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Abstract

We give a brief and biased survey of the past, present, and future of research on the interface
of theoretical computer science and game theory.

1 Introduction

By the end of the 20th century, the widespread adoption of the Internet and the emergence of
the Web had changed fundamentally society’s relationship with computers. The primary role
of a computer evolved from a stand-alone, well-understood machine for executing software to a
conduit for global communication, content-dissemination, and commerce. Two consequences of
this phase transition were inevitable: theoretical computer science would respond by formulating
novel problems, goals, and design and analysis techniques relevant for Internet applications; and
game theory, with its deep and beautiful study of interaction between competing or cooperating
individuals, would play a crucial role. Research on the interface of theoretical computer science and
game theory, an area now known as algorithmic game theory (AGT), has exploded phenomenally
over the past ten years.

The central research themes in AGT differ from those in classical microeconomics and game
theory in important, albeit predictable, respects. Firstly in application areas: Internet-like networks
and non-traditional auctions (such as digital goods and search auctions) motivate much of the
work in AGT. Secondly in its quantitative engineering approach: AGT research typically models
applications via concrete optimization problems and seeks optimal solutions, impossibility results,
upper and lower bounds on feasible approximation guarantees, and so on. Finally, AGT usually
adopts reasonable (e.g., polynomial-time) computational complexity as a binding constraint on the
feasible behavior of system designers and participants. These themes, which have played only a
peripheral role in traditional game theory, give AGT its distinct character and relevance.

AGT also connects to traditional theoretical computer science in remarkably diverse and rich
ways. For example, recent work on auction design has been informed by techniques ranging from
primal-dual algorithms to communication complexity; quantitative analyses of game-theoretic equi-
libria have drawn on tools familiar from approximation algorithm design, such as mathematical
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programming and potential function arguments; and studying the complexity of computing such
equilibria has resurrected interest in previously obscure complexity classes that were originally
motivated by local search and combinatorial topology problems.

The next three sections touch on the current dominant research trends in AGT, loosely following
the organization of the first book in the field [119]; Section 5 highlights a number of prominent
open questions. We discuss only (a subset of the) topics studied by “the STOC/FOCS community”;
see [4, 74, 102, 150] for alternative perspectives on computer science and game theory.

2 Algorithmic Mechanism Design

Algorithmic mechanism design (AMD) studies optimization problems where the underlying data
(such as a value of a good or a cost of performing a task) is a priori unknown to the algorithm
designer, and must be implicitly or explicitly elicited from self-interested participants (e.g., via a
bid). The high-level goal is to design a protocol, or “mechanism”, that interacts with participants
so that self-interested behavior yields a desirable outcome.

There is a complex interaction between the way an algorithm employs elicited data and par-
ticipant behavior. For example, in a “first-price” sealed-bid auction (where the winner pays its
bid), bidders typically shade their bids below their maximum willingness to pay, by an amount
that depends on knowledge or beliefs about the other bids. In the “second-price” or “Vickrey”
variant [157], where the winner pays only the value of the second-highest bid, each participant may
as well bid its true value for the good. (Do you see why?)

Nisan and Ronen [118] proposed the systematic study of what can and cannot be efficiently
computed or approximated when the problem data is held by selfish agents, and also coined the
term “algorithmic mechanism design”. (See [99, 128, 145] for related contemporaneous work in
the AI literature.) Auction design is the most obvious motivation for this subfield, but there
are many others. See [93] and [45] for overviews of two modern “killer applications” — keyword
search auctions and spectrum auctions, respectively; and [117] and [119, Part IV] for a sampling
of other applications in economics and computer science, respectively. The economic literature
on mechanism design is quite mature (e.g., [81]), but AMD has contributed in several ways. We
concentrate here on its emphasis on complexity bounds and worst-case approximation guarantees,
but mention additional aspects of AMD at the end of the section.

The technical core of AMD is the following deep question:

(Q1) to what extent is “incentive-compatible” efficient computation fundamentally less powerful
than “classical” efficient computation?

To translate question (Q1) into mathematics, reconsider the Vickrey auction for selling a single
good. Each bidder i has a private (true) willingness-to-pay vi and submits to the auctioneer a
bid bi. The auction comprises two algorithms: an allocation algorithm, which picks a winner,
namely the highest bidder; and a payment algorithm, which uses the bids to charge payments,
namely 0 for the losers and the second-highest bid for the winner. One easily checks that this
auction is truthful in the following sense: for every bidder i and every set of bids by the other
players, player i maximizes its “net value” — value for the good, if received, minus its payment,
if any — by submitting its true private value: bi = vi. Moreover, no false bid is competitive with
truthful bidding for all possible bids by the other players. Assuming all players bid truthfully (as
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they should), the Vickrey auction solves the social welfare maximization problem, in the sense that
the good is allocated to the participant with the highest value for it.

More generally, consider a feasible region Ω, n participants each with a real-valued private
objective function ti(·) defined on Ω, and a designer objective function f(t1, . . . , tn). In the Vickrey
auction, Ω has one outcome per participant (indicating the winner), ti(ω) is vi if i wins in ω and 0
otherwise, and f is

∑
i ti(ω). Classical optimization would ask: given the ti’s, optimize the objective

function f over Ω. The AMD analog is only harder: simultaneously determine the private ti’s and
optimize the corresponding function f over Ω. Sometimes the latter problem is no more difficult
than the former (as with the Vickrey auction) — when is it strictly more difficult?

Characterizations and the Limits of Approximation. Question (Q1) is the subject of in-
tense study by the AGT community. We confine our discussion here to mechanisms M that share
the following properties with the Vickrey auction: M first asks each participant i for a “bid func-
tion” bi(·), hopefully identical to the private objective function ti(·); M then invokes an allocation
algorithm x(b1, . . . , bn) and a payment algorithm π(b1, . . . , bn) to determine an outcome ω and pay-
ments p1, . . . , pn, respectively; and it is “incentive-compatible” in that truthful reporting always
maximizes the resulting “utility” ti(ω) − pi of a player, no matter what other players do. We call
such mechanisms simple.1 Assuming all players bid truthfully (as they should), the allocation algo-
rithm of a simple mechanism faces the traditional version of the underlying optimization problem,
with known ti’s.

