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DECOMPOSITIONS OF TRIANGLE-DENSE GRAPHS*

RISHI GUPTAT, TIM ROUGHGARDENT, AND C. SESHADHRI?

Abstract. High triangle density—the graph property stating that a constant fraction of two-hop
paths belongs to a triangle—is a common signature of social networks. This paper studies triangle-
dense graphs from a structural perspective. We prove constructively that significant portions of a
triangle-dense graph are contained in a disjoint union of dense, radius 2 subgraphs. This result
quantifies the extent to which triangle-dense graphs resemble unions of cliques. We also show that
our algorithm recovers planted clusterings in approximation-stable k-median instances.
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1. Introduction. Can the special structure possessed by social networks be
exploited algorithmically? Answering this question requires a formal definition of
“social network structure.” FExtensive work on this topic has generated countless
proposals but little consensus (see, e.g., [CF06]). The most often mentioned (and
arguably most validated) statistical properties of social networks include heavy-tailed
degree distributions [BA99, BrKu+00, FFF99], a high density of triangles [WS98,
SaCaWiZal0, UKBM11] and other dense subgraphs or “communities” [For10, GN02,
New03, New06, LLDMO08], and low diameter and the small world property [Kle0Oa,
Kle00Ob, Kle02, New01].

Much of the recent mathematical work on social networks has focused on the
important goal of developing generative models that produce random networks with
many of the above statistical properties. Well-known examples of such models in-
clude preferential attachment [BA99] and related copying models [KuRa+00], Kro-
necker graphs [CZF04, LeChKIFal0], and the Chung-Lu random graph model [CL02a,
CLO02b]. A generative model articulates a hypothesis about what “real-world” social
networks look like and is directly useful for generating synthetic data. Once a par-
ticular generative model of social networks is adopted, a natural goal is to design
algorithms tailored to perform well on the instances generated by the model. It can
also be used as a proxy to study the effect of random processes (like edge deletions)
on a network. Examples of such results include [AJB00, LiAm+08, MS10].

This paper pursues a different approach. In lieu of adopting a particular gen-
erative model for social networks, we ask, Is there a combinatorial assumption weak
enough to hold in every “reasonable” model of social networks, yet strong enough to
permit useful structural and algorithmic results?
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Specifically, we seek structural results that apply to every reasonable model of
social networks, including those yet to be devised.

Triangle-dense graphs. We initiate the study of triangle-dense graphs. Let a
wedge be a two-hop path in an undirected graph.

DEFINITION 1 (triangle-dense graph). The triangle density of an undirected
graph G = (V,E) is 7(G) := 3t(G)/w(G), where t(G) is the number of triangles
in G and w(G) is the number of wedges in G (conventionally, 7(G) =0 if w(G) =0).
The class of e-triangle-dense graphs consists of the graphs G with 7(G) > e.

Since every triangle of a graph contains three wedges, and no two triangles share
a wedge, the triangle density of a graph is between 0 and 1. In the social sciences,
triangle density is usually called the transitivity of a graph [WF94] and also the (global)
clustering coefficient. We use the term triangle density because “transitivity” already
has strong connotations in graph theory.

As an example, the triangle density of a graph is 1 if and only if it is the union
of cliques. The triangle density of an Erdés—Renyi graph, drawn from G(n,p), is
concentrated around p. Thus, only dense Erdos—Renyi graphs have constant tri-
angle density (as n — 00). Social networks are generally sparse and yet have re-
markably high triangle density; the Facebook graph, for instance, has triangle den-
sity 0.16 [UKBMT11]. Large triangle density—meaning much higher that what the edge
density would suggest—is perhaps the least controversial signature of social networks
(see related work below).

The class of e-triangle-dense graphs becomes quite diverse as soon as € is bounded
below 1. For example, the complete tripartite graph is triangle dense with € =~ %
Every graph obtained from a bounded-degree graph by replacing each vertex with a
triangle is triangle dense, where € is a constant that depends on the maximum degree.
Adding a clique on n'/3 vertices to a bounded-degree n-vertex graph produces a
triangle-dense graph, where again the constant ¢ depends on the maximum degree.
We give a litany of examples in section 4. Can there be interesting structural or
algorithmic results for this rich class of graphs?

Our results: A decomposition theorem. Our main decomposition theorem
quantifies the extent to which a graph with large triangle density resembles a union
of cliques. The next definition gives our notion of an “approximate union of cliques.”
We use G|s to denote the subgraph of a graph G induced by a subset S of vertices.
Also, the edge density of a graph G = (V, E) is |E|/('})).

DEFINITION 2 (tightly knit family). Let p > 0. A collection V1, Va,..., Vi of
disjoint sets of vertices of a graph G = (V, E) forms a p-tightly knit family if

o cach subgraph G|y, has both edge density and triangle density at least p,

e cach subgraph G|y, has radius at most 2.

When p is a constant (as the graph size tends to infinity), we often refer simply
to a tightly knit family. The “clusters” (i.e., the V;’s) of a tightly knit family are
dense in edges and in triangles. In the context of social networks, an abundance of
triangles is generally associated with meaningful social structure. There is no a priori
restriction on the number of clusters in a tightly knit family.

