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ABSTRACT

We study the negative consequences of selfish behavior in a
congested network and economic means of influencing such
behavior. We consider a model of selfish routing in which the
latency experienced by network traffic on an edge of the net-
work is a function of the edge congestion, and network users
are assumed to selfishly route traffic on minimum-latency
paths. The quality of a routing of traffic is measured by the
sum of travel times (the total latency).

It is well known that the outcome of selfish routing (a Nash
equilibrium) does not minimize the total latency. An ancient
strategy for improving the selfish solution is the principle of
marginal cost pricing, which asserts that on each edge of
the network, each network user on the edge should pay a
tax offsetting the congestion effects caused by its presence.
By pricing network edges according to this principle, the
inefficiency of selfish routing can always be eradicated.

This result, while fundamental, assumes a very strong ho-
mogeneity property: all network users are assumed to trade
off time and money in an identical way. The guarantee
also ignores both the algorithmic aspects of edge pricing
and the unfortunate possibility that an efficient routing of
traffic might only be achieved with exorbitant taxes. Moti-
vated by these shortcomings, we extend this classical work
on edge pricing in several different directions and prove the
following results.

e We prove that the edges of a single-commodity net-
work can always be priced so that an optimal routing
of traffic arises as a Nash equilibrium, even for very

*Department of Computer Science, New York University,
251 Mercer Street, New York, NY 10012. Supported by
NSF grant CCR0105678. Email: cole@cs.nyu.edu.
TDepartment of Computer Science, New York University,
251 Mercer Street, New York, NY 10012. Supported by an
NSF CAREER Award. Email: dodis@cs.nyu.edu.
tDepartment of Computer Science, Cornell University,
Tthaca, NY 14853. Supported by ONR grant N00014-98-
1-0589. Email: timr@cs.cornell.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

STOC'03,June 9-11, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

Yevgeniy Dodist

Tim Roughgarden?

general heterogeneous populations of network users.

e When there are only finitely many different types of
network users and all edge latency functions are con-
vex, we show how to compute such edge prices effi-
ciently.

e We prove that an easy-to-check mathematical condi-
tion on the population of heterogeneous network users
is both necessary and sufficient for the existence of
edge prices that induce an optimal routing while re-
quiring only moderate taxes.

Categories and Subject Descriptors

F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General
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Algorithms, Theory
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1. INTRODUCTION
Selfish Routing and Edge Pricing

We study the negative consequences of selfish behavior in
networks and economic means of influencing such behavior.
We focus on a simple model of selfish routing, defined by
Wardrop [32] and first studied from a theoretical computer
science perspective by Roughgarden and Tardos [28]. In
this model, we are given a directed network in which each
edge possesses a latency function, describing the common
delay experienced by all traffic on the edge as a function
of the edge congestion. There is a fixed amount of traffic
wishing to travel from a source vertex s to a sink vertex t;
as in earlier works, we assume that the traffic comprises a
very large population of users, so that the actions of a single
individual have negligible effect on network congestion. We
measure the quality of an assignment of traffic to s-t paths
by the resulting sum of all travel times—the total latency.
We assume that each network user, when left to its own
devices, acts selfishly and routes itself on a minimum-latency
path, given the network congestion due to the other users.
In general such a “selfishly motivated” assignment of traffic
to paths (a Nash equilibrium) does not minimize the total



latency; put differently, the outcome of selfish behavior can
be improved upon with coordination.

The inefficiency of selfish routing (and of Nash equilibria
more generally) motivates strategies for coping with selfish-
ness—methods for ensuring that noncooperative behavior
results in a socially desirable outcome. For selfish rout-
ing, an ancient strategy—discussed informally as early as
1920 [24]—is marginal cost pricing. The principle of marginal
cost pricing asserts that on each edge, each network user on
the edge should pay a tax equal to the additional delay its
presence causes for the other users on the edge. Several
decades later, researchers showed that this principle leads
to the following rigorous guarantee [4]: assuming all net-
work users choose routes to minimize the sum of the latency
experienced and taxes paid, it is possible to levy a tax on
each network edge so that the resulting Nash equilibrium
achieves the minimum-possible total latency. Briefly, the
inefficiency of selfish routing can always be eradicated by
pricing network edges appropriately.

This guarantee, while fundamental, is unsatisfying in sev-
eral respects. First, it assumes a very strong homogeneity
property: even though the model assumes a very large num-
ber of network users, all users are assumed to trade off time
and money in an identical way. How should edges be priced
with heterogeneous network users? Second, the guarantee
ignores the algorithmic aspect of edge pricing: how can edge
prices be efficiently computed? When many different sets
of edge prices induce a minimum-latency Nash equilibrium,
can we efficiently compute the “best” one? Finally, this re-
sult is single-minded in its pursuit of a routing minimizing
the total latency, and ignores the possibility that exorbitant
taxes may be required to achieve such a routing. When can
the edges of a network be priced so that an efficient routing
results and, in addition, the disutility of network users due
to taxes is small?

Our Results

In this paper, we address these three issues and prove several
results about pricing networks with heterogeneous users. We
model heterogeneity in the following simple way: we asso-
ciate to each network user a a scalar a(a) and assume that
a seeks to minimize the latency it experiences plus «(a)
times the money it is required to pay. In the classical setup,
a(a) = 1 for all users a. Introducing the function « allows
the full spectrum of time vs. money tradeoffs, with a small
value of a(a) corresponding to a large sensitivity to time,
and a large value indicating sensitivity to money. In this
model, we prove the following.

e We show that for an arbitrary (single-commodity) net-
work and a heterogeneous community of traffic in which
all network users have some sensitivity to taxes (a(a) >
0 for all a), network edges can be priced so that a
minimum-latency routing of traffic arises as a Nash
equilibrium. Thus, even with heterogeneous traffic,
optimally chosen edge taxes are sufficiently powerful
to eliminate all of the inefficiency of selfish routing.
We remark that this result does not follow from the
principle of marginal cost pricing and is instead proved
with a nonconstructive fixed-point theorem.