Call an allocation algorithm implementable if, for some cleverly chosen payment algorithm π,
coupling x with π yields a (truthful) simple mechanism. For a single-good auction, if x is the
“highest-bidder” allocation algorithm, then defining π as in the Vickrey auction shows that x is im-
plementable. If x is the “second-highest bidder” allocation algorithm, then it is not implementable:
no payment algorithm can be matched with x to yield a truthful mechanism. (This is not obvious
but not hard to prove.) Thus some but not all algorithms are implementable. We can mathemati-
cally phrase the question (Q1) as follows: are implementable algorithms less powerful than arbitrary
algorithms for solving fundamental optimization problems?

This question is interesting for both polynomial-time and computationally unbounded algo-
rithms. In the latter scenario, both strong positive and strong negative results are known. For every
mechanism design problem with a sum objective (

∑
i ti(ω), and weighted variants), a far-reaching

generalization of the Vickrey auction known as the “VCG mechanism” [40, 72, 157] proves that the
optimal (not necessarily polynomial-time) allocation algorithm is implementable (see e.g. [117]).
For problems with non-sum objectives, the optimal allocation algorithm is not generally imple-
mentable, even on problem instances of constant size [9, 118]. Thus “computationally easy” and
“strategically easy” can, in some settings, mean radically different things.

Far less is known about polynomial-time implementability. Most intriguing are the many mech-
anism design problems that are derived from an NP -complete problem and for which the optimal
allocation algorithm is implementable. For these, any separation between implementable and non-
implementable polynomial-time algorithms must be conditional on P 6= NP , and no such separa-
tion is known. Any resolution of this issue would be conceptually and technically notable: either
incentive-compatibility imposes no additional difficulty for a massive class of important mechanism
design problems, or else there is a non-trivial way of amplifying (conditional) complexity-theoretic

1The usual term is “truthful, direct-revelation”. Our restriction to simple mechanisms is partially but not fully
without loss of generality; see also Section 5. We also disallow collusion; see e.g. [71] for more on this issue.
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approximation lower bounds using information-theoretic strategic requirements.
Understanding the reach of implementable algorithms generally involves two interrelated goals:

characterization theorems and approximation bounds (see also [94]).

(G1) Usefully characterize the implementable allocation algorithms x for the problem.

(G2) Prove upper and lower bounds on the best-achievable approximation ratio of an implementable
algorithm (subject to polynomial running time, if desired).

The second goal quantifies the limitations of implementable algorithms using a worst-case approx-
imation measure. The first goal aims to reformulate the unwieldy definition of implementability
into a form more amenable to (both upper and lower) approximation bounds. Both goals, and
especially (G1), seem to grow more complex with the number of independent parameters required
to describe the private information of a player.

Versions of (G2) pervade modern algorithmic research: for a given “constrained computational
model”, where the constraint can be either computational (as for polynomial-time approximation
algorithms) or information-theoretic (as for online algorithms), quantify its limitations for opti-
mization and approximation. Goal (G1) reflects the additional difficulty in AMD that even the
“computational model” (of implementable algorithms) induced by strategic constraints is poorly
understood — for example, determining whether or not a given algorithm is online is intuitively
far easier than checking if one is implementable.

Single-Parameter Mechanism Design. This two-step approach is vividly illustrated by the
important special case of single-parameter problems, where goal (G1) has been completely resolved.
A mechanism design problem is single-parameter if all outcomes are real n-vectors and participants’
private objective functions have the form ti(ω) = viωi for a private real number vi (the “single
parameter”); ωi and vi can be thought of as the quantity received and the value-per-unit of a
good, respectively. (A single-item auction is the special case in which each ω is a standard basis
vector.) An algorithm for a single-parameter problem is monotone if a greater value begets a
greater allocation: increasing the value of a vi (keeping the other vj ’s fixed) can only increase the
corresponding value of the computed ωi. For example, the “highest bidder” allocation algorithm
for a single-good auction is monotone, while the “second-highest bidder” allocation algorithm is
not. More generally, monotonicity characterizes implementability for single-parameter problems.

Proposition 1 (E.g. [113]) An algorithm for a single-parameter mechanism design problem is
implementable if and only if it is monotone.

Proposition 1 should be viewed as a useful solution to the first goal (G1), and it reduces imple-
mentable algorithm design to monotone algorithm design. An analogous characterization applies
to randomized algorithms, where the monotonicity and truthfulness conditions concern expected
allocations and expected participant utilities, respectively [9].

Archer and Tardos [9] were the first to systematically study approximation in single-parameter
mechanism design problems. Among other contributions, they identified a natural candidate prob-
lem for a conditional separation between implementable and non-implementable polynomial-time
approximation algorithms: minimizing the makespan of parallel related machines with private ma-
chine speeds. (In a scheduling context, each player is a machine with a private speed si = −1/vi,
allocations describe the sum of job processing times assigned to each machine, and monotonicity
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dictates that declaring a slower speed can only decrease the amount of work received.) The problem
admits an (exponential-time) implementable optimal algorithm, but all classical polynomial-time
approximation algorithms for it (e.g., the PTASes in [55, 79]) are not monotone and hence not
implementable. Beginning with [9], numerous constant-factor monotone approximation algorithms
were devised (see [92] for references). Very recently, Dhangwatnotai et al. [48] proved that, allowing
randomization, monotone polynomial-time algorithms are competitive with arbitrary polynomial-
time algorithms for makespan minimization.

Theorem 2 ([48]) There is a monotone randomized PTAS, and a corresponding truthful in ex-
pectation mechanism, for makespan minimization on parallel related machines.

Whether or not there is a conditional separation between implementable and arbitrary polynomial-
time algorithms remains open. In light of Theorem 2, the most likely candidate problems for
obtaining such a separation are multi-parameter; we discuss these next.