Our main decomposition theorem states that every graph with constant triangle
density contains a tightly knit family that captures a constant fraction of the graph’s
triangles (with the constants depending on the triangle density).

RESULT 1 (main decomposition theorem). There exists a polynomial f(e) = €©
for constant ¢ > 0 such that for every e-triangle-dense graph G, there exists an f(€)-
tightly knit family that contains an f(€) fraction of the triangles of G.
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We emphasize that Result 1 requires only that the input graph G has constant
triangle density—beyond this property, it could be sparse or dense, low- or high-
diameter, and possess an arbitrary degree distribution. Graphs without constant
triangle density, such as sparse Erdos—Renyi random graphs, do not generally admit
nontrivial tightly knit families (even if the triangle density requirement for each cluster
is dropped).

Our proof of Result 1 is constructive. Using suitable data structures, the resulting
algorithm can be implemented to run in time proportional to the number of wedges of
the graph; a working C++ implementation is available from the authors. This running
time is reasonable for many social networks. Our preliminary implementation of the
algorithm requires a few minutes on a commodity laptop to decompose networks with
millions of edges.

Note that Result1 is nontrivial only because we require that the tightly knit
family preserve the “interesting social information” of the original graph, in the form
of the graph’s triangles. Extracting a single low-diameter cluster rich in edges and
triangles is easy—large triangle density implies that typical vertex neighborhoods
have these properties. But extracting such a cluster carelessly can do more harm
than good, destroying many triangles that only partially intersect the cluster. Our
proof of Result 1 shows how to repeatedly extract low-diameter dense clusters while
preserving at least a constant fraction of the triangles of the original graph.

A graph with constant triangle density need not contain a tightly knit family that
contains a constant fraction of the graph’s edges; see the examples in section 4. The
culprit is that triangle density is a “global” condition and does not guarantee good
local triangle density everywhere, allowing room for a large number of edges that are
intuitively spurious. Under the stronger condition of constant local triangle density,
however, we can compute a tightly knit family with a stronger guarantee.

DEFINITION 3 (Jaccard similarity). The Jaccard similarity of an edge e = (i, j) of
a graph G = (V, E) is the fraction of vertices in the neighborhood of e that participate
in triangles:

[N(@) A N(G)|
IN@) UNG)\ {53

(1) Je =

where N(z) denotes the neighbors of a vertex x in G.

DEFINITION 4 (everywhere triangle dense). A graph is everywhere e-triangle
dense if J. > € for every edge e, and there are no isolated vertices.

Though useful conceptually, we would not expect graphs in practice to be every-
where triangle dense for a large value of e. The following weaker definition permits
graphs that have a small fraction of edges with low Jaccard similarity.

DEFINITION 5 (u,e-triangle dense). A graph is u,e-triangle dense if J. > € for
at least a p fraction of the edges e.

We informally refer to graphs with constant € and high enough p as mostly ev-
erywhere triangle dense. An everywhere e-triangle-dense graph is pu, e-triangle dense
for every p. An everywhere e-triangle-dense graph is also e-triangle dense.

The following is proved as Theorem 15.

RESULT 2 (stronger decomposition theorem). There are polynomials pu(e) = €
and f(e) = €2 with ¢1,ca > 0 such that for every u(e), e-triangle-dense graph G,
there exists an f(€)-tightly-knit family that contains an f(€)-fraction of the edges and
triangles of G.
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Applications to planted cluster models. We give an algorithmic application of our
decomposition in section 5, where the tightly knit family produced by our algorithm
is meaningful in its own right. We consider the approximation-stable metric k-median
instances introduced by Balcan, Blum, and Gupta [BBG13]. By definition, every so-
lution of an approximation-stable instance that has near-optimal objective function
value is structurally similar to the optimal solution. They reduce their problem to
clustering a certain graph with “planted” clusters corresponding to the optimal so-
lution. We prove that our algorithm recovers a close approximation to the planted
clusters, matching their guarantee.

1.1. Discussion.

Structural assumptions versus generative models. Pursuing structural results and
algorithmic guarantees that assume only a combinatorial condition (namely, constant
triangle density), rather than a particular model of social networks, has clear advan-
tages and disadvantages. The class of graphs generated by a specific model will gen-
erally permit stronger structural and algorithmic guarantees than the class of graphs
that share a single statistical property. On the other hand, algorithms and results
tailored to a single model can lack robustness: they might not be meaningful if reality
differs from the model and are less likely to translate across different application do-
mains that require different models. Our results for triangle-dense graphs—meaning
graphs with constant triangle density—are relevant for every model of social networks
that generates such graphs with high probability, and we expect that all future social
network models will have this property. And of course, our results can be used in any
application domain that concerns triangle-dense graphs, whether motivated by social
networks or not.

Beyond generality and robustness, a second reason to prefer a combinatorial as-
sumption to a generative model is that the assumption can be easily verified for a
given data set. Since computing the triangle density of a network is a well-studied
problem, both theoretically and practically (see [SPK13] and the references therein),
the extent to which a network meets the triangle density assumption can be quan-
tified. By contrast, it is not clear how to argue that a network is a typical instance
from a generative model, other than by verifying various statistical properties (such
as triangle density). This difficulty of verification is amplified when there are multi-
ple generative models vying for prominence, as is currently the case with social and
information networks (e.g., [CF06]).

