Single Sample mechanism does
not have a constant-factor approximation guarantee in regular downward-closed
environments. Section 3.7 discusses computationally efficient variants of our
mechanism.

3.1. The Single Sample Mechanism
We propose and analyze the Single Sample mechanism: we randomly pick

one bidder of each attribute to set a reserve price for the other bidders with that
attribute, and then run the VCG-L mechanism (Section 2.2) on the remaining
bidders.

Definition 3.1 (Single Sample) Given a non-singular downward-closed en-
vironment Env = (E, I, A, (ai)i∈E , (Fa)a∈A), the Single Sample mechanism is
the following:

(1) For each represented attribute a, pick a reserve bidder ia with attribute a
uniformly at random from all such bidders.

(2) Run the VCG mechanism on the sub-environment induced by the non-
reserve bidders to obtain a preliminary winning set P .

(3) For each bidder i ∈ P with attribute a, place i in the final winning set W
if and only if vi ≥ via . Charge every winner i ∈ W with attribute a
the maximum of its VCG payment computed in step (2) and the reserve
price via .

The Single Sample mechanism is clearly prior-independent — that is, it is de-
fined independently of the Fa’s — and it is easy to verify that it is truthful.
Section 4 shows how to use multiple samples to obtain better approximation
factors when there are more than two bidders with each represented attribute.

3.2. Warm-Up: I.I.D. Matroid Environments
To introduce some of our primary analysis techniques in a relatively simple

setting, we first consider matroid environments (recall Section 2.1) in which all
bidders have the same attribute (i.e., have i.i.d. valuations).
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Theorem 3.2 (I.I.D. Matroid Environments) For every i.i.d. regular ma-
troid environment with at least n ≥ 2 bidders, the expected revenue of the Single
Sample mechanism is at least a 1

2 ·
n−1
n fraction of that of an optimal mechanism

for the environment.

The factor of (n− 1)/n can be removed with a minor tweak to the mechanism
(Remark 3.7).

What’s so special about i.i.d. regular matroid environments? One important
point is that the VCG mechanism can be implemented in a matroid environ-
ment via the greedy algorithm: bidders are considered in nonincreasing order
of valuations, and a bidder is added to the winner set if and only if doing so
preserves feasibility, given the previous selections. Now, recall that a monopoly
reserve price of a valuation distribution F is a price in argmaxp[p · (1− F (p))].
The following proposition follows immediately from Myerson’s Lemma, the fact
that the greedy algorithm maximizes welfare in matroid environments, and the
fact that the virtual valuation function is order-preserving when valuations are
drawn i.i.d. from a regular distribution. See, e.g., Dughmi et al. (2012) for
additional details.

Proposition 3.3 In every i.i.d. regular matroid environment, the VCG-E mech-
anism with monopoly reserves is a revenue-maximizing mechanism.

The matroid assumption also allows us to pass from eager to lazy reserves.

Corollary 3.4 In every i.i.d. regular matroid environment, the VCG-L mech-
anism with monopoly reserves is a revenue-maximizing mechanism.

Proof: We use that the VCG mechanism admits a greedy implementation. With
a common reserve price r, it makes no difference whether bidders with valuations
below r are thrown out before or after running the greedy algorithm. Thus in
matroid environments, the VCG-L and VCG-E mechanisms with an anonymous
reserve price are equivalent. �

Proving an approximate revenue-maximization guarantee for the Single Sam-
ple mechanism thus boils down to understanding the two ways in which it differs
from the VCG-L mechanism with monopoly reserves — it throws away a ran-
dom bidder, and it uses a random reserve rather than a monopoly reserve. The
damage from the first difference is easy to control.

Lemma 3.5 In expectation over the choice of the reserve bidder, the expected
revenue of an optimal mechanism for the environment induced by the non-
reserve bidders is at least an n−1

n fraction of the expected revenue of an optimal
mechanism for the original environment.

Proof: Condition first on the valuations of all bidders and let S denote the
winners under the optimal mechanism for the full environment. Since the re-
serve bidder is chosen independently of the valuations, each bidder of S is a

10



Figure 1: The revenue function in probability space of a regular distribution.

non-reserve bidder with probability n−1
n . By the linearity of expectation, the

expected virtual welfare — over the choice of the reserve bidder, with all valua-
tions fixed — of the (feasible) set of non-reserve bidders of S is n−1

n times that
of S, and the expected maximum-possible virtual welfare in the sub-environment
is at least this. Taking expectations over bidder valuations and applying Myer-
son’s Lemma (Lemma 2.1) completes the proof. �

The crux of the proof of Theorem 3.2 is to show that a random reserve
price serves as a sufficiently good approximation of a monopoly reserve price.
The next key lemma formalizes this goal for the case of a single bidder. Its
proof uses a geometric property of regular distributions. To explain it, for a
distribution F , define the revenue function by R̂(p) = p(1−F (p)), the expected
revenue earned by posting a price of p on a good with a single bidder with
valuation drawn from F . Define the revenue function in probability space R as
R(q) = q ·F−1(1− q) for all q ∈ [0, 1], which is the same quantity parameterized
by the probability q of a sale. An example of a revenue function in probability
space is shown in Figure 1. One can check easily that the derivative R′(q)
equals the virtual valuation ϕF (p), where p = F−1(1− q). Regularity of F thus
implies that R′(q) is nonincreasing and hence R is concave. Also, assuming
that the support of F is [0, h] for some h > 0 — recall Section 2.3 — we have
R(0) = R(1) = 0.