e Under the additional assumptions that the function «
takes on only finitely many distinct values and that all
network latency functions are convex, we show how to

compute a set of optimal edge prices. Such taxes need
not be unique, and we prove that the set of all opti-
mal taxes can be explicitly described by a small set of
linear inequalities; this description permits optimiza-
tion of a secondary linear objective function, such as
minimizing the taxes paid by network users.

e We give a precise mathematical characterization of the
functions « for which a minimum-latency routing of
traffic can always be induced with small disutility to
network users due to taxes. As a consequence, we find
that in many settings, including the classical model

where a(a) = 1 for all a, inducing the minimum-
latency routing can require extremely costly taxes.
Related Work

The problems of analyzing and influencing selfish behavior
have been extensively studied by many different communi-
ties; even restricting attention to the computer science lit-
erature, there are far too many works to enumerate here. In
what follows, we will discuss only the results on pricing and
on selfish routing that are closest to the present work.

As discussed above, the model of selfish routing studied
here was first defined by Wardrop [32] and has been exten-
sively studied ever since (see [27] for many more references).
Beckmann et al. [4] showed that marginal cost taxes pro-
duce a minimum-latency routing of traffic when a(a) = 1
for all users a. This is accomplished by a simple applica-
tion of the Karush-Kuhn-Tucker theorem (see e.g. [23]) to
an appropriate convex program. Marginal cost pricing has
also been studied with heterogeneous network users; unfor-
tunately, extending the techniques of [4] to this more general
setting requires users with different a-values to pay differ-
ent tazes on the same edge [11, 30]. This solution is ob-
viously unsatisfying as the number of different user types
grows large (indeed, we will in general consider functions
« taking on infinitely many different values); moreover, this
scheme requires knowledge of a user’s type when it traverses
an edge, to charge it an appropriate tax. By contrast, we
are seeking a solution with a single tax placed on each edge;
as we will see, implementing this more ambitious goal re-
quires a mathematical approach quite different from that of
marginal cost pricing.

The problem of optimally pricing shared resources has
also motivated a large body of work in both the economics
literature (see e.g. [21] for a broad survey and [18] for a sur-
vey focused on network applications) and by the networking
community (see e.g. [19]). While work in the networking lit-
erature has not considered our model of selfish routing, the
scope of previous work in economics is sufficiently broad to
encompass the heterogeneous traffic model considered here.
However, the general techniques of welfare economics for op-
timizing prices provide no method to ensure that such prices
can induce a selfish solution that is as socially desirable as
the best cooperative outcome. By contrast, our central ex-
istence theorem asserts that optimal taxes always suffice to
induce the best coordinated routing of traffic.

Researchers have also studied how to compute optimal
taxes. Efficiently computing marginal cost prices in the
classical case of homogeneous network traffic turns out to
be straightforward (via convex programming) [4], but more
general models and goals have also been studied. The em-
phasis of work in the economics literature has been on general-



purpose algorithms that need not run in polynomial time [21],
even when specialized to the edge pricing problems consid-
ered in this paper. The transportation science community
has recently made significant progress in efficiently comput-
ing and characterizing taxes that induce a minimum-latency
routing of traffic [5, 14, 15, 17]. This work considers only
the case of homogeneous traffic, but forms the basis of the
algorithmic results in this paper.

The disutility to network users of edge pricing has appar-
ently been largely ignored in previous work. One for reason
for this is the emphasis in the economics literature on sce-
narios in which the collected taxes can be feasibly refunded
to the network users, and therefore do not cause any disu-
tility. This assumption is especially strong when users are
heterogeneous, as such refunds must then differ for users
with different utility functions. Our approach here assumes
that such refunds are economically or logistically unrealistic,
and is similar in spirit to work of Archer and Tardos [2, 3] on
“frugal mechanisms”—mechanisms (such as auctions) that
solve an optimization problem in an incentive-compatible
way and also make use of only moderate incentives.

In the context of selfish routing, in previous work [9]
we studied the optimization problem of computing taxes
that induce a Nash equilibrium with minimum-possible user
disutility (accounting for disutility due to both latency and
taxes), for the case of homogeneous traffic. In [9] we showed,
among other results, that this optimization problem essen-
tially reduces to the network design problem of avoiding
Braess’s Paradox [25] and is hard to approximate to within
any reasonable factor.

Organization

Section 2 formally introduces our model and states some
preliminaries. In Section 3 we show that edge taxes always
suffice to induce a minimum-latency routing of traffic, even
when network users are heterogeneous. In Section 4 we show
how to compute such taxes in networks with convex latency
functions when there are only finitely many different types
of users. In Section 5 we study the disutility caused by these
taxes, and characterize the user distributions for which this
disutility is small.

2. PRELIMINARIES

Congested Networks and Flows

We consider a directed graph G = (V, E') with source s and
sink t. We denote the set of simple s-t paths in G by P,
which we assume is nonempty. We allow parallel edges but
have no use for self-loops. There is one unit of traffic wishing
to travel from s and ¢, modeled as the unit interval [0, 1]
endowed with Lebesgue measure A\.! Each point a € [0, 1]
will be called an agent, and is thought of as a noncooperative
and infinitesimal unit of traffic.

By a flow, we mean a Lebesgue-measurable function f :
[0,1] — P describing who goes where. There are two ways
to ignore some of the information provided by a flow to re-
cover more familiar combinatorial objects. A flow naturally
induces a flow on paths, which we define to be the vector
{fr}pecp indexed by s-t paths, with fr = A({a € [0,1] :
f(a) = P}) the amount of traffic assigned to the path P by

! Allowing an arbitrary rate r > 0 of traffic requires only
cosmetic changes to this paper.

f. A flow on paths then induces a flow on edges, defined as
a vector {fe}ecr on edges with fo = ZP:eEP fp the amount
of traffic using edge e en route from s to t. A flow on edges
may correspond to many different flows on paths, and a flow
on paths corresponds to many different flows.