Given the prevalence of triangles in social networks, it is considered an important
property for generative models to match [CF06]. Comparative studies of such gener-
ative models explicitly compared the clustering coefficients to real data and showed
that classic models like the preferential attachment model, the copying model, and the
stochastic kronecker model do not generate enough triangles [SaCaWiZal0, PSK12].
Recent models have explicitly tried to remedy this by creating many triangles, ex-
amples being the forest fire, block two-level Erdés—Rényi, and transitive Chung—Lu
models [LKF07, SKP12, IFMN12].

Why triangle density? Social networks possess a number of statistical signa-
tures, as discussed above. Why single out triangle density? First, there is tremen-
dous empirical support for large triangle density in social networks. This property
has been studied for decades in the social sciences [HL70, Col88, Bur04, Fau06,
FWVDCI10], and recently there have been numerous large-scale studies on online
social networks [SaCaWiZal0, UKBM11, SPK13]. Second, in light of this empirical
evidence, generative models for social and information networks are explicitly designed
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to produce networks with high triangle density [WS98, CF06, SaCaWiZal0, VB12].
Third, the assumption of constant triangle density seems to impose more exploitable
structure than the other most widely accepted properties of social and informa-
tion networks. For example, the property of having small diameter indicates little
about the structure of a network—every network can be rendered small-diameter by
adding one extra vertex connected to all other vertices. Similarly, merely assuming
a power-law degree distribution does not seem to impose significant restrictions on
a graph [FPP06]. For example, the Chung-Lu model [CL02a] generates power-law
graphs with no natural decompositions. While constant triangle density is not a
strong enough assumption to exclude all “obviously unrealistic graphs,” it neverthe-
less enables nontrivial decomposition results. Finally, we freely admit that imposing
one or more combinatorial conditions other than triangle density could lead to equally
interesting results, and we welcome future work along such lines. For example, recent
work by Ugander, Backstrom, and Kleinberg [UBK13] suggests that constraining the
frequencies of additional small subgraphs could produce a refined model of social and
information networks.

Why tightly knit families? We have intentionally highlighted the existence and
computation of tightly knit families in triangle dense graphs, rather than the (approx-
imate) solution of any particular computational problem on such graphs. Our main
structural result quantifies the extent to which we can “visualize” a triangle-dense
graph as, approximately, a union of cliques. This is a familiar strategy for under-
standing restricted graph classes, analogous to using separator theorems to make
precise how planar graphs resemble grids [LT79], tree decompositions to quantify
how bounded-treewidth graphs resemble trees [RS86], and the regularity lemma to
describe how dense graphs are approximately composed of “random-like” bipartite
graphs [Sze78]. Such structural results provide a flexible foundation for future algo-
rithmic applications. We offer a specific application to recovering planted clusterings
and leave as future work the design of more applications.

2. An intuitive overview. We give an intuitive description of our proof. Our
approach to finding a tightly knit family is an iterative extraction procedure. We find
a single member of the family, remove this set from the graph (called the eztraction),
and repeat. Let us start with an everywhere e-triangle-dense graph G and try to
extract a single set S. It is easy to check that every vertex neighborhood is dense
and has many triangles and would qualify as a set in a tightly knit family. But for
vertex i, there may be many vertices outside N (i) (the neighborhood of i) that form
triangles with a single edge contained in N (). By extracting N (i), we could destroy
too many triangles. We give examples in section 4 where such a naive approach fails.

Here is a simple greedy fix to the procedure. We start by adding N (i) and ¢ to
the set S. If any vertex outside N(¢) forms many triangles with the edges in N (i),
we just add it to S. It is not clear that we solve our problem by adding these vertices
to S, since the extraction of S could still destroy many triangles. We prove that by
adding at most d; vertices (where d; is the degree of ¢) with the highest number of
triangles to N(i), this “destruction” can be bounded. In other words, G|s will have
a high density, obviously has radius 2 (from ¢), and will contain a constant fraction
of the triangles incident to S.

Naturally, we can simply iterate this procedure and hope to get the entire tightly
knit family. But there is a catch. We crucially needed the graph to be everywhere
e-triangle dense for the previous argument. After extracting .S, this need not hold. We
therefore employ a cleaning procedure that iteratively removes edges of low Jaccard
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similarity and produces an everywhere e-triangle-dense graph for the next extraction.
This procedure also destroys some triangles, but we can upper bound this number.
As an aside, removing low Jaccard similarity edges has been used for sparsifying
real-world graphs by Satuluri, Parthasarathy, and Ruan [SPR11].

When the algorithm starts with an arbitrary e-triangle-dense graph G, it first
cleans the graph to get an everywhere e-triangle-dense graph. We may lose many
edges during the initial cleaning, and this is inevitable, as examples in section 4 show.
In the end, this procedure constructs a tightly knit family containing a constant
fraction of the triangles of the original e-triangle-dense graph.

When G is everywhere or mostly everywhere e-triangle-dense, we can ensure that
the tightly knit family contains a constant fraction (depending on €) of the edges as
well. Our proof is a nontrivial charging argument. By assigning an appropriate weight
function to triangles and wedges, we can charge removed edges to removed triangles.
This (constructively) proves the existence of a tightly knit family with a constant
fraction of edges and triangles.