Lemma 3.6 Let F be a regular distribution with monopoly price r∗ and revenue
function R̂. Let v denote a random valuation from F . For every nonnegative
number t ≥ 0,

Ev

[
R̂(max{t, v})

]
≥ 1

2
· R̂(max{t, r∗}). (1)
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Inequality (1) makes precise and extends the novel interpretation of the
Bulow-Klemperer theorem described in Section 1.2. When t = 0, the inequal-
ity states that a random reserve price, drawn from the valuation distribution,
obtains expected revenue at least half that of the optimal (monopoly) reserve
price. We require that this statement hold more generally in the presence of
an exogenous additional reserve price t, which in our applications arises from
competition from other bidders.

Proof: First suppose that t = 0, so that the claim is equivalent to the assertion
that the expectation of R(q) is at least half of R(q∗), where q = 1 − F (v)
and q∗ = 1 − F (r∗) are the quantiles corresponding to v and r∗, respectively.
Since q is uniformly distributed on [0, 1], Eq[R(q)] equals the area under the
curve defined by R. By concavity, this area is at least the area of the triangle
in Figure 1, which is 1

2 · 1 ·R(q∗) = 1
2 · R̂(r∗).

If 0 < t < r∗, then the right-hand side of (1) is unchanged. The left-hand
side can only be higher: the only difference is to sometimes use a selling price t
that, by concavity, is better than the previous selling price v. Finally, if t > r∗

and qt = 1− F (t), then the right-hand side of (1) is R(qt)/2; and the left-hand
side is a convex combination of R(qt) (when v ≤ t) and the expected value
of R(q) when q is drawn uniformly from [qt, 1], which by concavity is at least
R(qt)/2. �

We prove Theorem 3.2 by extending the approximation bound in Lemma 3.6
from a single bidder to all bidders and blending in Lemma 3.5.

Proof of Theorem 3.2: Condition on the choice of the reserve bidder j. Fix a
non-reserve bidder i and condition on all valuations except those of i and j.
Recall that j, as a reserve bidder, does not participate in the VCG computation
in step (2) of the Single Sample mechanism. Thus, there is a “threshold” t(v−i)
for bidder i such that i wins if and only if its valuation is at least t(v−i), in
which case its payment is t(v−i).

With this conditioning, we can analyze bidder i as in a single-bidder auc-
tion, with an extra external reserve price of t(v−i). Let r∗ and R̂ denote
the monopoly price and revenue function for the underlying regular distribu-
tion F , respectively. The conditional expected revenue that i contributes to the
revenue-maximizing mechanism in the sub-environment of non-reserve bidders is
R̂(max{t(v−i), r∗}). The conditional expected revenue that i contributes to the
Single Sample mechanism is Evj

[
R̂(max{t(v−i), vj})

]
. Since vi, vj are indepen-

dent samples from the regular distribution F , Lemma 3.6 implies that the latter
conditional expectation is at least 50% of the former. Taking expectations over
the previously fixed valuations of bidders other than i and j, summing over the
non-reserve bidders i and applying linearity of expectation, and finally taking
the expectation over the choice of the reserve bidder j and applying Lemma 3.5
proves the theorem. �

Remark 3.7 (Optimized Version of Theorem 3.2) We can improve the ap-
proximation guarantee in Theorem 3.2 from 1

2 ·
n−1
n to 1

2 by making the following
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minor modification to the Single Sample mechanism. Instead of discarding the
reserve bidder j, we include it in the VCG computation in step (2) of the Single
Sample mechanism. An arbitrary other bidder h is used to set a reserve price vh
for the reserve bidder j. Like the other bidders, the reserve bidder is included
in the final winning set W if and only if it is chosen by the VCG mechanism in
step (2) and also has a valuation above its reserve price (vj ≥ vh). Its payment
is then the maximum of its VCG payment and vh.

We claim that, for every choice of a reserve bidder j, a non-reserve bidder i,
and valuations v, bidder i wins with bidder j included in the VCG computation
in step (2) if and only if it wins with bidder j excluded from the computation.
To prove this, recall that the VCG mechanism can be implemented via a greedy
algorithm in matroid environments. If vi ≤ vj , then i cannot win in either case
(it fails to clear the reserve); and if vi > vj , then the greedy algorithm considers
bidder i before j even if the latter is included in the VCG computation.

This claim implies that the expected revenue from non-reserve bidders in
the original and modified versions of the Single Sample mechanism is the same.
In the modified version, the obvious analog of Lemma 3.5 for a single bidder
and Lemma 3.6 imply that the reserve bidder also contributes, in expectation, a
1
2 ·

1
n fraction of the expected revenue of an optimal mechanism. Combining the

contributions of the reserve and non-reserve bidders yields an approximation
guarantee of 1

2 for the modified mechanism.

Remark 3.8 (Tightness of Analysis) The bound of 1
2 in Remark 3.7, and

hence also the bound in Lemma 3.6, is tight in the worst case. To see this,
consider a digital goods auction with two bidders, and a regular valuation dis-
tribution F whose revenue function in probability space is essentially a triangle
(cf., Figure 1). For example, the distributions F (v) = 1 − 1

v+1 on [0, H) and
F (H) = 1 provide a matching lower bound as H →∞.9

3.3. Proof Framework
Relaxing the matroid or i.i.d. assumptions of Section 3.2 introduce new chal-

lenges in the analysis of the Single Sample mechanism. The expected revenue-
maximizing mechanism becomes complicated — nothing as simple as the VCG
mechanism with reserve prices. In addition, eager and lazy reserve prices are
not equivalent.

Our general proof framework hinges on the VCG-L mechanism with monopoly
reserves, which we use as a proxy for the optimal mechanism. The analysis pro-
ceeds in two steps:

1. Prove that the expected revenue of the VCG-L mechanism with monopoly
reserves is close to that of an optimal mechanism.