Multi-Parameter Mechanism Design. Many important mechanism design problems are not
single-parameter. Combinatorial auctions, in which each participant aims to acquire a heteroge-
neous set of goods and has unrelated values for different sets, are a practical and basic example.
(See [27, 46] for much more on the topic.) Multi-parameter mechanism design is complex and
our current understanding of goals (G1) and (G2) is fairly primitive for most problems of interest.
Because of its importance and bounty of open questions, the subject has been a hotbed of activity
over the past few years; we briefly indicate the primary research threads next.

New characterizations of implementable algorithms are useful (and possibly essential) for un-
derstanding their approximation capabilities, and are interesting in their own right. Rochet’s
Theorem [133] is a classical characterization of implementable algorithms in terms of a certain
shortest-path condition known as cycle monotonicity (see [159]) that is general but difficult to use
to prove upper or lower approximation bounds (see [97] for an exception). Archer and Kleinberg [7]
give a promising reformulation of Rochet’s Theorem that could lend itself to new approximation
bounds. Saks and Yu [144] show that in the common special case where the ti’s are drawn from
convex sets, implementability is equivalent to a simpler 2-cycle condition known as weak mono-
tonicity; see also [7, 111] for new extensions and alternative proofs, and [115] for a recent analog in
discrete domains.

But what kinds of algorithms meet these technical conditions? The answer depends on the
“richness” of the domain in which the private information (the ti’s) lie — richer domains possess
more potentially profitable false declarations, making the space of implementable algorithms more
highly constrained. For the extreme case of “unrestricted domains”, where Ω is an abstract outcome
set and the ti’s are arbitrary real-valued functions on Ω, Robert’s Theorem [132] states that there
are almost no implementable algorithms: only the VCG-like “affine maximizers”, all minor variants
on the algorithm that always chooses the outcome maximizing

∑
i ti(ω), possibly over an a priori

restricted subset of Ω. (Restricting to a subset of outcomes can be useful for obtaining polynomial
running time.) This should be viewed as a negative result, since these affine maximizers have limited
polynomial-time approximation capabilities in most important problems (see e.g. [50]). However,
applications usually involve more structured domains. This point motivates an important research
agenda, still in its embryonic stages, to identify the types of domains for which Robert’s Theorem
holds (see [127] for a surprising new example) and characterize the additional implementable algo-
rithms for domains in which Robert’s Theorem breaks down (see [22, 95] and [38, 53] for partial
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but highly non-trivial results on combinatorial auctions and machine scheduling, respectively).
The design and analysis of good truthful multi-parameter mechanisms has proceeded apace de-

spite our limited understanding of implementability. Much of this research has coalesced around wel-
fare maximization in combinatorial auctions (see [27]), where Ω is the ordered partitions (S1, . . . , Sn)
of a set of m goods among the n players, the private information ti describes player i’s valuation
(willingness to pay) vi(S) for each of the 2m possible subsets S of goods, and the optimization prob-
lem is to choose an allocation maximizing

∑
i vi(Si).2 While the aforementioned VCG mechanism

truthfully solves this optimization problem in exponential time, its polynomial-time approxima-
bility varies with the degree of structure imposed on valuations. General valuations exhibit both
“complements”, where goods are useful only when purchased in tandem (as with a pair of tennis
shoes), and “substitutes”, where goods are redundant (as with a pair of tennis rackets). Early
research focused on 1- and 2-parameter valuations with complements but no substitutes and ob-
tained best-possible approximate guarantees (assuming P 6= NP ) [99, 114]. Some of these have
been extended to general valuations [26, 52, 96]. Unfortunately, with complements, the underlying
welfare maximization problem includes the Maximum Independent Set problem as a special case
and reasonable approximation guarantees are possible only under strong additional assumptions
(as in [8, 19]).

Recent work has focused on classes of valuations with substitutes but no complements, including
subadditive valuations (satisfying v(S ∪ T ) ≤ v(S) + v(T ) for all S, T ) and submodular valuations
(satisfying the stronger condition that v(S∪{j})−v(S) ≤ v(T∪{j})−v(T ) for all T ⊆ S and j /∈ S).
Here, constant-factor approximation guarantees appear possible, though challenging to obtain.
Beginning with [51, 98, 121], a number of papers gave increasingly good upper and lower bounds
for polynomial-time approximation of welfare maximization with complement-free valuations by
non-implementable algorithms. See [61] and [162] for two recent gems on the algorithmic side
and [109] for the latest developments in (information-theoretic) lower bounds. Remarkably, no
constant-factor implementable algorithm is known for any such problem (see [49, 51, 52] for the
state-of-the-art). Separating the power of implementable and non-implementable algorithms for
welfare maximization in combinatorial auctions remains a premier research challenge. See [127] for
a very recent communication complexity-based separation for a more general welfare-maximization
problem, a significant research breakthrough.

Further Aspects of AMD. This section focused on the design of computationally efficient truth-
ful mechanisms with provable approximation guarantees for three reasons: it comprises a large por-
tion of AMD research; there remain numerous deep open questions on the topic; and appreciating its
motivating questions and key results requires minimal economics background. We emphasize that
AMD has several other thriving aspects, including: revenue-maximization with worst-case guar-
antees, and related algorithmic pricing problems (surveyed in [76]); revenue guarantees and cost-
sharing mechanism design, with strong connections to the primal-dual method (see [82, 83, 106]);
online mechanism design, in which participants arrive and depart over time (surveyed in [129]);
and new models and goals for Internet-suitable mechanism design, such as distributed mechanisms
(see [62, 63]), mechanisms restricted to use little or no payments [77, 101, 107, 148], and novel
notions of incentive-compatibility (e.g. [101]).

