
Single-Source Stochastic Routing

Shuchi Chawla1? and Tim Roughgarden2??

1 Microsoft Research, Silicon Valley Campus, Mountain View, CA 94043
shuchi@cs.wisc.edu

2 Department of Computer Science, Stanford University, 462 Gates Building, 353
Serra Mall, Stanford, CA 94305 tim@cs.stanford.edu

Abstract. We introduce and study the following model for routing un-
certain demands through a network. We are given a capacitated mul-
ticommodity flow network with a single source and multiple sinks, and
demands that have known values but unknown sizes. We assume that the
sizes of demands are governed by independent distributions, and that we
know only the means of these distributions and an upper bound on the
maximum-possible size. Demands are irrevocably routed one-by-one, and
the size of a demand is unveiled only after it is routed.
A routing policy is a function that selects an unrouted demand and a path
for it, as a function of the residual capacity in the network. Our objective
is to maximize the expected value of the demands successfully routed by
our routing policy. We distinguish between safe routing policies, which
never violate capacity constraints, and unsafe policies, which can attempt
to route a demand on any path with strictly positive residual capacity.

We design safe routing policies that obtain expected value close to that
of an optimal unsafe policy in planar graphs. Unlike most previous work
on similar stochastic optimization problems, our routing policies are fun-
damentally adaptive. Our policies iteratively solve a sequence of linear
programs to guide the selection of both demands and routes.

1 Introduction

We introduce and study the following model for routing uncertain demands
through a network. We are given a multicommodity flow network, defined by a
directed graph G = (V, E) with vertices V and edges E, a nonnegative capacity
ce on each edge e ∈ E, and a collection (s1, t1), . . . , (sk, tk) of source-sink pairs,
also called commodities. Associated with each commodity i is a demand with a
known nonnegative value vi and an unknown size. Our goal is to choose routes
for a subset of the demands to maximize the value of these demands without
violating the edge capacities. In the special case of known demand sizes, this is
the well known and difficult unsplittable flow problem.

Inspired by recent work of Dean, Goemans, and Vondrak [5, 6] on stochastic
versions of the Knapsack and Set Packing problems, we adopt the following
model for unknown demand sizes. We assume that the size of the ith demand is

? This work was performed while the author was visiting the Department of Computer
Science, Stanford University and supported by DARPA grant W911NF-05-1-0224.

?? Supported in part by ONR grant N00014-04-1-0725, DARPA grant W911NF-05-1-
0224, and an NSF CAREER Award.

governed by a distribution with known mean µi, and that the sizes of different
demands are independent. We also assume that there is a known upper bound
Dmax on the maximum-possible size of a demand. No other information about
the size distributions is available. We assume that commodities are routed one-
by-one. When a commodity is selected, the size of its demand is unveiled only
after it is routed. Decisions are irrevocable, and a previously routed demand
cannot be removed from the network.

A routing policy is a function that selects an unrouted commodity (si, ti)
and an si-ti path for it, as a function of the residual capacity in the network.
While routing policies can be very complex, we will only be interested in routing
policies defined by polynomial-time algorithms. A routing policy can be adaptive,
in the sense that its decisions depend on the instantiated sizes of the previously
routed commodities, or non-adaptive, in which case it simply specifies a fixed
order in which the demands should be routed and fixed paths for routing them.
There has been significant recent work proving upper and lower bounds on the
adaptivity gap—the ratio between the objective function values of an optimal
adaptive and non-adaptive policy, respectively—for various problems [4–6, 8].
We show in the full version of this paper [2] that the problems we consider
have a large (polynomial) adaptivity gap, even in networks of parallel links.
In contrast to previous work, which primarily studied non-adaptive policies for
various problems, we focus on the design and analysis of near-optimal adaptive
policies. Our objective is to maximize the expected value of the successfully
routed commodities.

When demand sizes are stochastic, edge capacity constraints can be inter-
preted in several ways. The most stringent definition is to require that a routing
policy respect every edge capacity with probability 1. We call a routing policy
safe if it meets this definition and unsafe otherwise. When an unsafe routing
policy routes a commodity in a way that violates some capacity constraints, we
assume that no value is obtained for this unsuccessfully routed commodity, and
that all violated edges drop out of the network.

Both safe and unsafe policies have their advantages. Unsafe policies are
clearly more general than safe ones, and may obtain a much larger expected
value. Safe policies guarantee successful transport for all admitted commodities;
this property is clearly desirable, and could be essential in certain applications.