9If a distribution with a continuous density function is desired, the point mass at H can
be spread out over a very short interval centered at H.
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2. Prove that the expected revenue of the Single Sample mechanism is close
to that of the VCG-L mechanism with monopoly reserves in the subenvi-
ronment induced by the non-reserve bidders.

Given two such approximation guarantees, we can combine them with a gener-
alized version of Lemma 3.5, as in the proof of Theorem 3.2, to show that the
expected revenue of the Single Sample mechanism is a constant fraction of that
of the optimal mechanism. Section 3.2 implemented this plan for the special
case of i.i.d. regular matroid environments, where the VCG-L mechanism with
monopoly reserves is optimal.

The arguments in Section 3.2 essentially accomplish the second step of the
proof framework, with an approximation factor of 2, for all regular downward-
closed non-singular environments. The harder part is the first step. The next
two sections establish such approximation guarantees under two incomparable
sets of assumptions, via two different arguments: m.h.r. downward-closed envi-
ronments, and regular matroid environments.

For m.h.r. downward-closed environments, we prove that the expected rev-
enue of the VCG-L mechanism with monopoly reserves is at least a 1/e fraction
of that of an optimal mechanism (Theorem 3.11). This implies that the ex-
pected revenue of the Single Sample mechanism is at least a 1

2e ·
κ−1
κ fraction

of that of an optimal mechanism when there are at least κ ≥ 2 bidders of every
present attribute (Theorem 3.12). Via an optimized analysis, we also prove an
approximation factor of 1

4 ·
κ−1
κ (Theorem 3.14). This factor is 1

8 when κ = 2
and quickly approaches 1

4 as κ grows.
For regular matroid environments, we prove that the expected revenue of the

VCG-L mechanism with monopoly reserves is at least half that of an optimal
mechanism (Theorem 3.17), which in turn implies an approximation guarantee
of 1

4
κ−1
κ for the Single Sample mechanism (Theorem 3.18).

3.4. M.H.R. Downward-Closed Environments
We now implement the proof framework outlined in Section 3.3 for m.h.r.

downward-closed environments. We carry out the arguments for expected wel-
fare, rather than expected revenue, because this gives a stronger result. We first
generalize Lemma 3.5 to non-i.i.d. environments.

Lemma 3.9 For every m.h.r. downward-closed environment with at least κ ≥
2 bidders of every present attribute, the expected optimal welfare in the sub-
environment induced by non-reserve bidders is at least a (κ − 1)/κ fraction of
that in the original environment.

The proof of Lemma 3.9 is essentially the same as that of Lemma 3.5, with valu-
ations assuming the role previously played by virtual valuations. In contrast to
Remark 3.7, discarding reserve bidders before the VCG computation in step (2)
of Definition 3.1 is important for the analysis of the Single Sample mechanism
in non-matroid environments.

Analogous to Lemma 3.6, we require a technical lemma about the single-
bidder case to establish step 1 of our proof framework.
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Lemma 3.10 Let F be an m.h.r. distribution with monopoly price r∗ and rev-
enue function R̂. Let V (t) denote the expected welfare of a single-item auction
with a posted price of t and a single bidder with valuation drawn from F . For
every nonnegative number t ≥ 0,

R̂(max{t, r∗}) ≥ 1
e
· V (t). (2)

Proof: Let s denote max{t, r∗}. Recall that, by the definition of the hazard rate
function, 1 − F (x) = e−H(x) for every x ≥ 0, where H(x) denotes

∫ x
0
h(z)dz.

Note that since h(z) is non-negative and nondecreasing, H(x) is nondecreasing
and convex. We can write the left-hand side of (2) as s · (1−F (s)) = s · e−H(s)

and, for a random sample v from F ,

V (t) = Pr[v ≥ t] ·E[v | v ≥ t]

= e−H(t) ·
[
t+
∫ ∞
t

e−(H(v)−H(t))dv

]
. (3)

By convexity of the function H, we can lower bound its value using a first-order
approximation at s:

H(v) ≥ H(s) +H ′(s)(v − s) = H(s) + h(s)(v − s) (4)

for every v ≥ 0. There are now two cases. If t ≤ r∗ = s, then h(s) = 1/s since
r∗ is a monopoly price.10 Starting from (3) and using that H is nondecreasing,
and then substituting (4) yields

V (t) ≤
∫ ∞

0

e−H(v)dv

≤
∫ ∞

0

e−(H(s)+ v−s
s )dv

= e · s · e−H(s).

If r∗ ≤ t = s, then the m.h.r. assumption implies that h(s) ≥ 1/s and (4)
implies that H(v) ≥ H(t) + (v − t)/t for all v ≥ t. Substituting into (3) gives

V (t) ≤ e−H(t) ·
[
t+
∫ ∞
t

e−(H(t)+ v−t
t −H(t))dv

]
≤ e−H(t) ·

∫ ∞
0

e−
v−t

t dv

= e · s · e−H(s),

where in the second inequality we use that e−(v−t)/t ≥ 1 for every v ≤ t. �

10One proof of this follows from the first-order condition for the revenue function p(1−F (p));
alternatively, applying Myerson’s Lemma to the single-bidder case shows that r∗ = ϕ−1

F (0)
and hence r∗ − 1/h(r∗) = ϕF (r∗) = 0.
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Lemma 3.10 implies that the expected revenue of the VCG-L mechanism
with monopoly reserves is at least a 1

e fraction of the expected optimal welfare
in every downward-closed environment with m.h.r. valuation distributions.