2Valuations are usually modeled as a “black box” that supports various queries, or via a compact representation
of size polynomial in m. An “efficient algorithm” in this context has running time polynomial in both n and m.
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3 Quantifying Inefficiency and the Price of Anarchy

The truthful mechanisms studied in Section 2 are strategically degenerate in that the best course
of action of a player (i.e., truthtelling) does not depend on the actions taken by the others. This
was possible because a designer was assumed to have tremendous control over the game being
played. Strategic games that occur “in the wild” are rarely so well behaved. Even in a design
context, when the designer cannot directly dictate the allocation of resources (such as traffic rates
or routing paths in a large network), dependencies between different players’ optimal courses of
action are generally unavoidable, and these dependencies usually preclude exact optimization of
standard objective functions. This harsh reality motivates adopting an equilibrium concept — a
rigorous proposal for the expected outcome(s) of a game with self-interested participants — and
an approximation measure that quantifies the inefficiency of a game’s equilibria, to address the
following basic question:

(Q2) when, and in what senses, are game-theoretic equilibria guaranteed to approximately optimize
natural objective functions?

Such a guarantee implies that the benefit of imposing additional control over the system is small,
and is particularly reassuring when implementing an optimal solution is infeasible (as in a typical
Internet application).

We only address question (Q2) for the most popular modeling choices (the price of anarchy
of Nash equilibria) and the most well-studied application area (routing games). The end of the
section provides pointers to some of the many other results in the area.

Routing with Congestion. General tight bounds on the inefficiency of equilibria were first
proved in a model of “selfish routing” [141]. The model is originally from [20, 163] and is thoroughly
discussed in [136]; the price of anarchy was originally suggested in [91] for a scheduling model, results
on which are surveyed in [158].

Consider a directed multicommodity flow network — a directed graph with fixed flow rates
between given source-sink vertex pairs — in which selfish users choose paths to minimize individual
cost. Edge costs are congestion-dependent, with ce(fe) denoting the per-unit cost incurred by flow
on edge e when there are fe units of such flow. In an equilibrium, each selfish user with source si

and sink ti chooses an si-ti path P to minimize its cost cP (f) =
∑

e∈P ce(fe), given the routing
selections of the other users. Such games are strategically non-trivial in that the routing decision
of one user can alter the optimal path for another.

To keep things simple, assume that each selfish user controls a negligible fraction of the overall
traffic, and that all edge cost functions are continuous and non-decreasing. Equilibrium flows are
then, by definition, those on which all flow is routed on shortest paths, given the congestion. That
is, a path carries flow only if it minimizes cP (f) over all paths P with the same source and sink —
if a path violated this condition, some of its selfish users would switch to a cheaper one. In every
network, there is at least one equilibrium flow, and all such flows have equal total cost [20].

For example, in a “Pigou-like network” (named after [130]), r units of selfish users decide
between parallel edges e1 and e2 connecting a source s to a sink t. Suppose the second edge
has some cost function c2(·), and the first edge has a constant cost function c1 everywhere equal
to c2(r). Such networks are strategically trivial, just like the simple mechanisms of Section 2: the
second edge’s cost is never larger than that of the first, even when it is fully congested. For this
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reason, routing all flow on the second edge is an equilibrium. This equilibrium in generally not a
minimum-cost flow. For example, if r = 1 and c2(x) = x, the equilibrium flow has cost 1, while
splitting the traffic equally between the two edges yields an (optimal) flow with cost 3/4. The latter
flow is not an equilibrium because of a “congestion externality”: a selfish network user routed on
the first edge would switch to the second edge, indifferent to the fact that this switch (slightly)
increases the cost incurred by a large portion of the population.

The price of anarchy (POA) of a selfish routing network is the ratio of the costs of an equi-
librium and an optimal flow — 4/3 in the example above. The closer the POA is to 1, the lesser
the consequences of selfish behavior. Simple exploration of Pigou-like networks suggests that the
POA is governed by the “degree of nonlinearity” of the cost function c2; in particular, the POA can
be arbitrarily large in Pigou-like networks with unrestricted cost functions. A key result formal-
izes and extends this intuition to arbitrary multicommodity networks: among all multicommodity
networks with cost functions lying in a set C (e.g., bounded-degree polynomials with nonnegative
coefficients), the largest-possible POA is already achieved in Pigou-like networks [135]. Conceptu-
ally, complex topologies do not amplify the worst-case POA. Technically, this reduction permits the
easy calculation of tight bounds on the worst-case POA for most interesting sets C of cost functions.
For example, the POA of every multicommodity selfish routing network with affine cost functions
(of the form ce(fe) = aefe + be for ae, be ≥ 0) is at most 4/3, with a matching lower bound provided
by the simple example above. See [138, 139] for recent surveys detailing these and related results.

While there is no explicit design aspect to these POA bounds, they justify nicely a common
rule of thumb used in real-life network design and management: overprovisioning networks with
extra capacity ensures good performance. This postulate was first formalized mathematically and
proved in [141]. Here we provide a conceptually similar but technically different result, which is a
special case of the POA bounds in [135] (see also [136, §3.6]). Suppose every edge e of a network
has a capacity ue and a corresponding cost function ce(fe) = 1/(ue − fe). (If fe ≥ ue, we interpret
the cost as infinite.) This is the standard M/M/1 queueing delay function with service rate ue, a
common model in the networking literature (e.g. [21]). We say the network is β-overprovisioned
for β ∈ (0, 1) if, at equilibrium, at least a β fraction of each edge’s capacity remains unused. The
following tight bound on the POA holds for such networks.

Theorem 3 (Consequence of [135]) The POA of a β-overprovisioned network is at most

1
2

(
1 +

1√
β

)
.

Thus even 10% extra capacity reduces the worst-case price of anarchy of selfish routing to roughly 2.

Designing for Good Equilibria. In the same spirit as mechanism design and our prescriptive
interpretation of Theorem 3, inefficiency measures such as the POA can inform how to design
systems with good equilibria. Two variants of this idea have been explored in a number of different
models: improving the POA of a given game (see [139] for a survey of selfish routing examples),
and designing a family of games to minimize the worst-case POA. We focus on the latter idea, first
proposed in [37], where a number open issues remain. See [84, 143] for surveys of other work on
this important topic.