In this work, we seek the best of both worlds: we design safe routing policies,
but bound their performance relative to an optimal unsafe routing policy. This
goal is somewhat analogous to previous work [5, 6] that designed non-adaptive
policies with expected value close to that of an optimal adaptive policy.

Pursuing this ambitious goal forces us to adopt an additional assumption. To
motivate it, consider the following example. Fix a value α ∈ (0, 1], let ε > 0 be
much smaller than α, and let δ > 0 be much smaller than ε. Consider a network
with two vertices s, t and one directed edge (s, t) with unit capacity. Suppose
there are a large number of commodities, each with source s, sink t, unit value,
and with size equal to α with probability δ and to ε with probability 1 − δ.
A safe routing policy must cease routing commodities after roughly (1 − α)/ε

commodities have been routed. On the other hand, an unsafe policy will typi-
cally route roughly 1/ε commodities successfully, provided δ is sufficiently small.
Thus safe policies might capture only a 1−α fraction of the expected value of an
optimal unsafe policy, where α is the maximum-possible fraction of an edge that
a demand can occupy. For this reason, we assume throughout this paper that
the maximum-possible size Dmax of a commodity is bounded above by an α < 1
fraction of the minimum edge capacity cmin. Similar but weaker assumptions are
often made in the classical single-sink unsplittable flow problem [7, 13, 14]. When
this gap α is O(1/ log n), even the general multicommodity stochastic routing
problem can be approximated to within a constant factor using a straightfor-
ward randomized rounding algorithm. (See the full version [2] for details.) Our
goal will be to design routing policies that have good (constant or logarithmic)
approximation ratios for every fixed constant α less than 1.

Achieving this goal in general multicommodity networks would give, as a
special case, a fundamental breakthrough for solving the disjoint paths problem
with constant congestion in directed graphs. On the other hand, the single-
source unsplittable flow problem (with known demands) admits constant-factor
approximation algorithms [7, 13, 14]. These facts motivate our second crucial
assumption: we assume that all commodities share a common source vertex s.
We call the problem of designing a routing policy for such an instance the Single-
Source Stochastic Routing (SSSR) problem.

Our Results. We first define a general algorithmic and analytical approach for
designing near-optimal, safe, adaptive routing policies for SSSR instances. Our
algorithm uses a linear program (LP), the optimal value of which is an upper
bound on the expected value of an optimal (unsafe) routing policy, to guide
the commodity and route selection at each stage. The algorithm re-solves this
LP each time a new commodity is routed. Our analysis framework is based on
tracking the successive expected changes in the optimal value of the LP, as our
algorithm routes and instantiates demands.

As noted above, previous work on related stochastic optimization problems [4–
6, 8] has concentrated primarily on the design and analysis of non-adaptive poli-
cies; few techniques for designing adaptive policies are currently known. We
believe that our iterative LP rounding approach could form the basis of near-
optimal adaptive policies for a range of stochastic optimization problems.

We apply this framework to obtain polynomial-time, safe routing policies
with expected value close to that of an optimal unsafe policy for SSSR problems
in planar graphs. (More generally, we only require that the supporting subgraph
of a natural fractional flow relaxation is planar.) We achieve an approximation
factor of O((log W)/(1−α)), where α < 1 is a constant satisfying Dmax ≤ αcmin,
and W denotes the maximum ratio between the “expected per-unit value” vi/µi

of two different commodities. Recall from the above example that the dependence
on 1/(1−α) is necessary for this type of guarantee, even in single-link networks.
We also obtain a superior approximation factor of O(1/(1 − α)) in the special
case where all of the sinks lie on a common face. This special case includes all
outerplanar networks and all single-source, single-sink planar networks.

Related Work. Starting with the work of Dantzig [3] in 1955, stochastic op-
timization problems have been studied extensively in Operations Research (see
e.g. [1, 18]). Owing to the complexity of optimally solving3 general stochastic
problems, much of this work has focused on the special cases of stochastic linear
programming and k-stage recourse problems. Several recent works by the the-
oretical CS community have studied the recourse model. Starting with [12, 15],
constant-factor approximation algorithms have been developed for the 2-stage
stochastic versions of problems such as Steiner tree, network design, facility loca-
tion, and vertex cover (see e.g. [9–11, 17]). Some of this work has been extended
to the k-stage versions of these problems [10, 16], albeit with approximation
factors that depend linearly or even exponentially on k.