The network G suffers from congestion effects; to model
this, we assume each edge e possesses a nonnegative, contin-
uous, nondecreasing latency function f. that describes the
delay incurred by traffic on e as a function of the edge con-
gestion f.. The latency of a path P in G with respect
to a flow f is then given by £p(f) = Y .ple(fe). We
measure the quality of a flow by its total latency L(f), de-
fined by L(f) =Y pep £r(f)fp or, equivalently, by L(f) =
> ccr Le(fe)fe. Evidently, any two flows inducing the same
flow on edges have equal total latency. We will call a flow
minimizing L(-) optimal or minimum-latency, such a flow
always exists, for the set of flows on edges is a compact set
and L(-) is continuous.

Finally, we will allow a set of nonnegative tazes {7c}ecE
to be placed on the edges of a network G. We denote the
resulting network with taxes by G7. We will call a triple of
the form (G, ¢, a) or (G7,¢,a) an instance.

Nash equilibria

We now discuss how agents react to edge pricing. We as-
sume that agent a has a money /time valuation ratio of a(a).
Thus, if a set T of taxes are placed on the edges of a network,
agent a seeks a shortest s-t path relative to edge lengths
Le(fe) + a(a)Te. We will assume that agents are sorted in
order of money-sensitivity, so that « : [0,1] — [0,00] is a
nondecreasing function. We call « a distribution function.
We do not want to assume that distribution functions are
bounded, and therefore permit functions o with a(1) = +o00;
however, we will always assume that « is finite on [0, 1).
We assume that noncooperative behavior results in a Nash
equilibrium—a “stable point” in which no agent has an in-
centive to unilaterally alter its strategy (i.e., its route from
s to t). To make this precise, let ¢ (f,7) = €p(f) + a(a)Tp
denote agent a’s evaluation of path P relative to taxes 7 and

latencies with respect to the flow f, where 7p =37 . p Te.

Definition 2.1 A flow f: [0,1] — P is at Nash equilibrium
or is a Nash flow for instance (G7,¢, ) if for every agent
a € [0,1] and path P € P,

o (f.7) < b(f7). 1)

If (1) holds for agent a, we will say that a is routed on a
c*-minimum path (with the dependence on f and 7 under-
stood). Existence of Nash flows follows from, for example,
the quite general results of Schmeidler [29, Thm 2].

Proposition 2.2 Any instance (G7,¢,a) admits a flow at
Nash equilibrium.

Proposition 2.2 is reassuring, but gives us little insight into
how Nash flows differ from arbitrary measurable functions
on [0, 1]. We intuitively expect Nash flows to exhibit the fol-
lowing nice structure. Agents a € [0, 1] with a near 0, who
value time far more than money, should be routed on a path
with very small latency but possibly very large tax; agents
slightly farther away from 0 should route themselves on a
path with somewhat larger latency and somewhat smaller



tax; at the other extreme, agents near 1—the biggest mis-
ers of all—should be routed on a path that may have large
latency but possesses near-zero taxes. Motivated by this
discussion, we make a definition.

Definition 2.3 A flow f at Nash equilibrium in (G7, ¢, a)
is canonical if:

(a) For any path P € P, the agents assigned to P by f
form a (possibly empty or degenerate) subinterval of
[0, 1].

(b) If a1 < a2, then éf(al)(f) < ff(az)(f).
(C) If a1 < az, then Tf(al)(f) > Tf(az)(f)~

Thus a canonical Nash flow f splits [0, 1] into a finite num-
ber of subintervals (at most one per s-t path), inducing an
ordering on the paths to which f assigns traffic that is non-
decreasing in latency and nonincreasing in taxes.

We have the following strengthening of Proposition 2.2.

Proposition 2.4 Every instance (G7, £, a) admits a canon-
ical flow at Nash equilibrium.

The proof of Proposition 2.4 is essentially just a “rearrange-
ment” argument and shows the stronger statement that an
arbitrary Nash flow can be reorganized into a canonical one
without changing the disutility incurred by any agent or the
induced flow on paths. The details are somewhat tedious
and are omitted from this abstract.

The uniqueness of Nash flows is not so universal. However,
we have the following reasonably strong uniqueness result
when « takes on only finitely many values (i.e., when « is a
step function).

Proposition 2.5 If a takes on only finitely many values
and f*, f* are flows at Nash equilibrium for (G7,¢,a), then
Le(fY) = Le(f2) for all edges e. If in addition all latency
functions are strictly increasing, then f* and f? induce iden-
tical flows on edges.

We prove Proposition 2.5 using techniques from convex pro-
gramming. The approach is similar to that of previous
works [13, 27] and is therefore omitted from this abstract.
Proposition 2.5 is also known to hold for general distribution
functions o when G is a set of parallel links [20, Prop 3.3];
we suspect that it holds for general o and general networks
G, but have been unable to verify this.

Example 2.6 Consider a two-node network with two links,
1 and 2. If the links have latency functions ¢1(z) = z and
£2(x) = 1, then in the absence of taxes a flow at Nash equilib-
rium assigns all but a measure-zero set of agents to the first
link; in a canonical Nash flow, all agents, except possibly
for agent 1, are assigned to the first link. By contrast, the
flow on edges induced by any optimal flow fis fi = fo = %
By placing a tax on the first link, we can discourage selfish
agents from using it and alter the set of flows at Nash equi-
librium. Ideally, we seek a tax, that will be a function of
the distribution « of agent preferences, that deters precisely
half of the traffic (the half with greatest sensitivity to taxes)
and therefore induces a minimum-latency routing. In the
next two sections, we will study how to find such taxes.

3. EXISTENCE OF OPTIMAL TAXES

In this section we show that carefully chosen edge prices
can eradicate all inefficiency due to selfish routing, even in
the presence of agent heterogeneity. More precisely, for an
instance (G, ¢, a), call a set 7 of taxes optimal if there is a
minimum-latency flow ]f and a flow f7 at Nash equilibrium
for (G7,¢,) so that f and f7 induce identical flows on
edges; it follows that f7 is also a minimum-latency flow.
The classical guarantee of marginal cost pricing states that,
when « is everywhere equal to 1 and all latency functions
are differentiable, the taxes 7e = f. é;(fe) for all edges e
are optimal (where £, denotes the derivative of £.) [4]. Here,
we show that every instance (G, ¢, &) admits an optimal tax,
assuming only that all traffic has nonzero sensitivity to edge
taxes (i.e., that a(a) > 0 for all agents a). Before proving
this general result, we consider a seemingly very special type
of instance.