We focus on the network cost-allocation model of [32], which was motivated by the network
formation games of [6] (see [137, 154] for relevant surveys). As in a selfish routing network, each
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player selects a path in a multicommodity network to minimize its incurred cost. We now assume
that each player controls a single (non-negligible) unit of flow and uses a single path to route it. The
other key difference between the two models is the cost structure. If fe units of flow use an edge e
of a selfish routing network, this creates total cost fe · ce(fe) which is distributed evenly among the
edges’ users, for a per-unit cost of ce(fe). In a network cost-allocation game, each edge e has a fixed
price pe for being used by one or more players — the cost of installing infrastructure or leasing a
large fixed amount of bandwidth, say — that must be somehow distributed among the edges’ users.
The average per-player cost of an edge is thus decreasing with the number of users, giving players
an incentive to cooperate via shared paths. The cost of an outcome (a choice of path per player) is
the sum of the prices of the used edges, with the optimal outcome corresponding to the minimum-
cost way of connecting all of the players’ source-sink pairs, a Steiner connectivity problem. An
obvious question is: how should we allocates costs to players to minimize the worst-case equilibrium
efficiency loss over all networks? This cost-allocation design decision does not affect the underlying
optimization problem, but it fundamentally determines the players’ incentives, and hence the Nash
equilibria, in the resulting path selection game.

For example, Shapley cost-sharing dictates sharing each edge cost equally among its users. So
if k players choose paths P1, . . . , Pk, the cost incurred by the ith player is

∑
e∈Pi

(pe/fe), where fe is
the number of players choosing a path including e. At a (pure-strategy) Nash equilibrium, no player
can switch paths to strictly decrease its cost, given the paths selected by the other players. Shapley
cost-sharing leads to at least one equilibrium in every induced network cost-allocation game [6], and
generally to multiple equilibria. For example, in a network of parallel links, all with costs strictly
between 1 and k, every link corresponds to a different Nash equilibrium: if all players use a link
with price p, each player pays only p/k < 1, and a unilateral deviation to a different link would cost
more than this. The POA is traditionally defined by the worst equilibrium [91], and this example
yields a linear lower bound for the worst-case POA of Shapley cost-sharing (and there is an easy
matching upper bound). Can we do better?

The answer is different for undirected and directed networks. An alternative to Shapley cost-
sharing is ordered cost-sharing, a simple priority scheme: order the players arbitrarily, with the
first user of an edge (according to this order) paying its full cost. Up to tie-breaking, there is
a unique Nash equilibrium under ordered cost-sharing: the first player chooses a shortest path
between its source and sink, the second player chooses a shortest path given the edges already paid
for by the first player, and so on. Indeed, the equilibria induced by ordered cost-sharing are in
one-to-one correspondence with the possible outputs of well-studied greedy online algorithms for
Steiner connectivity problems [13, 80]. This correspondence implies that, in undirected networks,
ordered cost-sharing has exponentially better worst-case POA than Shapley cost-sharing. There is
also a matching lower bound.

Theorem 4 ([32]) In undirected cost-allocation games, ordered cost-sharing minimizes the worst-
case POA (up to constant factors).

The proof of Theorem 4 is highly non-trivial, and hinges on a complete classification of the cost-
sharing methods that are guaranteed to induce at least one Nash equilibrium in every network.
These turn out to be precisely the “concatenations” of weighted Shapley values (in the sense
of [87]); Shapley cost-sharing is the special case of uniform weights and no concatenation, while
ordered cost-sharing is the k-fold concatenation of the trivial one-player Shapley value. As proved
in [32], no method of this type can outperform ordered cost-sharing by more than a constant factor.
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In directed networks, it is easy to show that all cost-sharing methods, including ordered ones,
have linear worst-case POA and thus do not improve upon Shapley cost-sharing. We can refine this
comparison by analyzing the ratio of the cost of a best (instead of the worst) Nash equilibrium and
that of an optimal solution, a quantity known as the price of stability (POS). The worst-case POS of
Shapley cost-sharing in directed networks is precisely the kth Harmonic number 1+ 1

2 + 1
3 +· · ·+ 1

k ≈
ln k [6]. A consequence of the classification in [32] discussed above is that no other cost-sharing
method has superior worst-case POS (or POA).

Theorem 5 ([32]) In directed cost-allocation games, Shapley cost-sharing minimizes the worst-
case POS and POA.

Further Aspects of Quantifying Inefficiency. We have barely scratched the surface of recent
work on equilibrium efficiency analyses. See [90, 138] for a partial overview of other models of
routing games — following [134, 142], much of this work is couched in the more abstract language
of “congestion games”. See [18, 73, 84, 111, 123, 139, 154, 158] for efficiency analyses in some
other application domains. Currently active research topics that apply approximation measures to
game-theoretic concepts include: efficiency analyses of equilibrium concepts other than best-case
and worst-case Nash equilibria [5, 11, 30, 31, 36, 39, 54]; efficiency guarantees in models that allow
altruistic and/or malicious participants, rather than only self-interested ones [16, 33, 88]; and novel
uses of worst-case approximation to quantify different phenomena in games [15, 60, 66, 78, 149].

As already noted, one important emerging trend in the area is problems of designing games
with efficient equilibria. A second is to prove POA-type bounds under increasingly weak assump-
tions on the rationality of participants. Recall that in Section 2, our only assumption was that
participants will make use of a “foolproof” strategy (one that dominates all others), should one be
available. This section implicitly assumed that selfish participants can reach a Nash equilibrium
of a game without such foolproof strategies, presumably through repeated experimentation. This
much stronger assumption has been addressed in two different ways in the recent literature. The
first is to formally justify it by positing natural experimentation strategies and proving that they
quickly reach a (possibly approximate) equilibrium; see [14, 23, 35, 57, 65] for a sampling of such
results. The second is to prove POA-like guarantees on system performance that apply even when
such experimentation strategies fail to converge to an equilibrium. Remarkably, such bounds are
possible in interesting classes of games, including the selfish routing networks discussed in this
section. See [70, 110] and [24] for two different formalizations of this approach.