3. Extracting tightly knit families. In this section we walk through the proof
outlined in section 2 above. We first bound the losses from the cleaning procedure
in section 3.2. We then show how to extract a member of a tightly knit family from
a cleaned graph in section 3.3. We combine these two procedures in Theorem 13 of
section 3.4 to obtain a full tightly knit family from a triangle-dense graph. Finally,
Theorem 15 of section 3.5 shows that the procedure also preserves a constant fraction
of the edges in a mostly everywhere triangle-dense graph.

3.1. Preliminaries. We begin with some notation. Consider a graph G =
(V,E). We index vertices with i,j, k,... and say vertex ¢ has degree d;. We re-
peatedly deal with subgraphs H of G and use the ... (H) notation for the respective
quantities in H. So, ¢(H) denotes the number of triangles in H, d;(H) denotes the
degree of ¢ in H, and so on. Also, if S is a set of vertices, let G|s denote the induced
subgraph on G.

We conclude the preliminaries with a simple lemma on the properties of every-
where e-triangle-dense graphs.

LEMMA 6. If H is everywhere e-triangle dense, then d; > ed; for every edge
(i,7). Furthermore, N(i) is e-edge dense for every vertex i.

Proof. 1f d; > d; we are done. Otherwise

NGO NG) di—1 _d

(NO\GDONGN D] = 4 -1 4,

as desired. To prove the second statement, let S = N (7). The number of edges in S
is at least

S INO NG 3 S -2 AU (). g

jES jes

€< Jiug) =

3.2. Cleaning a graph. An important ingredient in our constructive proof is a
“cleaning” procedure that constructs an everywhere e-triangle-dense graph.

DEFINITION 7. Consider the following procedure clean. on a graph H that takes
input € € (0,1]. Iteratively remove an arbitrary edge with Jaccard similarity less than
€, as long as such an edge exists. Finally, remove all isolated vertices. We call this
e-cleaning and denote the output by clean.(H).
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The output clean.(H) is dependent on the order in which edges are removed,
but our results hold for an arbitrary removal order. Satuluri, Parthasawarthy, and
Ruan [SPR11] use a more nuanced version of cleaning for graph sparsification of social
networks. They provide much empirical evidence that removal of low Jaccard simi-
larity edges does not destroy interesting graph structure, such as its dense subgraphs.
Our arguments below may provide some theoretical justification.

CrAaM 8. The number of triangles in clean.(H) is at least t(H) — ew(H), where
w(H) is the number of wedges in H.

Proof. The process clean. removes a sequence of edges ej,eo,.... Let W; and
T, be the set of wedges and triangles that are removed when e; is removed. Since
the Jaccard similarity of e; at this stage is at most ¢, |T;| < e(|Wi| — |T1]) < €|W].
All the Wi’s (and Tp’s) are disjoint. Hence, the total number of triangles removed is
ST < €Y Wil < ew(H). D

We get an obvious corollary by noting that t(H) = 7(H) - w(H)/3.

COROLLARY 9. The graph clean.(H) is everywhere e-triangle dense and has at
least (1(H)/3 — e€)w(H) triangles.

3.3. Finding a single cluster. Suppose we have an everywhere e-triangle dense
graph H. We show how to remove a single cluster of a tightly knit family. Since the
entire focus of this subsection is on H, we drop the ... (H) notation.

For a set S of vertices, let tg denote the number of triangles which have at least
one vertex in S, and let tg) = t(H|s) denote the number of triangles which have all
three vertices in S (the I is for “internal”). For p € (0, 1], we say that a set S is p-
extractable if H|g is p-edge dense, p-triangle dense, H|g has radius 2, and tg) > pts.
We define the following extract procedure that finds a single extractable cluster in
the graph H.

The extraction procedure extract. Let i be a vertex of maximum degree.
For every vertex j, let 6; be the number of triangles incident on j whose other two
vertices are in N (7). Let R be the set of d; vertices with the largest 6; values. Output
S={i}UN()UR.

It is not necessary to start with a vertex of maximum degree, but doing so provides
a better dependence on e. (Also, strictly speaking, the {i} above is redundant; a simple
argument shows that i € R.)

We start with a simple technical lemma.

LEMMA 10. Suppose x1 > x9 > --- > 0 with ) . z; < a and Zx? > . For all
indices r < 202 /B3, ... % > B%r/4a>.

j<r=j
Proof. If x,41 > /2, then Y x? > 3%r/4a? as desired. Otherwise,

Jj<r

Zx? <z ij <B/2.

Jj>r J

Henceijzjgr af = Yai = >, a7 > B/2 > BPr/4a?, using the bound given for
r.

The main theorem of the section follows.

THEOREM 11. Let H be an everywhere e-triangle dense graph. The procedure
extract outputs an Q(e*)-extractable set S of vertices. Furthermore, the number of
edges in Hl|g is an Q(e)-fraction of the edges incident to S.

Proof. Let € > 0, i a vertex of maximum degree, and N = N (7).

We have |S| < 2d;. By Lemma6, H|y has at least e(‘éi) edges, so H|g is Q(e)-
edge dense. By the size of S and maximality of d;, the number of edges in H|g is an
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Q(e)-fraction of the edges incident to S. It is also easy to see that H|s has radius 2.
It remains to show that H|s is Q(e*)-triangle dense and that tg) = Q(eMts.