Theorem 3.11 (VCG-L With Monopoly Reserves) For every m.h.r. down-
ward-closed environment, the expected revenue of the VCG-L mechanism with
monopoly reserves is at least a 1

e fraction of the expected efficiency of the VCG
mechanism.

Proof: Fix a bidder i and valuations v−i. This determines a winning threshold t
for bidder i under the VCG mechanism (with no reserves). Lemma 3.10 implies
that the conditional expected revenue obtained from i in the VCG-L mechanism
with monopoly reserves is at least a 1/e fraction of the conditional expected
welfare obtained from i in the VCG mechanism (with no reserves). Taking
expectations over v−i and then summing over all the bidders proves the theorem.
�

Considering a single bidder with an exponentially distributed valuation (F (v) =
1− e−v) shows that the bounds in Lemma 3.10 and Theorem 3.11 are tight in
the worst case.

Theorem 3.11 establishes step 1 of our proof framework. The arguments in
Section 3.2 now imply that the expected revenue of the Single Sample mechanism
is almost half that of the VCG-L mechanism with monopoly reserves (step
2). Precisely, mimicking the proof of Theorem 3.2, with Lemma 3.9 replacing
Lemma 3.5, gives the following result.

Theorem 3.12 (Single Sample Guarantee #1) For every m.h.r. downward-
closed environment with at least κ ≥ 2 bidders of every present attribute, the
expected revenue of the Single Sample mechanism is at least a 1

2e ·
κ−1
κ fraction

of the expected optimal welfare in the environment.

We can improve the guarantee in Theorem 3.12 by optimizing jointly the
two single-bidder guarantees in Lemmas 3.10 (step 1) and 3.6 (step 2). This is
done in the next lemma.

Lemma 3.13 Let F be an m.h.r. distribution with monopoly price r∗ and rev-
enue function R̂, and define V (t) as in Lemma 3.10. Let v denote a random
valuation from F . For every nonnegative number t ≥ 0,

Ev

[
R̂(max{t, v})

]
≥ 1

4
· V (t). (5)

Proof: Define the function H as in the proof of Lemma 3.10, and recall from
that proof that V (t) can be written as in (3). We show that the left-hand side
of (5) is at least 25% of that quantity.

Consider two i.i.d. samples v1, v2 from F . We interpret v2 as the random
reserve price v in (5) and v1 as the valuation of the single bidder. The left-hand
side of (5) is equivalent to the expectation of a random variable that is equal
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to t if v2 ≤ t ≤ v1, which occurs with probability F (t) · (1− F (t)); equal to v2
if t ≤ v2 ≤ v1, which occurs with probability 1

2 (1 − F (t))2; and equal to zero,
otherwise. Hence,

Ev

[
R̂(max{t, v})

]
≥ 1

2
(F (t) · (1− F (t)) · t

+(1− F (t))2 ·E[min{v1, v2} | min{v1, v2} ≥ t]
)

=
1
2

(1− F (t)) ·
(
t · F (t) + (1− F (t))·[

t+ e2H(t)

∫ ∞
t

e−2H(v)dv
])

≥ 1
2

(1− F (t)) ·
[
t+ eH(t)

∫ ∞
t

e−H(2v)dv

]
(6)

=
1
4

(1− F (t)) ·
[
2t+

∫ ∞
2t

e−(H(v)−H(t))dv

]
≥ 1

4
(1− F (t)) ·

[
t+

∫ ∞
t

e−(H(v)−H(t))dv

]
, (7)

where in (6) and (7) we use that H is non-negative, nondecreasing, and convex.
Comparing (3) and (7) proves the lemma. �

We then obtain the following optimized version of Theorem 3.12.

Theorem 3.14 (Single Sample Guarantee #2) For every m.h.r. downward-
closed environment with at least κ ≥ 2 bidders of every present attribute, the
expected revenue of the Single Sample mechanism is at least a 1

4 ·
κ−1
κ fraction

of the expected optimal welfare in the environment.

The proof of Theorem 3.14 is the same as that of Theorem 3.2, with the
following substitutions: the welfare of the VCG mechanism (with no reserves)
plays the previous role of the revenue of the VCG-L mechanism with monopoly
reserves; Lemma 3.13 replaces Lemma 3.6; and Lemma 3.9 takes the place of
Lemma 3.5.

Remark 3.15 (Theorem 3.14 Is Tight) Our analysis of the Single Sample
mechanism is tight for all values of κ ≥ 2, as shown by a digital goods envi-
ronment with κ bidders with valuations drawn i.i.d. from an exponential distri-
bution (F (v) = 1 − e−v): the expected optimal welfare is κ, and a calculation
shows that the expected revenue of the Single Sample mechanism is (κ− 1)/4.

Since the revenue of every mechanism is bounded above by its welfare, we
have the following corollary.

Corollary 3.16 For every m.h.r. environment with at least κ ≥ 2 bidders of
every present attribute, the expected revenue of the Single Sample mechanism is
at least a 1

4 ·
κ−1
κ fraction of that of the optimal mechanism for the environment.
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3.5. Regular Matroid Environments
This section proves an approximation guarantee for the Single Sample mech-

anism under assumptions incomparable to those in Section 3.4, namely for
regular matroid environments. We again follow the proof framework outlined
in Section 3.3, step 1 of which involves proving an approximation bound for
the VCG-L mechanism with monopoly reserves. In Section 3.4 we proved the
stronger statement that the expected revenue of this mechanism is at least a
constant fraction of the optimal expected welfare. No mechanism achieves this
stronger guarantee with regular valuation distributions, so we use a different
line of argument.