The work that is most closely related to ours is that of Dean, Goemans and
Vondrak [5, 6, 8]. Dean et al. study stochastic versions of several packing and
covering problems such as Knapsack, that are similar in flavor to our stochastic
routing problem. For example, the Stochastic Knapsack problem is essentially
SSSR in a single-link network, and SSSR in a general graph is similar to an
instance of the Stochastic Multi-dimensional Knapsack problem, with a unique
dimension corresponding to each edge of the graph.

However, our focus on routing applications leads to several key differences
between their work and ours. First, in the SSSR problem, a routing policy must
select both the next commodity to route, as well as how to route it. There is no
analogue of this combinatorial route selection issue in the packing and covering
problems studied in [5, 6], which primarily involve only binary decision variables.
Second, capacity constraints are enforced differently in the work of Dean et al.
than in the present paper. In [5, 6], unsafe policies are allowed, but such a policy
must terminate as soon as a single constraint is violated. In the SSSR problem,
an unsafe routing policy can continue to route the remaining commodities on
edges that have not yet dropped out of the network. We believe that this less
restrictive notion of an unsafe policy is more suitable for routing applications.
Third, we design safe routing policies, whereas Dean et al. design policies that are
unsafe in the above restricted sense. Thus while our guarantees are in some sense
stronger than those in [5, 6], we prove such guarantees only under an additional
assumption (Dmax ≤ αcmin for some α < 1) that is not needed in the work
of Dean et al. Finally, as noted earlier, Dean et al. focus on obtaining tight
bounds on the adaptivity gap, whereas we seek adaptive solutions that achieve
an approximation factor far smaller than the adaptivity gap.

2 The Stochastic Routing Model

We consider a directed network G = (V, E) with edge capacities c : E → <+. We
are given k commodities indexed by i ∈ I , each with a source-sink pair (si, ti)
and a value vi. In Section 4, we will assume that all commodities share a common
source s. The “size” or demand of a commodity i is given by the random variable

3 The optimal solution to a stochastic optimization problem such as SSSR can be a
complex, exponential-size decision diagram. The number of possible solutions can
be doubly-exponential in the number of stages.

Di, drawn from an independent distribution with mean µi = E[Di]. For every
commodity i, let wi = vi/µi denote its “expected per-unit value”. We assume
that commodities are ordered such that w1 ≥ w2 ≥ · · · ≥ wk.

Let Dmax be the smallest value d such that Pr[Di > d] = 0 for all i ∈ I .
We assume that Dmax is known to the algorithm and that Dmax < cmin, where
cmin = mine ce is the minimum edge capacity in the graph. Let α < 1 denote
the ratio between Dmax and cmin. As shown by the example in the Introduction,
our approximation guarantees necessarily depend on the value of α.

Let Pi denote the si-ti paths of G. A routing policy successively picks a
commodity i and a path Pi ∈ Pi for routing it. After the algorithm picks a
commodity and its corresponding path, the demand Di for that commodity gets
instantiated to some value di. If di is at most the minimum residual capacity of
the edges of Pi, then the commodity is admitted and the algorithm obtains the
value vi. The algorithm continues until no more commodities can be admitted.
The goal of the algorithm is to maximize the expectation of its total accrued
value. As described previously, a routing policy is safe if every commodity picked
by it gets admitted with probability one.

3 Approximation Algorithms via Iterative Rounding

An LP Relaxation for the Optimal Routing Policy. We now give a general
algorithmic and analytic approach for approximating stochastic routing prob-
lems; we apply these ideas to SSSR problems in planar graphs in the next section.
We begin with a linear program giving an upper bound on the expected value
of an optimal (unsafe) routing policy for a given stochastic routing instance:

LP (I, u) : max
∑

i∈I wi

∑

e∈δ+(si)
f

(i)
e s.t.

∑

i∈I f
(i)
e ≤ ue ∀e ∈ E

∑

e∈δ+(si)
f

(i)
e ≤ µi ∀i ∈ I

∑

e∈δ−(v) f
(i)
e =

∑

e∈δ+(v) f
(i)
e ∀i ∈ I, v ∈ V \ {si, ti}

f
(i)
e ≥ 0 ∀i ∈ I, e ∈ E.