3.1 Wseél-Behaved I nstances

In this subsection, we will consider an instance (G, ¢, )
that satisfies four assumptions, and will call such an instance
well behaved.

(A1) G is a directed acyclic graph admitting a minimum-
latency flow f with f. > 0 for all edges e.

(A2) Latency functions are “uniformly strictly increasing”
in the sense that for some ¢ > 0, £c(y)—Le(x) > 6(y—2)
for any edge e and any y > x > 0.

(A3) The distribution function « is a step function, taking
on only finitely many values.

(A4) The distribution function « satisfies a(0) > 0; thus all
agents have some sensitivity to taxes.

We will remove the first three assumptions in the next sub-
section. A little reflection shows that if a distribution func-
tion fails to satisfy the assumption that a(a) > 0 whenever
a > 0, an assumption only slightly weaker than (A4), then
there are instances (even restricting to two-node, two-link
networks) in which optimal taxes do not exist.

We next prove that well-behaved instances admit opti-
mal taxes. Our proof will proceed in two parts. The first
part constructs a continuous “update map”, which takes sets
of taxes to intuitively “better” sets of taxes. We will ap-
ply Brouwer’s fixed point theorem to show that this update
map has at least one fixed point. This type of argument is
quite standard in economics and game theory; in particular,
Nash’s theorem on the existence of Nash equilibria in non-
zero sum finite matrix games can be proved in this way [22].
To finish the proof, we must show that fixed points of the
update map are the desired sets of optimal taxes. Unlike
many fixed-point arguments in game theory (including that
in the proof of Nash’s theorem [22]), this fact is not at all
obvious in our application; to prove it, we will make de-
tailed use of the combinatorial structure of the underlying
network. A

Let (G, ¢, &) be a well-behaved instance, and f a minimum
latency flow with f. > 0 for all edges e (assumption (A1)).
For motivation, consider a tax 7 that need not be optimal.
Since the instance is well behaved, Proposition 2.5 implies
that all flows at Nash equilibrium for (G, ¢, «) induce the
same flow on edges, {f7 }ecr. If f7 = fe for all edges e, then



7 is an optimal tax; if not, we wish to modify 7 in a way
that steers the Nash flow toward f. A natural heuristic is
to increase the tax on edges with f > f. and decrease the
tax on edges with fJ < f.. To apply a fixed-point theorem,
we must also ensure that our candidate tax vectors remain
bounded throughout an arbitrary number of iterations of
our update map. Based on this discussion, we define our
update map I' as follows, where T is a large upper bound
on the maximum-allowable tax, to be chosen later:

r(r)e = min { 7. {0, (. + J;_ 1)

The map T is well defined because (G, ¢, «) is well behaved;
in particular, fI is uniquely defined by 7 for each edge e,
and fe > 0 for all edges e.

Proposition 3.1 The map T : [0, T)* — [0,T]F is contin-
uous.

PROOF. It suffices to prove that the map 7 +— {f }ecr is
continuous. Under assumptions (A2) and (A3), this follows
from a theorem of Dafermos and Nagurney [12, Thm 3.1]
after applying a straightforward reduction of Dafermos [10,

§3. O

By Brouwer’s fixed-point theorem [6, §6], we have the fol-
lowing corollary.

Corollary 3.2 The map T : [0,T]® — [0,T)" has at least
one fized point.

It remains to show that a fixed point of I' is an optimal
tax for the well-behaved instance (G, ¢, o). Toward this end,
let 7 be a fixed point of I'. By the definition of I, we can
classify the edges of G into one of three types with respect to
7, as follows: good, if fJ = fe; oversaturated, if fo > fe and
Te = T; or undersaturated, if fI < fo and 7. = 0. We will
call 7 a good fixed point if all edges are good w.r.t. 7, and
a bad fixed point otherwise. Writing £yaz for maxece £e(1)
and n for the number of vertices of G, our key lemma is the
following.

Lemma 3.3 IfT > 3n3€mam/o¢(0), then I' has no bad fized
points.

The main theorem of this subsection follows immediately
from Lemma 3.3 and the definitions.

Theorem 3.4 A well-behaved instance admits an optimal
set of taxes.

We now discuss Lemma 3.3 and its proof. The lemma
should be intuitively plausible; in any bad fixed point, some
traffic inexplicably uses heavily taxed edges instead of tax-
free, undersaturated alternatives. On the other hand, these
oversaturated and undersaturated edges can be scattered
throughout the network in an arbitrary way; for this reason,
making this intuitive argument precise takes some work.

The proof of Lemma 3.3 hinges on defining an appropriate
ordering on the vertices of G; this idea was also used, for dif-
ferent purposes, in [25]. To describe the properties we desire
of this ordering, let f7 be a Nash flow for the well-behaved
instance (G7,4,a) and, for a vertex v, let d(v) denote the
length of a shortest s-v path, using T as edge lengths. The
proof approach (see below) motivates an ordering satisfying:

(P1) if f > 0 with e = (v,w), then w follows v in the
ordering

(P2) d-values of vertices are nondecreasing in the ordering.

Since G and hence f” are acyclic, these two properties would

be jointly attainable if all agents chose s-t paths with minimum-

possible tax (see [25]); because of the heterogeneity of agent
objective functions, however, (P1) and (P2) can be mutually
exclusive goals. Lemmas 3.5-3.7 below will show that, on
the other hand, it is possible to achieve (P1) while approzi-
mately satisfying (P2). This weaker statement turns out to
be sufficient to prove Lemma 3.3. Intuitively, this weaker
result is possible since for sufficiently large taxes all agents
are, to first order, choosing minimum-tax paths; edge laten-
cies are only a second-order effect. With all agent objective
functions approximately equal, we can define an ordering
satisfying (P1) and a relaxed version of (P2).
We now implement the above program.