For any j, let n; be the number of edges from j to NNV, and let §; be the number
of triangles incident on j whose other two vertices are in N. Let z; = \/E .

Lemma 10 tells us that if we can (appropriately) upper bound ;%5 and lower
bound ; x?, then the sum of the largest few x?’s is significant. This implies that
H | has sufficiently many triangles. Using appropriate parameters, we show that H|g
contains Q(poly(e) - d?) triangles, as opposed to trivial bounds that are quadratic in
d;.

CramM 12, We have >, x; < >y di, and 3, x5 > § 3 pen de(H|N) dy,
where d,(H|n) is the degree of vertex k within H|x.

Proof. We first upper bound Ej xj:

;xj S; 2@) ggnj =3 d.

keEN

The first inequality follows from 6; < ('¥). The last equality is simply stating that
the total number of edges to vertices in IV is the same as the total number of edges
from vertices in N.

Let t. be the number of triangles that include the edge e. For every e = (kq, k2),
te > Jo - max(dg, — 1,d, — 1) > € - max(dg, — 1,dg, — 1). Since € > 0, each vertex is
incident on at least 1 triangle. Hence all degrees are at least 2, and di — 1 > dj,/2 for
all k. This means

t, > €- max(;ikl R dk2) > e(dkl 2— de)

We can now lower bound Y j x? Abusing notation, e € H|y refers to an edge in
the induced subgraph. We have

e€H|N (k1,k2)EH|N kEN

for all e = (kq1, k2).

The two sides of the second equality are counting (twice) the number of triangles “to”
and “from” the edges of N. O

We now use Lemma 10 with o = Y7, .y di, 8= 5§ ey di(H|n) dy, and 7 = d;.

We first check that r < 20<2/6. Note that d; > di > ed; for all k € N, by Lemma 6

and by the maximality of d;. Hence,

2

2;“2 _ 4 (ke dr) 4 edi| N| > e n di > Ad > r

B € ZkeN dk(H|N) dg € d; ZkeN dp  — e

as desired. Let R be the set of r = d; vertices with the highest value of 6; or,
equivalently, with the highest value of xf By Lemmal0, >, p x? > B%r/4a?, or

>ierti = B%r/8a2. We compute

drp(H d
B _ € dren d(H|N) d > € mindy(H|x) >
2 keN

(67 2 ZkEN dk
which gives > jeR 0; > €*d?/128. For the first inequality above, think of the dy/ Y dy
as the coefficients in a convex combination of di(H|y)’s. For the last inequality,
dr(H|n) = Ltk = J(Lk)(di —1)>ed;/2 for all k € N.

v

ézdi
4 )
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Recall S = N UR and |S| < 2d;. We have

OB 2 jerYi S etd?
s = 3 T 384’

since triangles contained in N get overcounted by a factor of 3. Since both tg and the
number of wedges in S are bounded above by |S|(%) = ©(d}), H|s is Q(e*)-triangle

dense, and t7) = Q(e%)ts, as desired. [

3.4. Getting the entire family in a triangle-dense graph. We start with a
e-triangle-dense graph G and explain how to get the desired entire tightly knit family.
Our procedure—called the decomposition procedure—takes as input a parameter e.

The decomposition procedure. Clean the graph with clean., and run the
procedure extract to get a set S1. Remove Sy from the graph, run clean. again, and
extract another set So. Repeat until the graph is empty. Output the sets S1,.5s,.. ..

We now prove our main theorem, Result 1, restated for convenience.

THEOREM 13. Consider a T-triangle dense graph G and € < 7/4. The decom-
position procedure outputs an Q(e*) tightly knit family with an Q(e*)-fraction of the
triangles of G.

Proof. We are guaranteed by Theorem 11 that G|s, is (e*)-edge and Q(e*)-
triangle dense and has radius 2. It suffices to prove that an Q(e*)-fraction of the
triangles in G are contained in this family.

Consider the triangles that are not present in the tightly knit family. We call
these the destroyed triangles. Such triangles fall into two categories: those destroyed
in the cleaning phases and those destroyed when an extractable set is removed. Let C'
be the triangles destroyed during cleaning, and let Dy be the triangles destroyed in the
kth extraction. By the definition of extractable subsets and Theorem 11, t(Gl|g,) =
Q(e*|Dg|). Note that C, Dy, and the triangles in G|g, (over all k) partition the total
set of triangles. Hence, we get that >, t(Gls,) = Q(e*(t — |C])).

We now bound |C|. This follows the proof of Claim 8. Let eg,eq,... be all the
edges removed during cleaning phases. Let W; and T; be the set of wedges and
triangles that are destroyed when e; is removed. Since the Jaccard similarity of ¢
at the time of removal is at most €, |T}| < e(|W;| — |T1]) < €|W;]. All the W;s (and
Tis) are disjoint. Hence, |C| = >, |Ti| < €Y, |[Wi| = ew = 3et/7 < 3t/4, and
YL t(Gls,) = Qe*t), as desired. O

We also give a quick runtime analysis. Recall that w(G) is the number of wedges
in G.