4 Complexity of Equilibrium Computation

Equilibrium concepts such as the Nash equilibrium obviously play a starring role in game theory
and microeconomics. If nothing else, a notion of equilibrium describes outcomes that, once reached,
persist under some model of individual behavior. In engineering applications we generally demand a
stronger interpretation of an equilibrium, as a credible prediction of the long-run state of the system.
But none of the standard equilibrium notions or the corresponding proofs of existence suggest how
to arrive at an equilibrium with a reasonable amount of effort. The Pavlovian response of any
theoretical computer scientist would be to pose the following queries.

(Q3) When can the participants of a game quickly converge to an equilibrium? More modestly,
when can a centralized algorithm quickly compute an equilibrium?
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These questions are important for two reasons. Algorithms for equilibrium computation can be
useful practically, for example in game-playing (e.g. [69]) and for multi-agent reasoning (see [151]
for an introduction). Second, resolving the complexity of computing an equilibrium concept has
economic implications: a polynomial-time algorithm for computing an equilibrium is a crucial step
toward establishing its credibility, while an intractability result casts doubt on its predictive power
(a type of critique dating back at least 50 years [131]).

There has been a frenzy of recent work on these questions, for many different fundamental equi-
librium concepts. Perhaps the most celebrated results in the area concern the PPAD-completeness
of computing mixed-strategy Nash equilibria in finite games with two or more players [34, 47]. To
briefly convey the spirit of the area with a minimum of technical fuss, we instead discuss the com-
plexity of converging to and computing pure-strategy Nash equilibria in variants of the routing
games studied in Section 3. The end of the section mentions the key differences between the two
settings, and also provides references on results on other central equilibrium computation problems
(such as computing market and correlated equilibria).

Pure Equilibria in Network Congestion Games. Recall the selfish routing networks of Sec-
tion 3. The atomic variant is similar to the cost allocation games of that section, in that each of k
players controls a non-negligible fraction of the overall traffic (say one unit each) and routes it on
a single path. Each edge cost function ce : {1, 2, . . . , k} → R+, describing the per-player cost along
an edge as a function of its number of users, is non-decreasing. Similarly to cost allocation games,
an outcome (P1, . . . , Pk) is a (pure-strategy) Nash equilibrium (PNE) if each player simultaneously
chooses a best response: a path with minimum-possible cost

∑
e ce(fe), given the paths chosen by

the other players.
Best-response dynamics (BRD) is a simple model of experimentation by players over time:

while the current outcome is not a PNE, choose an arbitrary player that is not using a best
response, and update its path to a best response. The update of one player usually changes the
best responses of the others; for this reason, BRD fails to converge in many games. In an atomic
selfish routing network, however, every iteration of BRD strictly decreases the potential function
Φ(P1, . . . , Pk) =

∑
e∈E

∑fe

i=1 ce(i), and thus BRD is guaranteed to terminate, necessarily at a
PNE [112, 134]. Does convergence require polynomial or exponential time? Can we compute a
PNE of such a game by other means in polynomial time?

TFNP and PLS. The problem of computing a PNE of an atomic selfish routing game is a
member of TFNP (“total functional NP”), the intriguing class of search problems for which all
instances have a short and efficiently verifiable witness [105]. Intuitively, all well-formed instances
have a solution (in our case, a PNE); the only issue is finding one in polynomial time.

Assume for the moment that the problem lies outside P ; how would we amass evidence for
this fact? We can’t expect to prove that a TFNP problem is NP -hard in a meaningful sense; a
short argument shows that such a reduction would imply NP = coNP [105]. We also can’t expect
to show that it is TFNP -complete, since TFNP is a “semantic class” — informally, there is no
apparent way to efficiently check membership in TFNP , given (say) a Turing machine description
of an NP search problem — and thus unlikely to contain complete problems (see [85, 152]). Our
best option is therefore to define a “syntactic” subclass of TFNP that contains as many problems
as possible (including computing PNE), while admitting complete problems.

We follow [140] in motivating the appropriate subclass. View the definition of NP (existence
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of short witnesses and an efficient verifier) as the minimal constraint ensuring that a problem
is solvable by brute-force search, enumerating all possible witnesses, using polynomial time per
iteration. Computing a PNE of an atomic selfish routing game appears to be easier than NP -hard
problems because there is a guided search algorithm (namely BRD) that is guaranteed to find a
legitimate witness. What are the minimal ingredients that guarantee that a problem admits an
analogous guided search procedure? This question was answered twenty years ago in the context
of local search algorithms, by the definition of the class PLS (for “polynomial local search”) [86].
A PLS problem is described by three polynomial-time algorithms: one to accept an instance and
output an initial candidate solution; one to evaluate the objective function value of a candidate
solution; and one that either verifies local optimality (for some local neighborhood) or else returns
a neighboring solution with strictly better objective function value. To “solve” a PLS problem
means to compute a local optimum. For example, computing a PNE of an atomic selfish routing
game can be cast as a PLS problem by adopting the potential function as an objective, and defining
two outcomes to be neighbors if all but one player choose the same path in both. Local minima
then correspond to the PNE of the game.

Every PLS problem can be solved in exponential time via local search, although this is not
always the fastest method. For example, in single-commodity atomic selfish routing games, where
all players have the same source and sink, a PNE can be computed in polynomial time using
minimum-cost flow [59] despite the fact that BRD (i.e., local search) can require an exponential
number of iterations [1].

If P = PLS, then given only an abstract description of a PLS problem in terms of the three
algorithms above, there is a generic, problem-independent way of finding a “shortcut” to a locally
optimal solution, exponentially faster than rote traversal of the path suggested by the guided search
algorithm. For both this conceptual reason and its inclusion of many well-known and apparently
difficult problems, it is generally believed that P 6= PLS. PLS-hardness should therefore be viewed
as strong evidence that a TFNP search problem is not solvable in polynomial time.

PLS can be phrased as a syntactic class and it therefore admits a generic complete problem [86].
The analog of Cook’s Theorem — a reduction from the generic complete problem to a concrete
one — states that a particular local search problem for Boolean circuits called “Circuit Flip” is
PLS-complete [86]. Circuit Flip has been used to establish the PLS-completeness of many other
problems (e.g. [147, 164]). Computing a PNE of a (multicommodity) atomic selfish routing network
is also hard in this sense.