Lemma 3.5 Let (G, 4, a) be a well-behaved instance, with n
vertices and bmaz = maxXeep Le(1). Let tazes T induce Nash
flow 7, and suppose T > 3n*limaz/a(0). For a vertex v,
let d(v) denote the length of a shortest s-v path, using T as
edge lengths. Suppose fI > 0, where e = (v,w). Then
T
d(w) — d(v) > 7e 32

PROOF. Since fJ > 0 there is an agent a € [0, 1] that uses
edge e in its s-t path. Let P1 be the path that agent a uses
to get from s to w. Let P> be an s-w path with minimum-
possible tax, d(w). Since f7 is a Nash flow, agent a uses a c*-
minimum path; thus, £p, (f7)+a(a)te, < Lp,(f7)+a(a)Tp,.
Since 7p, > d(v) + Te and 7p, = d(w), we can derive

d(w) — d(v) > Te+$[épl(ff)—fp2(f)]
1 T
> Te*msz(f)
o Wmaw
= T

Since T > 3n3£maz/a(0), the lemma follows. [

Lemma 3.6 With the assumptions and notation of Lemma 3.5,

suppose there is a path P from v to w with fi > 0 for all
e € P. Then

T

d —d(v) > 1P — —.

(w) —d(v) 2 7p — 5

PROOF. Sum the previous lemma up over all edges in

P. O

Given a well-behaved instance (G7, ¢, @) and a Nash flow
f7, an ordering of the vertices of G is good if it satisfies the
above property (P1) and if w following v with d(w) < d(v)
implies a path P from v to w with fJ > 0 on every edge of
P. A good ordering can always be constructed, for example
by topologically sorting the vertices of G w.r.t. the edges e
with fJ > 0 and breaking ties among incomparable vertices
by putting the vertex with smaller d-value first. The next
lemma proves that a good ordering satisfies a relaxed version
of the above property (P2).



Lemma 3.7 Suppose, after adopting the assumptions and
notation of Lemma 3.5 and placing a good ordering on the
vertices of G, verter w follows vertex v in the ordering.
Then,

d(w) > d(v) 3
PROOF. Let w follow v in the good ordering. If d(w) >
d(v) the lemma holds. If d(w) < d(v), then there must be a
path P from v to w with fJ > 0 for all e € P. The lemma
now follows from Lemma 3.6 and the nonnegativity of 7. [

‘We can now prove Lemma 3.3.

Proof of Lemma 3.3. Assume for contradiction that I" has
a bad fixed point 7 for the well-behaved instance (G, ¢, «)
inducing a Nash flow f7. Since 7 is bad, f{ # fe for some
edge e. As both f and f" induce acyclic s-t flows on edges
carrying one unit of flow, it is straightforward to show that
there is at least one oversaturated edge, say e = (v, w).

We seek undersaturated edges to contrast against the over-
saturated edge e. We will discover such edges by looking at
a particular type of s-t cut. Toward this end, place a good
ordering on the vertices of G. We will write z < y if vertex
x precedes (or is equal to) y in this ordering. All statements
in the sequel that assume some ordering on the vertices refer
to the ordering <. By the ith consecutive cut of G, we mean
the partition of G’s vertex set into two classes where one
class is the first 7 vertices of G.

Let v and w be the ith and jth vertices according to <.
Since fI > 0, property (P1) of good orderings implies that
s R v < w Xt It follows that 7 > i and that consecutive
cuts 3,4+ 1,... ,j — 1 are in fact s-t cuts. Moreover, prop-
erty (P1) of good orderings and the fact that the net f7-flow
across any s-t cut is 1 (see e.g. Tarjan [31]) implies that the
total f7-flow escaping any of these consecutive cuts is pre-
cisely 1. By contrast, the total f-flow escaping each of these
cuts is at least 1 (it may be more, since our good ordering
need not be a topological one w.r.t. the edges e with f. > 0).
That consecutive cuts ¢ through 7 — 1 each contain an over-
saturated edge (namely, e) implies, by counting, that each
such cut also contains an undersaturated edge. Since T is a
bad fixed point of I, the tax on each of these undersaturated
edges is 0.

We next identify a collection of undersaturated edges that
“covers” the consecutive cuts ¢ through j — 1. Precisely,
let e1 = (vi,w1) denote an undersaturated edge crossing
the ith consecutive cut. We necessarily have v; < v; if in
addition wy >~ w, the process halts. Otherwise, we let es be
an undersaturated edge crossing the consecutive cut whose
last source-side vertex is wi. Repeating this process, we
obtain a sequence e, ... ,ep of undersaturated edges with
e; = (vi,w;) and wp > w. This process must halt with
p < n since the heads {wi,... ,wp} of the undersaturated
edges are strictly increasing.

We next claim that d(w,) < d(vi) + Z. This follows
directly from a chain of inequalities of two different types.
First, d(w;) < d(v;) for i = 1,2,... ,p since undersaturated
edges are untaxed (as 7 is a bad fixed point). The second
type of inequality asserts that d(vi) < d(w;—1) + = for i =
2,3,...,p and is an immediate consequence of Lemma 3.7.
Interleaving these two types of inequalities proves the claim.

We are now prepared to derive a contradiction. Since
v1 R v < w X wi, two further applications of Lemma 3.7

imply that

T 2 2
d —d <=[1+—-|<=T
() - dw) < 5 [1+2] <37,
since we can assume that n > 2. On the other hand, since
e = (v,w) is an oversaturated edge, f¢ > 0 and 7. = T; by
Lemma 3.5,

1 11
d —d >|1—=— T >=T.
(w) —d(v) 2 ( 3n2> =12
These two incompatible inequalities provide a contradiction,
showing that the bad fixed point 7 cannot exist. H

3.2 General Instances

In this subsection, we show that any instance (G,¥, )
with a(0) > 0 admits a set of optimal taxes. To do this, we
remove assumptions (A1l)—(A3) of the previous subsection
one by one.