Recall that wi denotes the ratio vi/µi. Also, δ+(v) and δ−(v) denote the sets
of edges directed out of and into the vertex v, respectively. Note that LP (I, u)
is simply a standard LP formulation of the maximum-value (w.r.t. “values” w)
multicommodity flow subject to edge capacities u and per-commodity flow rate
constraints µ.
Proposition 1. The expected value obtained by an optimal adaptive routing pol-
icy for a stochastic routing instance with commodities I and edge capacities c is
at most LP (I, (1 + α)c), where α = Dmax/cmin.

Proposition 1 is similar to a result by Dean, Goemans, and Vondrak [6] in
the special case of a single-link network (Knapsack). Scaling, we also obtain the
following corollary.

Corollary 1. For every γ ∈ (0, 1], the expected value obtained by an optimal
routing policy for a stochastic routing instance with commodities I and edge
capacities c is at most 1

γ
· LP (I, γ(1 + α)c), where α = Dmax/cmin.

Input: A stochastic routing instance G, c, I.
Output: A commodity i ∈ I and a path P ∈ Pi at every step.

1. Initialize J to I and ĉe = (1 − α)ce for every e ∈ E. Solve LP (J, ĉ), obtaining an
optimal solution f̂ .

2. While f̂
(i)
e > 0 for some commodity i ∈ J and edge e ∈ E:

(a) Pick i ∈ J and P ∈ Pi such that f̂
(i)
e > 0 for every e ∈ P , and route the

commodity i on P .
(b) Set J := J \ {i}.
(c) Set ĉe := max{0, ĉe − di} for every edge e ∈ P , where di is the instantiated

size of commodity i.
(d) Re-solve LP (J, ĉ), obtaining a new optimal solution f̂ .

Fig. 1. High-level description of the algorithm IR.

An Iterative Rounding Algorithm. We next develop a safe, adaptive routing
algorithm that iteratively uses linear programs of the form LP (I, u) to guide
both commodity and route selections. The high-level idea of the algorithm is to
scale down the given edge capacities (to ensure safeness), and solve LP (I, u). We
then pick the fractionally routed commodity with largest ratio wi, route it on
one of its (fractional) flow paths, and repeat. This high-level algorithm is given
in Figure 1.

Fact 1 Algorithm IR is a safe routing policy.

To obtain good approximation results, however, we need to choose the com-
modity i and the path P ∈ Pi in Step 2a carefully. One natural refinement of
Algorithm IR is to always choose a commodity i in Step 2a with maximum-
possible ratio wi; we call this variant the GREEDY-IR algorithm.

We next discuss the much more subtle issue of path selection. To motivate
the next definition, suppose that in the first stage we pick a commodity i and
an si-ti flow path P . The size of commodity i might get instantiated to some
value much larger than µi, which in turn could evict other commodities in the
LP solution from the edges of P . Intuitively, our goal will be to pick a path
to minimize the severity of this eviction. We make this idea precise with the
following notion of r-coverable paths.

Definition 1. Fix a stochastic routing instance. Let {f̂
(i)
e }i,e be a feasible solu-

tion to LP (I, u). Let {f̂
(i)
P }i,P∈S be a flow decomposition of f , where S ⊆ ∪iPi

denotes the set of paths that carry a positive amount of flow.

(a) Let P ∗ ∈ S be a path with f
(i)
P∗ > 0 and S ′ ⊆ S a collection of flow paths for

commodities other than i. Let F ∗ ⊆ P ∗ denote the edges of P ∗ contained in
some path of S ′. The set S ′ r-covers P ∗ if there are q ≤ r paths P1, . . . , Pq ∈
S ′ such that every edge of F ∗ lies in at least one path Pi.

(b) The path decomposition {f̂
(i)
P } r-covers the path P ∗ ∈ S if for every subset

S ′ ⊆ S of flow paths for commodities other than i, S ′ r-covers P ∗.

(c) An si-ti path P ∗ with f̂
(i)
e > 0 for every e ∈ P ∗ is r-coverable if there exists

a path decomposition with f̂
(i)
P∗ > 0 that r-covers P ∗.

Intuitively, increasing the amount of flow on an r-coverable path only evicts
flow from r other flow paths. For example, in a stochastic routing instance in a
single-link network (i.e., Knapsack), every flow path is 1-coverable.

We next prove the central result of this section: if Algorithm GREEDY-IR

can be implemented to route commodities only on r-coverable paths, then its
expected value is at least an Ω(1/r) fraction of the expected value of an optimal
(unsafe) routing policy.

Lemma 1. If Algorithm GREEDY-IR routes commodities only on r-coverable
paths, then its expected value is at least a (1− α)/(r + 1)(1 + α) fraction of that
of an optimal routing policy.