Theorem 6 ([59]) The problem of computing a PNE of an atomic selfish routing game is PLS-
complete.

See also [1] for an alternative proof, and [1, 2, 59, 153] for further PLS-completeness results for
computing PNE.

The reductions in PLS-completeness results such as Theorem 6 nearly always give unconditional
exponential lower bounds on the worst-case running time of the generic local search algorithm
(BRD, in the present context). Even if P = PLS, the following corollary holds.

Corollary 7 ([59]) There is a constant c > 0 such that for arbitrarily large n, there is an n-player
atomic selfish routing network and an initial outcome from which BRD requires 2cn iterations to
converge to a PNE, no matter how players are selected in each step of BRD.

12



Mixed-Strategy Nash Equilibria and PPAD. A mixed strategy is a probability distribution
over the pure strategies of a player. In a mixed-strategy Nash equilibrium (MNE), every player
simultaneously chooses a mixed strategy maximizing its expected utility, given those chosen by
the others. Mixed strategies are necessary to establish the existence of Nash equilibria in arbitrary
finite games [116], but they are not without conceptual controversy (see e.g. [122, §3.2]). Regardless,
computing an MNE of a finite game is clearly a central equilibrium computation problem.

We focus on the two-player (“bimatrix”) case, where the input is two m × n payoff matrices
(one for each player) with integer entries.3 There is an exponential-time algorithm for computing
an MNE in bimatrix games, which enumerates over pairs of supports for the two players and solves
a linear system for each to check for a feasible solution (see e.g. [125, 140, 151]). There is a less
obvious (but still exponential-time [146]) “guided search” algorithm called the Lemke-Howson (LH)
algorithm [100]; see [160] for a careful exposition. The LH algorithm is a path-following algorithm
in the spirit of local search, but is not guided by an objective or potential function and thus does
not obviously prove that computing a MNE of a bimatrix game is in PLS.

A related but apparently different subclass of TFNP , called PPAD (for “polynomial parity
argument, directed version”), was defined in [124] to capture the complexity of this and related
problems (mostly from combinatorial topology, such as computing approximate Brouwer fixed
points). Its formal definition parallels that of PLS, with a PPAD problem consisting of the
minimal ingredients necessary to execute a LH-like search procedure (again easily phrased as three
polynomial-time algorithms). PPAD-hardness is viewed as a comparable negative result to PLS-
hardness (for the same reasons). Computing an MNE of a bimatrix game is hard in this sense.

Theorem 8 ([34, 47]) The problem of computing an MNE of a bimatrix game is PPAD-complete.

This hardness result extends to computing a natural notion of an “ε-approximate MNE” for values
of ε as large as inverse polynomial [34], thus ruling out an FPTAS for approximating an MNE (un-
less P = PPAD). Unlike PLS-completeness results, PPAD-completeness results are not known
to have immediate unconditional consequences in the spirit of Corollary 7. Nevertheless, an expo-
nential lower bound on the convergence time of certain dynamics to an MNE was recently proved
in [75]. See also [125, 140] for pointers on positive and negative results about computing MNE in
structured and random finite games.

The proof of Theorem 8 is necessarily intricate because it is a “Cook’s Theorem for PPAD”
— all previously known PPAD-complete problems [124] have the flavor of “generic” complete
problems. For example, instances of PPAD-complete fixed-point problems include an encoding of
a polynomial-time algorithm that computes the values of some continuous function restricted to a
subdivided simplex. Any reduction from a known PPAD-complete problem to computing MNE
must therefore explicitly encode arbitrary polynomial-time computation in terms of a bimatrix
game. Many of the first “concrete” PLS-complete problems required similarly intricate reductions
(e.g. [147]). See [125] for a nice high-level survey of the proof of Theorem 8 and the sequence of
results that led to it.

Further Aspects of Equilibrium Computation. Another genre of equilibrium computation
problems bustling with activity is market or price equilibria — prices for goods at which decentral-
ized and selfish exchange “clears the market”, yielding a Pareto efficient allocation of the goods.

3With three or more players, the problem appears to be harder [56]. Enumerating all and optimizing over the
MNE of a bimatrix game are also harder problems [44, 68].
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As with mixed Nash equilibria, market equilibria exist under weak conditions [10] but their effi-
cient computation is largely open. The last five years have seen a number of new polynomial-time
algorithms (surveyed in [156] and [41]) and a few scattered hardness results (see [41]), but many
basic questions remain unresolved (see [156]).

Back in finite games, equilibrium computation in extensive-form games — specified by a game
tree in which paths represent sequences of actions by the various players and by nature, see e.g. [161]
— was studied early on by the AI community (surveyed in [89]) and more recently in the theoretical
computer science literature (e.g. [108]). Equilibrium computation in the stochastic variants defined
in [43] are, along with some number-theoretic problems like factoring, among the most prominent
candidates for problems in (NP ∩ coNP ) \ P (see [85]).

Other equilibrium concepts in finite games have also been studied recently. For correlated equi-
libria [12], an equilibrium concept with fundamental connections to no-regret learning algorithms
(see [25]), sweeping positive algorithmic results are possible [126]. In repeated games, computing
a Nash equilibrium is polynomial-time solvable in two-player games [104] but PPAD-hard with
three or more players [28], despite the overwhelming number of equilibria guaranteed by the “folk
theorem” for such games.

5 Future Directions

The astonishing and accelerating rate of progress in algorithmic game theory, nourished by deep
connections with other areas of theoretical computer science and a consistent infusion of new
motivating applications, leaves no doubt that it will continue to flourish for many years to come.
There is presently a surplus of challenging open questions across all three of the areas surveyed in
Sections 2–4; we record a small handful to prove the point.