Hartline and Roughgarden (2009) proved that the expected revenue of the
VCG-E mechanism with monopoly reserves (Section 2.2) is at least half that
of an optimal mechanism in regular matroid environments. The VCG-E and
VCG-L mechanisms do not coincide in matroid environments unless all bidders
face a common reserve price (cf., Corollary 3.4), and the results of Hartline and
Roughgarden (2009) have no obvious implications for the VCG-L mechanism
with monopoly reserves in matroid environments with non-i.i.d. bidders. We
next supplement the arguments in Hartline and Roughgarden (2009) with some
new ideas to prove an approximation guarantee for this mechanism.

Theorem 3.17 (VCG-L With Monopoly Reserves) For every regular ma-
troid environment, the expected revenue of the VCG-L mechanism with monopoly
reserves is at least a 1

2 fraction of that of an optimal mechanism.

Proof: Consider a regular matroid environment. For a valuation profile v, let
W (v) and W ′(v) denote the winning bidders in the VCG-L mechanism with
monopoly reserves and in the optimal mechanism, respectively. We claim that

Ev

 ∑
i∈W (v)\W ′(v)

ϕi(vi)

 ≥ 0 (8)

and

Ev

 ∑
i∈W (v)

pi(v)

 ≥ Ev

 ∑
i∈W ′(v)\W (v)

ϕi(vi)

 , (9)

where p denotes the payment rule of the VCG-L mechanism with monopoly
reserves. Given these two claims, Lemma 3.9 in Hartline and Roughgarden
(2009) immediately implies the theorem.11

11The proof goes as follows. First, using (8), the virtual welfare of the optimal mechanism
from bidders in W (v)∩W ′(v) is at most that of the virtual welfare of the VCG-L mechanism
with monopoly reserves. Second, using (9), the virtual welfare of the optimal mechanism from
bidders in W ′(v) \W (v) is at most the revenue of the VCG-L mechanism with monopoly
reserves. Finally, applying Myerson’s Lemma (Lemma 2.1) completes the proof.

The inequalities (8) and (9) almost correspond to the definition of “commensurate” in Hart-
line and Roughgarden (2009, Definition 3.8), but our second inequality is weaker. Nonetheless,
the proof of Lemma 3.9 in Hartline and Roughgarden (2009) carries over unchanged.
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Inequality (8) holds because the VCG-L mechanism with monopoly reserves
allocates to a bidder only if its valuation is at least its monopoly reserve. Since
a monopoly reserve r∗i satisfies ϕi(r∗i ) = 0 and the virtual valuation function is
nondecreasing (by regularity), a bidder wins only when it has a non-negative
virtual valuation.

Proving inequality (9) requires a more involved argument. Fix a valuation
profile v and let W ′′(v) denote the winning bidders under the VCG mechanism
with zero reserve prices. Because the greedy algorithm maximizes welfare in
matroid environments, the winners W (v) under the VCG-L mechanism with
monopoly reserves are precisely the bidders of W ′′(v) that have nonnegative
virtual valuations.

The exchange property of matroids (Section 2.1) implies that all maximal
feasible sets have equal size and, since W ′′(v) must be maximal, that we can
choose a subset S ⊆ W ′′(v) \W ′(v) such that S ∪W ′(v) and W ′′(v) have the
same size. Since the winners W ′(v) under the optimal mechanism maximize the
virtual welfare, all bidders of S have nonpositive virtual values.

We next use a non-obvious but well-known property of matroids (see e.g., Schri-
jver (2003, Corollary 39.12a)): given two feasible sets of equal size, such as
W ′′(v) and S∪W ′(v), there is a bijection f from (S∪W ′(v))\W ′′(v) to W ′′(v)\
(S ∪W ′(v)) such that, for every bidder i in the domain, W ′′(v)\{f(i)} ∪ {i}
is a feasible set. Since S ⊆ W ′′(v), the domain of f is simply W ′(v) \W ′′(v).
Since the VCG mechanism chooses a welfare-maximizing set, the threshold bid
(and hence the payment) of a winning bidder f(i) in the range of the function f
is at least vi. Summing over all bidders in W ′(v) \W ′′(v) and using that f is
a bijection, the revenue of the VCG mechanism is at least∑

i∈W ′(v)\W ′′(v)

vi ≥
∑

i∈W ′(v)\W ′′(v)

ϕi(vi), (10)

where the inequality follows from the definition of a virtual valuation. Be-
cause W ′(v) contains no bidders with negative virtual valuations and all bid-
ders in W ′′(v) \W (v) have nonpositive virtual valuations, the right-hand side
of (10) equals ∑

i∈W ′(v)\W (v)

ϕi(vi).

The expected revenue of the VCG mechanism (with no reserves) is at least the
expected value of this quantity. Since the VCG-L mechanism with monopoly
reserves differs from the VCG mechanism only by excluding bidders with nega-
tive virtual valuations, Lemma 2.1 implies that its expected revenue is at least
that of the VCG mechanism. This completes the proof of inequality (9) and the
theorem. �

An approximation guarantee for the Single Sample mechanism follows as in
the proof of Theorem 3.12, with Theorem 3.17 replacing Theorem 3.11.
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Theorem 3.18 (Single Sample Guarantee) For every regular matroid en-
vironment with at least κ ≥ 2 bidders of every present attribute, the expected
revenue of the Single Sample mechanism is at least a 1

4 ·
κ−1
κ fraction of that of

an optimal mechanism for the environment.