Proof. Fix an execution of Algorithm GREEDY-IR on a stochastic routing
instance. Let h denote the number of times that the main while loop executes.
Relabel the commodities I = {1, . . . , k} so that the ith commodity is routed in
iteration i. Set I0 = I and Ij equal to {j +1, . . . , k}, the commodities remaining
after the first j ≤ h iterations. Set c0 = (1 − α)c and let cj denote the residual
capacities ĉ after the first j commodities have been routed. By the stopping
condition, LP (Ih, ch) = 0.

Our key claim is that for every j ∈ {1, 2, . . . , h},

LP (Ij−1, cj−1) − LP (Ij , cj) ≤ r · wj · dj + vj , (1)

where dj is the instantiated size of commodity j. Conceptually, this claim asserts
that each time we route a new commodity, the amount by which the value
of LP (Ij , cj) decreases is not much more than the additional value that we
accrue. Since the initial value LP (I, c0) is comparable to the expected value of
an optimal routing policy (by Corollary 1), this ensures that, in expectation,
Algorithm GREEDY-IR will capture a significant (roughly 1/r) fraction of the
maximum-possible expected value.

To prove the claim, fix j and let P ∗ denote the path on which Algorithm
GREEDY-IR routes commodity j. By the definition of r-coverable, there is

a flow decomposition {f̂
(i)
P } of an optimal solution f̂ to LP (Ij−1, cj−1) that

r-covers P ∗. Let S denote the paths that carry a positive amount of flow in
this decomposition. We next massage this path decomposition into a feasible

solution for LP (Ij , cj) in two steps. For an edge e ∈ P ∗, let f̂
(−j)
e denote the flow

∑

i6=j f̂
(i)
e on edge e belonging to commodities other than j. We first decrease

flow on paths of S for commodities other than j until the flow of every edge

e ∈ P ∗ has decreased by at least min{f̂
(−j)
e , dj}. We then remove all flow paths

corresponding to commodity j. Since cj
e = max{0, cj−1

e − dj} for e ∈ P ∗ and
cj
e = cj−1

e for e /∈ P ∗, these two steps define a flow g feasible for LP (I j , cj).

We now elaborate on the first step. Initialize g
(i)
P to f̂

(i)
P for all paths P ∈ S.

Let F ∗ ⊆ P ∗ denote the edges of P ∗ from which flow still needs to be removed,

in the sense that f̂
(−j)
e −g

(−j)
e < min{f̂

(−j)
e , dj}. While F ∗ 6= ∅, we decrease flow

on paths of S as follows. Consider the paths P of S with g
(i)
P > 0, i 6= j, and

P ∩ F ∗ 6= ∅. Each edge of F ∗ lies in at least one such path. Since the original
flow decomposition of f̂ r-covers P ∗, there are q ≤ r such paths P1, . . . , Pq that

collectively contain all of the edges of F ∗. We decrease the corresponding value

of g
(i)
P for each of these paths at a uniform rate, until either f̂

(−j)
e − g

(−j)
e =

min{f̂
(−j)
e , dj} for some edge e ∈ F ∗, or until g

(i)
P is decreased to 0 for one of the

paths P1, . . . , Pq . We denote by ∆` the amount by which the flow on P1, . . . , Pq

is decreased during the `th iteration of this procedure.
As long as F ∗ 6= ∅, we can perform the above operation to decrease flow.

Every iteration strictly decreases the sum of |F ∗| and the number of paths of S
that carry flow in g. The above procedure must therefore terminate with a final
flow g. After deleting all of the flow paths corresponding to the commodity j,
the flow g is feasible for LP (Ij , cj).

We complete the proof of the key claim by comparing the objective function
values of f̂ and g. First, we have

wj

∑

P∈Pj

f̂
(j)
P ≤ wj · µj = vj . (2)

Second, consider the flow decrease operations used to obtain the final flow g
from f̂ . Every such operation decreases flow on at most r paths. Also, since every
such operation decreases the amount of flow on every edge of F ∗, the total flow

decrease
∑

`≥1 ∆` over all such operations is at most dj . Thus
∑

i∈Ij

∑

P∈Pi
(f̂

(i)
P −

g
(i)
P) ≤ r · dj . By the definition of Algorithm GREEDY-IR, wj ≥ wi for every

commodity i ∈ Ij with f̂
(i)
e > 0 for some e ∈ E. Hence

∑

i∈Ij

wi

∑

P∈Pi

f̂
(i)
P −

∑

i∈Ij

wi

∑

P∈Pi

g
(i)
P ≤ r · dj · wj . (3)

Since f̂ and g are optimal and feasible solutions to LP (I j−1, cj−1) and LP (Ij , cj),
respectively, adding the inequalities (2) and (3) proves the claim (1).