THEOREM 14. The decomposition can be obtained in time proportional to w(G)+
V]t

Proof. We maintain five hash tables/sets for the course of the algorithm: a hash
table from each node to its incident edges, a hash table from each edge to the degrees
of its endpoints, a hash table from each edge e to the set of triangles containing e,
and hash tables from integers d to the set of all vertices of degree d and the set of all
edges with Jaccard similarity less than e. We also keep track of the maximum degree.

We assume constant time insert, delete, and lookup in all hash tables and sets.
We can initialize the data structures by enumerating over all wedges and edges, which
takes O(w(G) + |V|) time. When an edge e is deleted, we can update the hash tables

INote that the algorithm here uses O(w(G)+|V|) space as well. A slight variant of the algorithm
runs in O(w(G) + |V|) time and only O(|E|) space but takes longer to analyze—see Appendix A of
[GRS14] for details.
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in time proportional to the number of wedges containing e. Since edges are deleted
but never added by the decomposition procedure, we spend a total of O(w(G) + |V])
time maintaining the data structures over the course of the procedure.

Now, the three operations performed by the procedure are clean., extract, and
removing a set of nodes from the graph. The first and third are accounted for by our
data structures, as is finding a vertex of maximum degree from which to extract.

For an extract operation from vertex i, we enumerate over all pairs (u,v) of
neighbors of 4, which takes time proportional to the number of wedges at i. For each
pair that is an edge, we enumerate over all triangles that involve this pair/edge, and
by hashing appropriately, we can find the d; vertices with the largest §; values. Every
such enumerated triangle is deleted when the extracted set is removed, so the total
time spent here is again at most O(w(G) + |E|) = O(w(G) + |V), giving the desired
result. O

3.5. Preserving edges in a mostly everywhere triangle-dense graph.
For a mostly everywhere triangle-dense graph, the decomposition procedure can also
preserve a constant fraction of the edges. This requires a more subtle argument. The
aim of this subsection is to prove the following (cf. Result 2).

THEOREM 15. Consider a u,~y-triangle dense graph G, for p > 1 —~%/32. The
decomposition procedure, with € < /12, outputs an Q(e*) tightly knit family with an
Q(e*) fraction of the triangles of G and an Q(ev) fraction of the edges of G.

The proof appears at the end of the subsection. The tightly knit family and
triangle conditions follow directly from Theorem 13, so we focus on the edge condition.
By Theorem 11, the actual removal of the clusters preserves a large enough fraction of
the edges. The difficulty is in bounding the edge removals during the cleaning phases.

We first give an informal description of the argument. We would like to charge
lost edges to lost triangles and piggyback on the fact that not many triangles are
lost during cleaning. More specifically, we apply a weight function to triangles (and
wedges), such that losing or keeping an edge corresponds to losing or keeping roughly
one unit of triangle (and wedge) weight in the graph. Most edges (4,;j) belong to
roughly d; + d; triangles and wedges, and so intuitively we weight each of those
triangles (and wedges) by roughly 1/(d; +d;). This intuition breaks down if d; < d;,
but d; ~ d; for edges with high Jaccard similarity.

The rest of the argument follows the high-level plan of the e-triangle dense case (cf.
the argument to bound |C| in Theorem 13), though work is needed to replace triangles
and wedges with their weighted counterparts. The original graph G has high triangle
density, which under our weight function is enough to imply a comparable amount of
triangle weight and wedge weight. Only edges with low Jaccard similarity are removed
during cleaning, and each of these removed edges destroys significantly more wedge
weight than triangle weight. Hence, at the end of the process, a lot of triangle weight
must remain. There is a tight correspondence between edges and triangle weight, and
so a lot of edges must also remain.

We now start the formal proof. We use £, W, and T to denote the sets of edges,
wedges, and triangles in G. W, and T, denote the sets of edges and triangles that
include the edge e. We use E°¢, W€ and T° to denote the respective sets destroyed
during the cleaning phases, and we use WS and T to denote the corresponding local
versions. If an edge e is removed during cleaning, then W¢ C W, but the sets are
not necessarily equal, since elements of W, may have been removed prior to e being
cleaned. Let T° = T\ T°. Let E° and V* denote the edges and vertices, respectively,
included in at least one triangle of T'. For ease of reading, let d; = d; — 1 be one less
than the degree of vertex 1.
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Call an edge e good if J. > ~ in the original graph G, and bad otherwise. We use
g; to denote the number of good edges incident to vertex i. Call a wedge good if it
contains at least one good edge, and bad otherwise. By hypothesis, a u fraction of
edges are good. We make the following observation.

Cram 16. For every good edge e = (i, j), d; > ~d;.

Proof. We have

te d;
y<Je= 55— <
d; + d;- — te d;-
where the last inequality comes from t. < d}. O

We now define a weight function r on triangles and wedges, as per the informal
argument above. For a triangle T = (i1, 42, i3) with at least two good edges, let r(7) =
1/d; +1/d;, +1/d;,. If T has only one good edge (iy,i2), let r(T) = 1/d; +1/d;,.
If 7 has no good edges, let (7)) = 0. For a good wedge w with central vertex i, let
r(w) = 1/dj; otherwise, let r(w) = 0. Let »(X) = Y _y r(x). Note that weights are
always with respect to the degrees in the original graph G and do not change over
time.