The assumption that G is directed acyclic and that (G, ¢, &)
admits an optimal flow f with fe > 0 on every edge is rel-
atively easy to remove: (G,/,a) admits an acyclic optimal
flow (removing flow cycles can only decrease the total la-
tency), and edges with fe = 0 can be effectively “deleted”
with a sufficiently large tax. We omit further details.

Lemma 3.8 An instance satisfying assumptions (A2)-(A4)
admits an optimal set of taxes.

We will need a statement slightly stronger than Lemma 3.8
in the sequel. The proofs of Theorem 3.4 and Lemma 3.8 do
not use any properties of the optimum flow f of an instance
other than that it is acyclic; we thus have the following ex-
tension of Lemma 3.8 for inducing acyclic flows that need
not be minimum-latency.

Corollary 3.9 Let (G,¢,a) denote an instance satisfying
assumptions (A2)-(A4) of Subsection 3.1 and let f be an

acyclic flow. Then there is a set T of tazes and a Nash flow
f7 for (G7,¢, &) such that fI = fe for alle € G.

We next remove assumption (A2), that latency functions
are uniformly strictly increasing. The proof approach is to
approximate more general latency functions with uniformly
strictly increasing ones, and conclude with a limiting argu-
ment. These details are somewhat technical and are omitted
from this abstract.

Lemma 3.10 An instance satisfying assumptions (A8)—(A4)
admits an optimal set of taxes.

For our most general result, we approximate arbitrary dis-
tribution functions with step functions, and apply a limiting
argument. The proof is similar to that of Lemma 3.10, and
we again omit it from this abstract.

Theorem 3.11 If instance (G, ¥, ) satisfies a(0) > 0, then
it admits an optimal set of tazes.

Remark 3.12 A tax 7 is by definition optimal for (G, ¢, «)
if some flow at Nash equilibrium for (G7, ¢, a) induces the
same flow on edges as an optimal flow and is therefore minimum-
latency. The uniqueness assertion of Proposition 2.5 implies
that, so long as the distribution function « takes on only



finitely many values, all Nash flows induced by an optimal
tax are minimum-latency. We know of no analogous unique-
ness result for more general distribution functions (although
we suspect there is one to be discovered); it is therefore con-
ceivable that in an instance with a general distribution func-
tion, some Nash flows induced by an optimal tax fail to be
minimum-latency.

4. COMPUTING OPTIMAL TAXES

The existence results of the previous section are highly
nonconstructive. Theorem 3.4, asserting the existence of op-
timal taxes for well-behaved instances, relies on Brouwer’s
fixed point theorem, and no efficient algorithms for find-
ing Brouwer fixed points are known (see e.g. [16]). The
extensions to Theorem 3.4 given in Subsection 3.2 require
further nonconstructive arguments (e.g., extracting a con-
vergent subsequence from a sequence in a compact set). In
this section, we use the methodology of Bergendorff et al. [5]
(who only considered agents with identical objective func-
tions) and show how to efficiently compute optimal taxes for
an instance with finitely many different types of agents and
convex edge latency functions.? In fact, we will show this
in a very strong way: we will prove that the set of optimal
taxes can be explicitly described by a polynomial-size set
of linear inequalities. Thus an optimal tax can not only be
efficiently found, but in fact the optimal tax that optimizes
some secondary linear objective function, such as minimiz-
ing the taxes paid by network users, can also be computed
efficiently. These constructive results complement and do
not subsume the existence theorems of Section 3, even in
the special case of finitely many distinct agent types; on
the contrary, these existence results provide the sole assur-
ance that our linear description of the set of optimal taxes
describes a non-empty set!

It can be shown that the existence of an efficient algo-
rithm to compute an optimal tax or an optimal flow in a
network with arbitrary continuous, nondecreasing latency
functions implies P=NP (proof deferred to the full version).
To circumvent this difficulty, in this section we assume that
all network latency functions are convex. Under this as-
sumption, the total latency L(-) is a convex function and
an optimal flow can be computed efficiently using convex
programming.® This assumption is satisfied by most (but
not all) latency functions of interest, including polynomials
with nonnegative coefficients and popular queueing delay
functions; see [26] for some specific examples.

We now proceed to our algorithmic results. For an in-
stance (G, £, «) in which « takes on a finite number of values
a1 < -+ < ayg, we will call the agents a with a(a) = a; the
ith commodity. If f is a flow for such an instance, we will
write f;,i) for the number (i.e., Lebesgue measure) of agents

of commodity 7 assigned to the path P, and similarly fe(i)
for the number of agents of commodity ¢ that use edge e

2Throughout this section, we assume some reasonable en-
coding of latency and distribution functions; see [1, §14.1]
or [27, §5.2] for typical approaches. We assume that a distri-
bution function that is a step function with k steps requires
Q(k) input bits to describe.

3More exactly, under this assumption an optimal flow can be
computed to arbitrary precision in polynomial time. This is
the best that could be hoped for, since an exact description
of an optimal flow may require irrational numbers. We will
not discuss this minor detail further in this abstract.

in their assigned routes. We begin with a reformulation of
the definition of a Nash flow, which is an easy consequence
of the fact that all agents in a flow at Nash equilibrium
select shortest paths according to their personal objective
functions.

Lemma 4.1 Let (G,£4,a) be an instance where o takes on
a finite number of values a1 < -+ < a,. Then:

(a) a flow on paths {fp} is induced by some flow at Nash
equilibrium for (G, ¢, a) if and only if it minimizes

Zle Zpep[ép(f) + anp]fg) over all possible flows
on paths {fl(;)};

(b) a flow on edges {fe} is induced by some flow at Nash
equilibrium for (G™,0,a) if and only if it minimizes
Zle ZeeE[ée(fe) + aiTe] e(z) over all possible flows
on edges {fe(z)}

Lemma 4.1(a) corresponds more directly to the “all agents
select shortest paths” intuition, but Lemma 4.1(b), which
follows easily from the first assertion, will be more useful for
our purposes.