With the key claim in hand, we now complete the proof of the lemma. First,
for a fixed execution of Algorithm GREEDY-IR, we can sum (1) over all j ∈
{1, 2, . . . , h} to obtain

1 − α

1 + α
· OPT ≤ LP (I, (1 − α)c) ≤

∑

i∈Ih

vi

(

r
di

µi

+ 1

)

, (4)

where the first inequality follows from Corollary 1 with γ = (1−α)/(1+α), and in
the second inequality we are using the equalities wi = vi/µi and LP (Ih, ch) = 0.

Finally, consider a random execution of the algorithm GREEDY-IR. Label
the commodities 1, 2, . . . , k in an arbitrary way. Let Xi denote the indicator vari-
able for the event that Algorithm GREEDY-IR attempts to route commodity i,
and Di the random variable equal to the size of commodity i. By the Principle of
Deferred Decisions, the random variables Xi and Di are independent for each i.
Taking expectations in (4), we have

1 − α

1 + α
· OPT ≤ E

[

k
∑

i=1

Xi · vi

(

r
Di

µi

+ 1

)

]

= r

k
∑

i=1

vi

µi

E[Xi · Di] +

k
∑

i=1

vi E[Xi]

= r

k
∑

i=1

vi

µi

E[Xi] ·E[Di] +

k
∑

i=1

vi E[Xi] (5)

= (r + 1)

k
∑

i=1

vi E[Xi], (6)

where (5) follows from the independence of Xi and Di. Since Algorithm GREEDY-

IR is a safe routing policy (Fact 1), the sum on the right-hand side of (6) is
precisely the expected value obtained by Algorithm GREEDY-IR. ut

To usefully apply Lemma 1, there must be a commodity i that meets two
orthogonal criteria: a large ratio wi and a flow path that is r-coverable for small r.
When the maximum variation w1/wk in expected per-unit values is small, the
choice of commodity can be dictated by the second criterion alone. Precisely, we
have the following variation on Lemma 1, which will be useful in Section 4.

Lemma 2. If Algorithm IR routes commodities only on r-coverable paths, then
its expected value is at least a (1 − α)/(rW + 1)(1 + α) fraction of that of an
optimal routing policy, where W = w1/wk.

4 Iterative Rounding in Planar Graphs

We now consider the SSSR problem in planar graphs and show the existence
of r-coverable paths in them. In particular, we show that there always exists
a 2-coverable commodity in a planar flow and give an algorithm for finding
it (Section 4.1). Unfortunately, this is not necessarily the commodity with the
maximum per-unit value wi. (See the full version [2] for a planar SSSR instance
where the maximum per-unit value commodity is only Θ(log k)-coverable.) How-
ever, limiting our solution to a subset of commodities that have comparable wi

values, we obtain an O(log W) approximation for general planar graphs, where
W = w1/wk (Section 4.3).

We obtain a constant-factor approximation in the special case where all of
the sinks lie on a common face in some embedding of the planar network. Here,
we show that every commodity has a 2-coverable path (Section 4.2). Lemma 1
then implies that the GREEDY-IR algorithm achieves a constant-factor ap-
proximation for such instances.

4.1 Preliminaries

Let G = (V, E) be a planar multicommodity flow network with a single source s,
and f a feasible flow. Let g : V → <2 be a straight-line planar embedding of G.
Such an embedding always exists [19].

A non-crossing path-decomposition. Recall that {f
(i)
P }P∈S denotes a path-

decomposition of f with S being the set of flow-carrying paths. We are interested
in path decompositions of planar flows that are non-crossing, as defined below.

Definition 2. A path P crosses another path P ′ if there exists a bounded con-
nected region X in <2 with the following properties: P and P ′ each cross the
boundary of X exactly twice and these crossings are interleaved. Precisely, if we
scan the boundary of X in clockwise direction starting from the point where P
enters it, we encounter P ′ exactly once before we see P again (Figure 2(a)). The
set X is called a witness to this crossing of P and P ′.