In the next two claims we show that the total triangle weight in G is comparable
to the total wedge weight in G and is also comparable to |E]|.

Cram 17. »(T) > ~vu|E|.

Proof. Let t7 be the number of triangles (i,7,k) € T for which at least one of
(i,7), (i, k) is good. Since the good edges each have Jaccard similarity > -, we have
9> giyd,/2. Thus,

TR Sl T TR
r(M) = = >> % =yulBl

Cramv 18. (W) < 2u|E|.
Proof. Let w{ be the number of good wedges which have i as their central vertex.
Then

g
wy
rw) =3 = < > gi=2uEl. O

The next two claims bound the triangle weight lost by cleaning any particular
edge.

CLAM 19. If a good edge e = (i,7]) is removed during cleaning, then r(TS) <
(3€/7*)r(We).

Proof. Assume that d; > d;. Let d = d;. We first lower bound r(W¢) as a
function of |[W¢|. For any w € WS, w has at least one good edge and has either ¢ or
J as its central vertex. Hence r(w) > min{1/d},1/d} = 1/d’, and

oy < e
r(Wg) > =

We now upper bound r(T¢) as a function of |T|. Consider triangle t = (4, j, k) €
T¢. If (4, ) is the only good edge in ¢, then r(t) = 1/d; +1/d; < 2/d'y, since dj > d'y
by Claim 16. If ¢ has at least two good edges, then k is at most two good edges away
from 4, and dj, > d’y*. This gives r(t) = 1/dj + 1/d} 4+ 1/d), < 3/d'v*. Hence

C 3 2 C 3 C
T(Te) S max{d/—vz,%} |Te| = d/—/\/2|TE|
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Now, |T¢| < e|W¢|, since J. < € at the time of cleaning. Hence we have

3 e 3e
|TG | S d/’y2

") < 5 e < S5 w)
as desired. O
CLAIM 20. If a bad edge e = (3, ) is removed during cleaning, r(TS) < 4/~.
Proof. The only triangles with nonzero weight in T¢ have a good edge to i and/or
a good edge to j. Let m; and m; be the minimum degrees of any vertex connected
by a good edge to ¢ and j, respectively. It is not too hard to see that

. 11 11
T(Te)<gi(E+ﬁ>+gj (I‘FW)-
4 i J

J

Plugging in m} > vd; (Claim 16) and g; < d} gives the desired result. 0

We now combine the observations above to show that cleaning cannot remove all
the triangle weight.

Cram 21. »(T%) > ~|E|/4.

Proof. We have

good e bad e
3e . 4 . .
< Z —r(We) + - by Claim 19 and Claim 20
good e v bad e v
3e 4
< —<r(W)+ ;(1 — )| E|
6eu|E| 41 — p)|E
< €“|2 | 40 - wIE] by Claim 18
0 0
ulE| | v|E|
< =y T
S + 3

where the last inequality follows from the bounds on € and p in the theorem statement.
Hence

r(T%) =r(T) —r(T°)

E E
> yu|E| — (% + %) by Claim 17

> v|E|/4,

since p > 3/4. a

Finally, we show that if a subgraph of G has high triangle weight, it must also
have a lot of edges. Though the claim is stated in terms of 7%, the proof would hold
for any H C G. This can be thought of as a moral converse to Claim 17.

Cramv 22. »(T%) < |E®|.

Proof. Let H = (V, E®). The triangles of H are exactly T°. We have

) 1 1 o ti(H)
s D gt e A _; d;(G)’
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where ¢;(H) is the number of triangles in H incident to i. From here, we compute

) _ (M) 5D
2 < ae <=z -

as desired. O

The last two claims together imply that the cleaning phase does not destroy too
many edges. The rest of the proof is nearly identical to that of Theorem 13 from the
e-triangle dense case.

Proof of Theorem 15. As noted above, the tightly knit family and triangle condi-
tions follow directly from Theorem 13.

Let Dy be the edges destroyed in the kth extraction, and let Ej be the edges in
G|s,- By Theorem 11, |Ex| = Q(e|Dg|). Since E€, Dy, and Ej (over all k) partition
E, we have ), |Ex| = Q(e(|E| — |E€|)). Since |E°| + |E*| < |E|, we have ), |Ex| =
Q(e|E®|). Finally, by Claims 21 and 22, |E®| = Q(v|E|), and so ), |Ex| = Q(ev|E|)
as desired. O

4. Triangle-dense graphs: The rogues’ gallery. This section provides a
number of examples of graphs with constant triangle density. These examples show,
in particular, that radius-1 clusters are not sufficient to capture a constant fraction
of an e-triangle-dense graph’s triangles and that tightly knit families cannot always
capture a constant fraction of an e-triangle-dense graph’s edges.

o Why radius 2? Consider the complete tripartite graph. This is everywhere
e-triangle-dense with € ~ % If we removed the 1-hop neighborhood of any vertex,
we would destroy a 1 — ©(1/n)-fraction of the triangles. The only tightly knit family
(with constant p) in this graph is the entire graph itself.

e More on 1-hop neighborhoods. All 1-hop neighborhoods in an everywhere
triangle-dense graph are edge dense, in the sense of Lemma 6. Maybe we could just
take the 1-hop neighborhoods of an independent set to get a tightly knit family? Of
course, the clusters would only be edge disjoint (not vertex disjoint).