3.6. Counterexample for Regular Downward-Closed Environments
We now sketch an example showing that a restriction to m.h.r. valuation

distributions (as in Section 3.4) or to matroid environments (as in Section 3.5)
is necessary for the VCG-L mechanism with monopoly reserves and the Sin-
gle Sample mechanism to have constant-factor approximation guarantees. The
following example is adapted from Hartline and Roughgarden (2009, Example
3.4).

For n sufficiently large, consider two “big” bidders and n “small” bidders
1, 2, . . . , n. The feasible subsets are precisely those that do not contain both a big
bidder and a small bidder; this is not a matroid environment. Fix an arbitrarily
large constant H. Each big bidder’s valuation is deterministically 1

2n
√

lnH, so
the expected revenue of an optimal mechanism is clearly at least n

√
lnH. The

small bidders’ valuations are i.i.d. draws from the distribution F (v) = 1− 1
v+1 on

[0, H) and F (H) = 1. This distribution F is regular — or can be made so with
a minor perturbation, as in Remark 3.8 — but is not m.h.r. For n sufficiently
large, the sum of the small bidders’ valuations is tightly concentrated around
n lnH.

We complete the sketch for the VCG-L mechanism with monopoly reserves;
the argument for the Single Sample mechanism is almost identical. The VCG
mechanism almost surely chooses all small bidders as its preliminary winner
set, with a threshold bid of zero for each. The expected revenue extracted
from each small winner, via its monopoly reserve H, is at most 1.12 Thus, the
expected revenue of the VCG-L mechanism with monopoly reserves is not much
more than n, which is arbitrarily smaller than the optimal expected revenue as
H →∞.

3.7. Computationally Efficient Variants
In the second step of the Single Sample mechanism, a different mechanism

can be swapped in for the VCG mechanism. One motivation for using a different
mechanism is computational efficiency (although this is not a first-order goal in
this paper). For instance, for combinatorial auctions with single-minded bidders
— where feasible sets of bidders correspond to those desiring mutually disjoint
bundles of goods — implementing the VCG mechanism requires the solution of
a packing problem that is NP -hard, even to approximate.

12A subtle point is that each small bidder’s valuation is now drawn at random from F ,
conditioned on the event that the VCG mechanism chose all of the small bidders. But since
the small bidders are chosen with overwhelming probability (for large n and H), the probability
that a given small bidder is pivotal is vanishingly small, so it still contributes at most 1 to
the expected revenue of the mechanism.
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For example, the proof of Theorem 3.14 evidently implies the following more
general statement: if step (2) of the Single Sample mechanism uses a truthful
mechanism guaranteed to produce a solution with at least a 1/c fraction of
the maximum welfare, then the expected revenue of the corresponding Single
Sample mechanism is at least a 1

4c
κ−1
κ fraction of the expected optimal welfare

(whatever the underlying m.h.r. downward-closed environment). For knapsack
auctions — where each bidder has a public size and feasible sets of bidders are
those with total size at most a publicly known budget — we can substitute the
polynomial-time, (1 + ε)-approximation algorithm by Briest et al. (2005). For
combinatorial auctions with single-minded bidders, we can use the algorithm
of Lehmann et al. (2002) to obtain an O(

√
m)-approximation in polynomial

time, where m is the number of goods. This factor is essentially optimal for
polynomial-time approximation, under appropriate computational complexity
assumptions (Lehmann et al., 2002).

4. Revenue Guarantees with Multiple Samples

This section modifies the Single Sample mechanism to achieve improved
guarantees via an increased number of samples from the underlying valuation
distributions, and provides quantitative and distribution-independent polyno-
mial bounds on the number of samples required to achieve a given approximation
factor.

4.1. Estimating Monopoly Reserve Prices
Improving the revenue guarantees of Section 3 via multiple samples requires

thoroughly understanding the following simpler problem: Given an accuracy
parameter ε and a regular distribution F , how many samples m from F are
needed to compute a reserve price r that is (1−ε)-optimal, meaning that R̂(r) ≥
(1 − ε) · R̂(r∗) for a monopoly reserve price r∗ for F? Recall from Section 3.2
that R̂(p) denotes p · (1−F (p)). We pursue bounds on m that depend only on ε
and not on the distribution F — such bounds do not follow from the Law of
Large Numbers and must make use of the regularity assumption.

Given m samples from F , renamed so that v1 ≥ v2 ≥ · · · ≥ vm, an obvious
idea is to use the reserve price that is optimal for the corresponding empirical
distribution, which we call the empirical reserve:

argmax
i≥1

i · vi. (11)

Interestingly, this naive approach does not in general give distribution-independent
polynomial sample complexity bounds. Intuitively, with a heavy-tailed distri-
bution F , there is a constant probability that a few large outliers cause the
empirical reserve to be overly large, while a small reserve price has much better
expected revenue for F .
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Our solution is to forbid the largest samples from acting as reserve prices,
leading to a quantity we call the guarded empirical reserve (with respect to an
accuracy parameter ε):

argmax
i≥εm

i · vi. (12)

We use the guarded empirical reserve to prove distribution-independent poly-
nomial bounds on the sample complexity needed to estimate the monopoly re-
serve of a regular distribution.

Lemma 4.1 (Estimating the Monopoly Reserve) For every regular dis-
tribution F and sufficiently small ε, δ > 0, the following statement holds: with
probability at least 1−δ, the guarded empirical reserve (12) of m ≥ c(ε−3(ln ε−1+
ln δ−1)) samples from F is a (1− ε)-optimal reserve, where c is a constant that
is independent of F .