(a) (b)

Fig. 2. (a) Crossing and non-crossing paths; (b) Converting a crossing path-
decomposition to a non-crossing one

Definition 3. A set of paths is said to be non-crossing if every pair of paths is
distinct and non-crossing.

Given two crossing paths, we can “uncross” them (Figure 2(b)). We therefore
get the following lemma (proof omitted for brevity).

Lemma 3. Every single-source planar multicommodity flow f has a non-crossing
path decomposition that can be found in polynomial time.

Given a non-crossing path-decomposition {fP}P∈S , we can pick a small cover
for a path as follows. We order all the paths in anticlockwise order. (This is well
defined because no two paths cross.) Then for any path, roughly speaking, the
two paths immediately neighboring the path should cover all its intersections
with other paths.

More formally, we define a linear order ≺ on paths as follows. We order all
the edges incident on s in anticlockwise order, starting from an arbitrary edge.
This divides the paths P ∈ S into groups Se based on the first edge in each
path. If the edge e1 precedes edge e2 in anticlockwise order, then for all P1 ∈ Se1

and P2 ∈ Se2
, we have P1 ≺ P2. We then refine the ordering in each group.

For group Se with e = u → v, consider all edges outgoing from v, and order
them in anticlockwise order starting from e. This subdivides the group Se into
subgroups Se′ based on the next edge e′ in each path. As before, if the edge e′1
precedes edge e′2 in anticlockwise order, then for all P1 ∈ Se′

1
and P2 ∈ Se′

2
, we

have P1 ≺ P2. We continue in this manner until we obtain a total order. We
rename the paths according to this order so that P1 ≺ · · · ≺ Pq with q = |S|.

Undominated commodities. Fix a non-crossing flow decomposition of a pla-
nar single-source multicommodity flow and a flow path P . Above, we suggested
covering a path P using the two immediately neighboring paths. This is not
sufficient to cover all of the intersections between P and other flow paths if,
informally, the neighboring paths are “shorter” than P . To dodge this issue, we
define a partial order on the commodities, roughly in order of the source-sink
distance, and pick the commodity that is the “closest” to the source in this order.

For a commodity i, let Ei denote the set of edges from which ti is reachable
along flow-carrying edges. Let Ai denote the subset of <2 enclosed by this set of
edges (not including g(ti)). We call this set the region enclosed by i.

Definition 4. A commodity i dominates a commodity j if g(ti) ∈ Aj .
It is easy to verify that the dominance relation defines a partial order on com-
modities.
Lemma 4. If i dominates j, then Ai ⊂ Aj .

Corollary 2. The dominance relation is transitive and antisymmetric; hence,
there exists an undominated commodity.

4.2 Undominated Commodities are 2-coverable
We now show that for every planar single-source multicommodity flow, there is
at least one 2-coverable flow path.

Lemma 5. Let {f
(i)
P }P∈S be a non-crossing path decomposition of the planar,

single-source multicommodity flow f . Let i be an undominated commodity. Then

every commodity i flow path in S is 2-covered by {f
(i)
P }P∈S .

Proof. (Sketch) Let P1 ≺ · · · ≺ Pq be a linear order on S defined as in the
previous subsection. Consider a commodity i flow path P = Pl ∈ S and let
S ′ ⊆ S. Let x1 = argmaxx<l{Pxmod q ∈ S ′} and x2 = argminx>l{Px mod q ∈ S ′}.
Let Q1 = Px1 mod q and Q2 = Px2 mod q. A reasonably straightforward argument
then shows that {Q1, Q2} covers P with respect to S ′. ut

Lemmas 2 and 5 easily imply a constant-factor approximation ratio for the
GREEDY-IR algorithm when all sinks like on a common face in some planar
embedding. In particular, if we consider a planar embedding of the graph with all
sinks on the outer face, then by definition, all the commodities are undominated.

Theorem 2. In a planar instance of SSSR in which all sinks lie on a single

face, algorithm GREEDY-IR achieves a
(

3 (1+α)
(1−α)

)

-approximation.

Of course, Theorem 2 includes the special cases of outerplanar networks and
of single-source, single-sink planar instances of SSSR.

4.3 An O(log W)-Approximation for General Planar Graphs

In the previous subsection we showed that there always exists a 2-coverable
commodity in a planar flow. Unfortunately, we show in the full version that the
commodity with the highest value of wi may not be o(log k)-coverable. However,
as we show below, having at least one 2-coverable commodity in every planar
graph instance is sufficient to obtain an O(log W)-approximation, where W =
w1/wk is the ratio between the maximum and minimum per-unit values.