We first mention some concrete problems that are well known in the AGT community. A few
in AMD include: prove better upper or lower bounds on the achievable approximation guarantees
of polynomial-time implementable algorithms for combinatorial auctions (see [27] for a reasonably
current survey); characterize the multi-parameter domains for which affine maximizers are the only
implementable algorithms (see [127] for the latest developments); and develop some understanding
of the power of randomization in polynomial-time implementability (see [3] for an entry point).
Some personal favorites involving equilibrium efficiency analyses are: determine the POA in atomic
selfish routing networks with fractional routing and the POS in Shapley cost allocation games
(see [42] and [64], respectively, for partial results); develop a general analytical technique to extract
tight efficiency loss bounds from potential functions and/or variational inequalities (see [137]); and,
in the spirit of [32], identify how to distribute delays (via an appropriate queuing policy) to minimize
the worst-case POA in selfish routing networks. Central open questions in equilibrium computation
include the complexity of computing approximate mixed-strategy Nash equilibria (see [29, 103, 155]
for the state-of-the-art), the complexity of computing market equilibria with reasonably general
(concave) participant utility functions (see [156]), and the complexity of computing an equilibrium
in the stochastic games in NP ∩ coNP defined in [43] (see also [85]).

Speaking more informally and long-term, we expect that all areas of AGT will (and should)
grapple with appropriate models of agent behavior over the next several years. Some type of non-
worst-case behavioral assumptions are inevitable for systems with independent participants: all
of the results described in this survey, even the welfare guarantee of the simple Vickrey auction,
depend on such assumptions. AGT has minimized controversy thus far by adopting well-known

14



notions from traditional game theory, such as the Nash equilibrium. But if traditional game theory
applied “off the shelf” to contemporary computer science, there would be no need for AGT at all.
See [67] for a compelling argument — made over a decade ago but more appropriate than ever
— about why computer scientists need to completely rethink standard models of rationality and
equilibrium concepts.

Behavioral assumptions are essential to address modern applications, yet are largely foreign to
the mainstream “STOC/FOCS” mentality and its emphasis on minimal assumptions and worst-case
analysis. Can we retain this unquestionably useful and well-motivated bias while expanding our
field’s reach? Of course: shining examples of worst-case guarantees coupled with novel behavioral
models have already begun to sprout in the AGT literature. For example: mechanism implementa-
tion in undominated strategies [17] and in ex post collusion-proof Nash equilibrium [120]; the price
of total anarchy [24]; and the complexity of unit-recall games [58]. We expect that these are only
the vanguard of what promises to be a rich and relevant theory.
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[92] A. Kovács. Tighter approximation bounds for LPT scheduling in two special cases. In CIAC ’06, pages
187–198.

[93] S. Lahaie, D. Pennock, A. Saberi, and R. Vohra. Sponsored search auctions. In Nisan et al. [119],
chapter 28.

[94] R. Lavi. Computationally efficient approximation mechanisms. In Nisan et al. [119], chapter 12, pages
301–329.

[95] R. Lavi, A. Mu’alem, and N. Nisan. Towards a characterization of truthful combinatorial auctions. In
FOCS ’03, pages 574–583.

[96] R. Lavi and C. Swamy. Truthful and near-optimal mechanism design via linear programming. In
FOCS ’05, pages 595–604.

[97] R. Lavi and C. Swamy. Truthful mechanism design for multi-dimensional scheduling via cycle mono-
tonicity. In EC ’07, pages 252–261.

[98] B. Lehmann, D. J. Lehmann, and N. Nisan. Combinatorial auctions with decreasing marginal utilities.
In EC ’01, pages 18–28.

[99] D. Lehmann, L. I. O’Callaghan, and Y. Shoham. Truth revelation in approximately efficient combina-
torial auctions. Journal of the ACM, 49(5):577–602, 2002.

[100] C. E. Lemke and J. T. Howson, Jr. Equilibrium points of bimatrix games. SIAM Journal, 12(2):413–
423, 1964.

[101] H. Levin, M. Schapira, and A. Zohar. Interdomain routing and games. In STOC ’08, pages 57–66.

[102] N. Linial. Game-theoretic aspects of computing. In R. J. Aumann and S. Hart, editors, Handbook of
Game Theory with Economic Applications, volume 2, chapter 38, pages 1339–1395. 1994.

[103] R. J. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies. In EC ’03,
pages 36–41.

[104] M. L. Littman and P. Stone. A polynomial-time Nash equilibrium algorithm for repeated games.
Decision Support Systems, 39(1):55–66, 2005.

[105] N. Megiddo and C. H. Papadimitriou. On total functions, existence theorems and computational
complexity. Theoretical Computer Science, 81(2):317–324, 1991.

19



[106] A. Mehta, T. Roughgarden, and M. Sundararajan. Beyond Moulin mechanisms. In EC ’07, pages
1–10.

[107] M. Mihail, C. H. Papadimitriou, and A. Saberi. On certain connectivity properties of the Internet
topology. Journal of Computer and System Sciences, 72(2):239–251, 2006.

[108] P. B. Miltersen and T. B. Sørensen. Fast algorithms for finding proper strategies in game trees. In
SODA ’08, pages 874–883.

[109] V. S. Mirrokni, M. Schapira, and J. Vondrak. Tight information-theoretic lower bounds for combina-
torial auctions. In EC ’08.

[110] V. S. Mirrokni and A. Vetta. Convergence issues in competitive games. In APPROX ’04, pages
183–194.

[111] D. Monderer. Monotonicity and implementability. In EC ’08.

[112] D. Monderer and L. S. Shapley. Potential games. Games and Economic Behavior, 14(1):124–143, 1996.

[113] D. Mookherjee and S. Reichelstein. Dominant strategy implementation of Bayesian incentive compat-
ible allocation rules. Journal of Economic Theory, 56(2):378–399, 1992.

[114] A. Mu’alem and N. Nisan. Truthful approximation mechanisms for restricted combinatorial auctions.
In AAAI ’02, pages 379–384.

[115] A. Mu’alem and M. Schapira. Mechanism design over discrete domains. In EC ’08.

[116] J. F. Nash. Equilibrium points in N -person games. Proceedings of the National Academy of Science,
36(1):48–49, 1950.

[117] N. Nisan. Introduction to mechanism design (for computer scientists). In Nisan et al. [119], chapter 9,
pages 209–241.

[118] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior, 35(1/2):166–
196, 2001.
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