Proof: Set γ = ε/11 and consider m samples v1 ≥ v2 ≥ · · · ≥ vm from F . Define
“q-values” by qt = 1− F (vt) and q∗ = 1− F (r∗), where r∗ is a monopoly price
for F . Since the q’s are i.i.d. samples from the uniform distribution on [0, 1],
the expected value of the quantile qt is t/(m + 1), which we estimate by t/m
for simplicity. An obvious approach is to use Chernoff bounds to argue that
each qt is close to this expectation, followed by a union bound. Two issues are:
for small t’s, the probability that t/m is a very good estimate of qt is small;
and applying the union bound to such a large number of events leads to poor
probability bounds. In the following, we restrict attention to a carefully chosen
small subset of quantiles, and take advantage of the properties of the revenue
functions of regular distributions to get around these issues.

First we choose an integer index sequence 0 = t0 < t1 < · · · < tL = m
in the following way. Let t0 = 0 and t1 = bγmc. Inductively, if ti is defined
for i ≥ 1 and ti < m, define ti+1 to be the largest integer in {1, . . . ,m} such
that ti < ti+1 ≤ (1 + γ)ti. If m = Ω(γ−2), then ti + 1 ≤ (1 + γ)ti for every
ti ≥ γm and hence such a ti+1 exists. Observe that L ≈ log1+γ

1
γ = O(γ−2)

and ti+1 − ti ≤ γm for every i ∈ {0, . . . , L− 1}.
We claim that, with probability 1, a sampled quantile qt with t ≥ γm differs

from t/m by more than a (1 ± 3γ) factor only if some quantile qti with i ∈
{1, 2, . . . , L} differs from ti/m by more than a (1 ± γ) factor. For example,
suppose that qt >

(1+3γ)t
m with t ≥ γm; the other case is symmetric. Let

i ∈ {1, 2, . . . , L} be such that ti ≤ t ≤ ti+1. Then

qti+1 ≥ qt >
(1 + 3γ)t

m
≥ (1 + 3γ)ti

m
≥ (1 + 3γ)ti+1

(1 + γ)m
≥ (1 + γ)ti+1

m
,

as claimed.
We next claim that the probability that qti differs from ti/m by more than

a (1 ± γ) factor for some i ∈ {1, 2, . . . , L} is at most 2Le−γ
3m/4. Fix i ∈

{1, 2, . . . , L}. Note that qti > (1 + γ) tim only if less than ti samples have q-
values at most (1 + γ) tim . Since the expected number of such samples is (1 +
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γ)ti, Chernoff bounds (e.g., Motwani and Raghavan (1995)) imply that the
probability that qti > (1 + γ) tim is at most

exp{−γ2ti/3(1 + γ)} ≤ exp{−γ2ti/4} ≤ exp{−γ3m/4},

where the inequalities use that γ is at most a sufficiently small constant and that
ti ≥ γm for i ≥ 1. A similar argument shows that the probability that qti <
(1 − γ) tim is at most exp{−γ3m/4}, and a union bound completes the proof of
the claim. If m = Ω(γ−3(logL+log δ−1)) = Ω(ε−3(log ε−1 +log δ−1)), then this
probability is at most δ.

Now condition on the event that every quantile qti with i ∈ {1, 2, . . . , L}
differs from ti/m by at most a (1± γ) factor, and hence every quantile qt with
t ≥ γm differs from t/m by at most a (1± 3γ) factor. We next show that there
is a candidate for the guarded empirical reserve (12) which, if chosen, has good
expected revenue. Choose i ∈ {0, 1, . . . , L − 1} so that ti/m ≤ q∗ ≤ ti+1/m.
Define t∗ as ti if q∗ ≥ 1/2 and ti+1 otherwise. Assume for the moment that
q∗ ≤ 1/2. By the concavity of revenue function in probability space R(q) —
recall Section 3.2 — R(qti+1) lies above the line segment between R(q∗) and
R(1). Since R(1) = 0, this translates to

R(qt∗) ≥ R(q∗) ·
1− qti+1

1− q∗
≥ R(q∗) ·

1− (1 + 3γ)
(
ti
m + γ

)
1− ti

m

≥ (1− 5γ) ·R(q∗),

where in the final inequality we use that ti
m ≤

1
2 and γ is sufficiently small.

For the case when q∗ ≥ 1
2 , a symmetric argument (using R(0) instead of R(1)

and qti instead of qti+1) proves that R(qt∗) ≥ (1− 5γ) ·R(q∗).
Finally, we show that the guarded empirical reserve also has good expected

revenue. Let the maximum in (12) correspond to the index t̂. Since t̂ was chosen
over t∗, we have t̂ · vt̂ ≥ t∗ · vt∗ . Using that each of qt̂, qt∗ is approximated up to
a (1± 3γ) factor by t̂/m, t∗/m yields

R(qt) = qt̂vt̂ ≥
(1− 3γ)t̂

m
vt̂ ≥

(1− 3γ)t∗

m
vt∗ ≥

1− 3γ
1 + 3γ

qt∗vt∗ =
1− 3γ
1 + 3γ

R(qt∗)

and hence

R(qt) ≥
(1− 5γ)(1− 3γ)

1 + 3γ
R(q∗) ≥ (1− 11γ)R(q∗).

Since γ = ε/11, the proof is complete. �

Remark 4.2 (Optimization for M.H.R. Distributions) There is a simpler
and stronger version of Lemma 4.1 for m.h.r. distributions. We use a simple
fact, first noted in Hartline et al. (2008, Lemma 4.1), that the selling proba-
bility q∗ at the monopoly reserve r∗ for an m.h.r. distribution is at least 1/e.
Because of this, we can take the parameter t1 in the proof of Lemma 4.1 to be
bm/ec instead of bγmc without affecting the rest of the proof. This saves a γ
factor in the exponent of the bound on the probability that some qti is not well
approximated by ti/m, which translates to a new sample complexity bound of
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m ≥ c(ε−2(ln ε−1 +ln δ−1)), where c is some constant that is independent of the
underlying distribution. Also, this bound remains valid even for the empirical
reserve (11) — the guarded version in (12) is not necessary.