We can assume via scaling that the minimum per-unit value wk is 1. We
divide the commodities into log W groups: Ix = {i : wi ∈ [2x, 2x+1)} for each
x ∈ {0, · · · , log W}.

Algorithm PLANAR-IR proceeds as follows. We consider the optimal values
Vx of log W linear programs LP (Ix, (1−α)c), one for each group Ix. These values
give us an estimate of the total value that an optimal adaptive solution can derive
from each group of commodities. Let x∗ be the index of the group for which the
maximum value Vx is achieved. We run the algorithm IR on the graph using
only commodities in the group Ix∗ . (In other words, we round the flow obtained
by solving the LP (Ix∗ , (1 − α)c).) In step 2a of the algorithm, we pick any
undominated commodity and route it along a flow path in a non-crossing path
decomposition of the flow.

Theorem 3. Algorithm PLANAR-IR is a (5 1+α
1−α

log W)-approximation.

Proof. Since we pick the best over log W groups of commodities, Vx∗ is at least a
1/ logW fraction of the value of LP (I, (1−α)c). Now Lemma 5 implies that we
always route a commodity along a 2-coverable path in step 2a of the algorithm
PLANAR-IR. Furthermore, the per-unit value of the commodity routed in each
step is at least half the per-unit value of any other commodity in the set Ix∗ .
Lemma 2 then implies that the expected value obtained by the PLANAR-IR

algorithm is at least a 1/5 fraction of Vx∗ , and is thus at least a 1−α
5(1+α)

1
log W

fraction of the expected value obtained by an optimal routing policy for all of
the demands. ut

References

1. J. R. Birge and F. Louveaux. Introduction to stochastic programming. Springer
Series in Operations Research. Springer-Verlag, New York, 1997.

2. S. Chawla and T. Roughgarden. Single-source stochastic routing.
http://www.cs.cmu.edu/∼shuchi/papers/stoch-routing.ps.

3. G. B. Dantzig. Linear programming under uncertainty. Management Science,
1:197–206, 1955.

4. B. Dean. Approximation Algorithms for Stochastic Scheduling Problems. PhD
thesis, Massachusetts Institute of Technology, Massachusetts, 2005.

5. B. Dean, M. Goemans, and J. Vondrak. Adaptivity and approximation for stochas-
tic packing problems. In SODA ’05, pages 395–404.

6. B. Dean, M. Goemans, and J. Vondrak. The benefit of adaptivity: Approximating
the stochastic knapsack problem. In FOCS ’04, pages 208–217.

7. Y. Dinitz, N. Garg, and M. X. Goemans. On the single-source unsplittable flow
problem. Combinatorica, 19(1):17–42, 1999.

8. M. Goemans and J. Vondrak. Stochastic covering and adaptivity. In LATIN ’06,
pages 532–543.

9. A. Gupta, M. Pal, R. Ravi, and A. Sinha. Boosted sampling: Approximation
algorithms for stochastic optimization. In STOC ’04, pages 417–426.

10. A. Gupta, M. Pal, R. Ravi, and A. Sinha. What about wednesday? approximation
algorithms for multistage stochastic optimization. In APPROX ’05.

11. A. Gupta, R. Ravi, and A. Sinha. An edge in time saves nine: Lp rounding approx-
imation algorithms for stochastic network design. In FOCS ’04, pages 218–227.

12. N. Immorlica, D. Karger, M. Minkoff, and V. Mirrokni. On the costs and benefits
of procrastination: Approximation algorithms for stochastic combinatorial opti-
mization problems. In SODA ’04, pages 684–693.

13. J. Kleinberg. Single-source unsplittable flow. In FOCS ’96, pages 68–77.
14. S. G. Kolliopoulos and C. Stein. Approximation algorithms for single-source un-

splittable flow. SIAM Journal on Computing, 31(3):919–946, 2001.
15. R. Ravi and A. Sinha. Hedging uncertainty: approximation algorithms for stochas-

tic optimization problems. Mathematical Programming, 2005.
16. D. B. Shmoys and C. Swamy. Sampling-based approximation algorithms for multi-

stage stochastic optimization. In FOCS ’05.
17. D. B. Shmoys and C. Swamy. Stochastic optimization is (almost) as easy as de-

terministic optimization. In FOCS ’04, pages 228–237.
18. Stochastic programming community homepage. http://stoprog.org/.
19. W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical

Society, 3(13):743–768, 1963.