Lemma 4.1 provides an extremely handy criterion for prov-
ing that a set of taxes is optimal. In particular, let f be an
optimal flow for an instance (G, ¥, «) in which « is a step
function taking on values aq < -+ < . Define the cost
C(f) of fby X8 3. plle(fe) + aire] . Lemma 4.1 im-
plies that {fél)}eeg is induced by some flow at Nash equi-
librium for (G™, ¢, «) if and only if the optimal value of the
mathematical program

k
(P) min Z Z[ﬂe(fe) + e 9

i=1ecE
subject to:
Z fe(z) N Z fe(” =biw Viw
e=(v,w) e=(w,v)
=0 Vi e

is C(f), where b; 4 is the number r; of agents of commodity
iif w=1t,is —r; if w = s, and is 0 otherwise. Since f and T
are fixed, this is a linear program. By an argument similar
to that proving Proposition 2.5, the assumption that all edge
latency functions are convex implies that all optimal flows
induce the same edge latencies; hence, this linear program
is independent of the chosen optimal flow f. It follows from
this observation that a tax 7 is optimal if and only if the
optimal value of (P) is C(f).

We now apply strong LP duality to (P), thereby finding
that a set T of taxes is optimal for (G, ¢, ) if and only if the
optimal value of the linear program

k
} : (@)
rizti
i=1

(D) max

subject to:
zgf) = Vi

21(111) - Z'E)Z) < ee(fe) + Q;Te VL €



equals C(f). The optimal value of both (P) and (D) is at
most C(f) (to see this, take £ = £ for all i and e in (P)).
Thus a set 7 of taxes is optimal if and only if the following
set of equations and inequalities has a solution in z:

zgf) = Vi

zf‘f) — zf,i) < fe(fe) + aiTe Vi, e
k k

Yoz =3 elfe) + il £

i—1 i=1 eCE

The number of constraints is polynomial in k& and in the size
of G and, since an optimal flow on edges can be efficiently
computed when latency functions are convex, the system
can be constructed in polynomial time. The final key obser-
vation is this: this system is not only linear in z for fixed
7, but is linear in (z,7) even when T is allowed to vary. An
optimal tax can thus be found by linear programming; the
existence of such a tax is assured by Theorem 3.11.
We summarize the results of this section in a theorem.

Theorem 4.2 Let (G, ¢,a) be an instance with convez la-
tency functions in which o takes on only finitely many dis-
tinct values. Then a linear description of the taxes optimal
for (G, 4, a) can be computed in polynomial time. In partic-
ular, a set of optimal taxes can be computed in polynomial
time.

Remark 4.3 We leave open the question of how to com-
pute optimal taxeswith general distribution functions. We
note, however, that a construction of Carstensen [8] implies
that Nash flows in this general setting may make use of a
superpolynomial number of distinct paths. This suggests
(but does not logically imply) that the problem of comput-
ing or even verifying an optimal tax for general networks
and distribution functions is difficult.

5. THE COST OF OPTIMAL TAXES

We have shown that optimal taxes exist under quite gen-
eral conditions (Theorem 3.11). While this answers a very
basic question about the power of edge pricing, Theorem 3.11
makes no guarantee about the disutility caused to agents
due to such (possibly very large) taxes. In this section, we
address this issue.

To account for the disutility caused to agents by taxes, we
extend the total latency objective function of Section 2. For
a flow f for an instance (G7, ¢, ), we define the cost C(f, T)
of the flow f by

C(fir) = / o (fo7)da

where c¢b(f,7) = p(f) + a(a)Tp (see also Section 2). This
definition agrees with that of Section 4 in the special case
when « takes on only finitely many different values. The
definitions of total latency L(-) and cost C(-, ) agree if and
only if 7 = 0. We also note that two different flows inducing
the same flow on paths can have different costs (cf., the
simpler total latency measure).

As we have spent the previous two sections studying taxes
that minimize the total latency of Nash flows, a natural next
goal would be to study taxes that minimize the cost of Nash
flows. Unfortunately, this optimization problem is provably

intractable (assuming P # NP) [9]. Instead, we will confine
our attention to the cost of optimal taxes (taxes that induce
a minimum-latency flow). Put differently, we investigate
the question: how costly is a tax-induced minimum-latency
routing?

Our contribution is a complete characterization of the dis-
tribution functions « for which the disutility due to optimal
taxes is always at most a constant factor times the disutility
due to latency—i.e., times the latency of an optimal flow.
We emphasize that this is an extremely strong guarantee,
and that there is no reason a priori to believe that any dis-
tribution function has this property. To better appreciate
this, we discuss a modification of Example 2.6. Suppose we
replace the latency function of link 1 in that example by the
highly nonlinear function ¢(z) = z? for large p. A simple
calculation (see e.g. [28]) shows that, in the absence of taxes,
the total latency (or equivalently, the cost) of a Nash flow is
arbitrarily larger than that of a minimum-latency flow f as
p — o0. In this example, the guarantee above has the fol-
lowing consequence: even though with no taxes the cost of a
Nash flow is arbitrarily larger than L(f), by adding taxes—
by making the cost function more severe—we can attain a
Nash flow with cost within a constant factor of L(f). Thus,
for some distributions «, taxes can improve the cost of a
Nash flow by an arbitrarily large factor.*

To begin our analysis, we formalize the guarantee we de-
sire of a distribution function.

Definition 5.1 A distribution function « is p-cheap with
parameter p > 1 if the following property holds: for every
instance (G, 4, a) with a(0) > 0, there is a set 7 of optimal
taxes and a minimum-latency flow f7 at Nash equilibrium
for (G7, ¢, o) such that

C(fTm) < p- L(f7).

A distribution function is cheap if it is p-cheap for some finite
p>1.

It is easy to show that not all distribution functions are
cheap. In fact, by considering only two-node two-link net-
works in which one link has the constant latency function
£(x) = 1, we can derive the following necessary condition
on p-cheap distributions. In our statement of the condi-
tion, we employ the notation a(z~) to mean the left limit
lim,, 1. a(zn) of a distribution function « at a point z. This
limit always exists because distribution functions are as-
sumed nondecreasing, and is equal to «a(z) when « is con-
tinuous at z. We omit the proof of the condition from this
abstract.