4.2. The Many Samples Mechanism
In the following Many Samples mechanism, we assume that an accuracy

parameter ε is given, and use m to denote the sample complexity bound of
Lemma 4.1 (for regular valuation distributions) or of Remark 4.2 (for m.h.r.
distributions) corresponding to the accuracy parameter ε

3 and failure probabil-
ity ε

3 . The mechanism is only defined if every present attribute is shared by
more than m bidders.

(1) For each represented attribute a, pick a subset Sa of m reserve bidders
with attribute a uniformly at random from all such bidders.

(2) Run the VCG mechanism on the sub-environment induced by the non-
reserve bidders to obtain a preliminary winning set P .

(3) For each bidder i ∈ P with attribute a, place i in the final winning set W
if and only if vi is at least the guarded empirical reserve ra of the samples
in Sa. Charge every winner i ∈ W with attribute a the maximum of its
VCG payment computed in step (2) and the reserve price ra.

We prove the following guarantees for this mechanism.

Theorem 4.3 (Guarantees for Many Samples) The expected revenue of the
Many Samples mechanism is at least:

(a) a (1 − ε) fraction of that of an optimal mechanism in every i.i.d. regular
matroid environment with at least n ≥ 3m/ε = Θ(ε−4 log ε−1) bidders;

(b) a 1
2 (1−ε) fraction of that of an optimal mechanism in every regular matroid

environment with at least κ ≥ 3m/ε = Θ(ε−4 log ε−1) bidders of every
present attribute;

(c) a 1
e (1 − ε) fraction of the optimal expected welfare in every downward-

closed m.h.r. environment with at least κ ≥ 3m/ε = Θ(ε−3 log ε−1) bidders
of every present attribute.

Bidders with i.i.d. and exponentially distributed valuations show that part (c)
of the theorem is asymptotically optimal (as is part (a), obviously).

Proof: The lower bound κ ≥ 3m/ε on the number of bidders of each attribute
implies that at most an ε/3 fraction of all bidders are designated as reserve
bidders. Lemmas 3.5 and 3.9 imply that the expectation, over the choice of
reserve bidders, of the expected revenue of an optimal mechanism for and the
expected optimal welfare of the subenvironment induced by the non-reserve
bidders are at least a (1− ε

3 ) fraction of those in the full environment.
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Now condition on the choice of reserve bidders, but not on their valuations.
Fix a non-reserve bidder i, and condition on the valuations of all other non-
reserve bidders. Let t denote the induced threshold bid for i and r∗ a monopoly
price for the valuation distribution F of i. The conditional expected revenue
obtained from i using the price max{r∗, t} is precisely that obtained by the
VCG-L mechanism with monopoly reserves for the subenvironment induced by
the non-reserve bidders.

The Many Samples mechanism, on the other hand, uses the price max{r, t},
where r is the guarded empirical reserve of the reserve bidders that share i’s
attribute. By Lemma 4.1 and our choice of m, r is (1− ε

3 )-optimal for F with
probability at least 1 − ε

3 . Concavity of the revenue function (cf., Figure 1)
and an easy case analysis shows that, whenever r is (1 − ε

3 )-optimal, the con-
ditional expected revenue from i with the price max{r, t} is at least a (1 − ε

3 )
fraction of that with the price max{r∗, t}, for every value of t. Since valua-
tions are independent of each other and the choice of the reserve bidders, the
expected revenue from i in the Many Samples mechanism, conditioned on the
choice of reserve bidders and on the valuations of the other non-reserve bidders,
is at least a (1 − ε

3 )2 ≥ (1 − 2
3ε) fraction of that of the VCG-L mechanism

with monopoly reserves. Removing the conditioning on the valuations of other
non-reserve bidders; summing over the non-reserve bidders; and removing the
conditioning on the choice of reserve bidders shows that the expected revenue of
the Many Samples mechanism is at least a (1− 2

3ε) fraction of that of the VCG-L
mechanism with monopoly reserves on the subenvironment induced by the non-
reserve bidders. The three parts of the theorem now follow from Corollary 3.4,
Theorem 3.17, and Theorem 3.11, respectively. �

Remark 4.4 (Case Study: Digital Goods Auctions) Our results in this
section have interesting implications even in the special case of digital goods
auctions. We note that there is no interference between different bidders in
such an auction, so the general case of multiple attributes reduces to the single-
attribute i.i.d. case (each attribute can be treated separately).

The Deterministic Optimal Price (DOP) digital goods auction offers each
bidder i a take-it-or-leave offer equal to the empirical reserve of the other n− 1
bidders. The expected revenue of the DOP auction converges to that of an
optimal auction as the number n of bidders goes to infinity, provided valuations
are i.i.d. samples from a distribution with bounded support (Goldberg et al.,
2006) or from a regular distribution (Segal, 2003). However, the number of
samples required in these works to achieve a given degree of approximation
depends on the underlying distribution F .

As an alternative, consider the variant of DOP that instead uses the guarded
empirical reserve (12) of the other n−1 bidders to formulate a take-it-or-leave-it
offer for each bidder. Our Lemma 4.1 implies a distribution-independent bound
for this auction: provided the number of bidders is Ω(ε−3 log ε−1), its expected
revenue is at least (1− ε) times that of the optimal auction.
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