Lemma 5.2 If a is a p-cheap distribution function, then
[ atayda<(o-1) a0 -2 2)
0

for all z € (0,1).

Condition (2) is in essence a “growth condition”, asserting
that a(a) grows extremely quickly with a. The simplest
distribution functions satisfying (2) for some value of p are
the functions a(a) = (1 —a)~* for k > 1.

4This arguably counterintuitive effect of taxation is remi-
niscent of the famous Braess’s Paradox [7, 25], but can also
occur in networks in which Braess’s Paradox cannot (such
as in networks of parallel links).



Remark 5.3 One particular consequence of condition (2)
is that a cheap distribution function « is unbounded (for
bounded «, the right-hand side of (2) vanishes as z 1 1).
Thus, step functions with finitely many values are not cheap.

Far more remarkable than the necessary condition of Lem-
ma 5.2—which remains necessary even when restricting at-
tention to two-node, two-link networks—is the fact that con-
dition (2) is also sufficient for a distribution to be p-cheap.

Theorem 5.4 A distribution function o with a(0) > 0 is
p-cheap if and only if

| at@da< =100

for all z € (0,1).

PROOF. Let o denote a distribution function satisfying
a(0) > 0 and

| at@das =1 a0 (3)

for all z € (0,1). We will assume for simplicity that «
is continuous; this assumption can be removed with minor
modifications to the following proof.

Fix an instance (G, /¢, «); from Theorem 3.11 we know

there is some optimal tax. We next claim something stronger.

Claim:  The instance (G,¢,«) admits an optimal tax T
with the property that some s-t path of G receives zero taz.

Proof of Claim. Let 7 be an optimal tax for (G,¢, a),
inducing a flow f7 at Nash equilibrium that induces the
same flow on edges as an acyclic minimum-latency flow f.
Topologically sort the vertices of G so that all flow-carrying
edges go forward in the vertex ordering. Beginning with the
vertex preceding ¢ and proceeding backwards in the vertex
ordering, perform the following operation for each vertex
v # s if 7, > 0 is the minimum tax on any flow-carrying
edge with tail v, subtract 7, from the tax on each flow-
carrying edge with tail v and add 7, to the tax on each
edge (flow-carrying or not) with head v. This operation
does not affect the total tax on any s-t path used by f7 and
can only increase the tax on other s-t paths; hence the flow
f7 remains at Nash equilibrium after these modifications.
When the source s is reached, subtract 75 from the tax on all
flow-carrying edges with tail s. Again, f7 remains at Nash
equilibrium. At the conclusion of these modifications, every
vertex with an outgoing flow-carrying edge has at least one
such edge with zero tax. This implies that some s-t path—
indeed, an s-t path of flow-carrying edges—possesses zero
tax. W

Let 7 be an optimal tax for (G, ¢, «) that assigns zero tax
to some s-t path, and let f” be a minimum-latency flow
at Nash equilibrium for (G7, ¢, ). We can take f7 to be a
canonical flow. Let Pi, P, ..., P, denote the paths to which
f7 assigns traffic. In what follows, we will abbreviate fp, by
fi Lp,(f7) by £;, and Tp, by T;.

Since f7 is canonical, we can assume without loss of gen-
erality that £1 < /ly <--- < /lp, that 71 > 172 >--- > 7, and
that the subinterval of agents assigned to path P; precedes
(in [0,1]) that of agents assigned to path P; if and only if
i < j. Thus [0,1] is split into p subintervals, with the ith
subinterval the agents assigned by f” to path P;. With our

assumptions and notation in place, we can now write the
cost of f™ in a manageable form:

oy = Y /F " [+ a(@)n] da
_ L(fT)+Zn/F"’ o(a) da (@)

where F; = 23:1 f; denotes the amount of flow f” assigns
to the paths with index at most ¢. Defining A; = 7 —Ti41 >
0 for i € {1,2,...,p — 1} and A, = 75, equation (4) is
equivalent to
F;
0

C(f7)=L(f")+ ZAZ/ a(a) da.

Since condition (3) holds, lim;t; a(z) = +oo and there are
agents with arbitrarily large a-value. Since some s-t path
is assigned zero tax by 7 and f7 is at Nash equilibrium, it
follows that 7, = 0. Hence,

p—1 F;
CU) = L)+ 3 A / a(a) da.
=1 0
By hypothesis (3),

CUTY LU + =) Y M)~ F). (5)

We next make further use of the assumption that f” is at
Nash equilibrium. Since « is continuous and f” is a Nash
flow, for each i < p the agent F; is indifferent between the
paths P; and P;+1. Thus,

L+ a(Fi)m = Liv1 + a(Fy)Tit1
implying that
Aja(Fy) = ligq — 4.
Plugging this equality into (5) we find that

CUT) € DU+ (o= )Yl — )1~ F)
= L(fM)+(p-1) Z Z fi(liv1 — 4s)
i=1 j=it1

= LU+ (- DY filti—t)

< LM+ (p—1) Z&fi

= pL(fT)v

which completes the proof. [

Remark 5.5 The condition of Theorem 5.4 is quite strong
and is not satisfied by most distribution functions, and thus
optimal taxes are in general quite costly. Nonetheless, we
find it surprising that any natural distribution function is
cheap, and satisfying that cheap distribution functions ad-
mit such a crisp mathematical characterization.



6.

DIRECTIONSFOR FURTHER WORK

The present work leaves many natural questions unan-
swered. Do optimal taxes (in the sense of Theorem 3.11)
always exist in multicommodity flow networks? Do optimal
taxes continue to exist when agents have general bivariate
utility functions, as opposed to the separable utility func-
tions considered here? Can a feasible solution to the final
linear program of Section 4, and hence an optimal tax, be
computed combinatorially, without recourse to linear pro-
gramming?
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