We construct a family of everywhere e-triangle-dense graph with constant € where
this does not work. There are m + 1 disjoint sets of vertices, A1, ..., A, B each of
size m. The graph induced on U, A} is just a clique on m? vertices. Each vertex
b € B is connected to all of Ax. Note that B is a maximal independent set, and
the 1-hop neighborhoods of B contain ©(m?*) triangles in total. However, the total
number of triangles in the graph is ©(m?).

o Why we can’t preserve edges. Result1 only guarantees that the tightly knit
family contains a constant fraction of the graph’s triangles, not its edges. Consider a
graph that has a clique on n'/3 vertices and an arbitrary (or, say, a random) constant-
degree graph on the remaining n—n'/3 vertices. No tightly knit family (with constant
p) can involve vertices outside the clique, so most of the edges must be removed. Of
course, most edges in this case have low Jaccard similarity.

In general, the condition of constant triangle density is fairly weak and is met by
a wide variety of graphs. The following two examples provide further intuition for
this class of graphs.

o A family of triangle-dense graphs far from a disjoint union of cliques. Define
the graph Bracelet(m, d), for m nodes of degree d, when m > 4d/3, as follows: Let
By, ..., Bsyq be sets of d/3 vertices each put in cyclic order. Note that 3m/d > 4.
Connect each vertex in By to each vertex in Bg_1, By and Bjy11. Refer to Figure 1.
This is an everywhere e-triangle-dense d-regular graph on m vertices, with € a constant
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F1G. 1. Bracelet graph with d/3 = 4.

as m — oo. Nonetheless, it is maximally far (i.e., O(md) edges away) from a disjoint
union of cliques. A tightly knit family is obtained by taking B;UBsU B3, B4UBsU Bg,
etc.

e Hiding a tightly knit family. Start with n/3 disjoint triangles. Now, add an
arbitrary bounded-degree graph (say, an expander) on these n vertices. The resulting
graph has constant triangle density, but most of the structure is irrelevant for a tightly
knit family.

5. Recovering a planted clustering. This section gives an algorithmic appli-
cation of our decomposition procedure to recovering a “ground truth” clustering. We
study the planted clustering model defined by Balcan, Blum, and Gupta [BBG13] and
show that our algorithm gives guarantees similar to theirs. We do not subsume the re-
sults in [BBG13]. Rather, we observe that a graph problem that arises as a subroutine
in their algorithm is essentially that of finding a tightly knit family in a triangle-dense
graph. Their assumptions ensure that there is (up to minor perturbations) a unique
such family.

The main setting of [BBG13] is as follows. Given a set of points V' in some metric
space, we wish to k-cluster them to minimize some fixed objective function, such as
the k-median objective. Denote the optimal k-clustering by C and the value by OPT'.
The instance satisfies (c, €)-approzimation-stability if for any k-clustering C’ of V' with
objective function value at most c¢- OPT, the “classification distance” between C and
C’ is at most €. Thus, all solutions with near-optimal objective function value must
be structurally close to C.

A summary of the argument in [BBG13] is as follows. The first step converts
an approximation-stable k-median instance into an unweighted undirected graph by
including an edge between two points if and only if the distance between them (in
the k-median instance) is at most a judiciously chosen threshold 7. In [BBG13,
Lemma 3.5] it is proved that this threshold graph G = (V,E) contains k disjoint
cliques {X,}*_, such that the cliques do not have any common neighbors. These
cliques correspond to clusters in the ground-truth clustering, and their existence is
a consequence of the approximation stability assumption. The aim is to get a k-
clustering sufficiently close to {X,}. Formally, a k-clustering {S,} of V' is A-incorrect
if there is a permutation o such that ) [Xs) \ Sa| < A.

Let B =V \lJ,Xa. The second step of the argument in [BBG13] proves that
when |B| is small, good approximations to {X,} can be found efficiently. We give a
different algorithm for implementing this second step; correctness follows by adapting
the arguments in [BBG13]|. Intuitively, the connection between our work and the
setting of [BBG13] is that, when |B| is much smaller than ) |X,|, the threshold
graph G output by the first step has high triangle density. Furthermore, as we prove
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below, the clusters output by the procedure extract of Theorem 11 are very close to
the X,’s of the threshold graph.

In more detail, to obtain a k-clustering of the threshold graph G identified
in [BBG13], our algorithm iteratively uses the procedure extract (from section 3.3) k
times to get clusters S7,S59,...,Sk. In particular, recall that at each step we choose
a vertex s; with the current highest degree d;. We set N, to be the d; neighbors of s;
at this time and R to be the d; vertices with the largest number of triangles to N;.
Then, S; = {i}UN;UR. The exact procedure of Theorem 13, which includes cleaning,
also works fine. Forgoing the cleaning step does necessitate a small technical change
to extract: instead of adding all of R to S, we add only the elements of R which have
a positive number of triangles to IV;.

We use the notation N*(U) = N(U)UU. So N*(X,) N N*(X,) = 0, when a # b.
Unlike [BBG13], we assume that |X,| > 3. The following parallels the main theorem
of [BBG13, Theorem 3.9], and the proof has the same high-level structure.

THEOREM 23. The output of the clustering algorithm above is O(|B|)-incorrect
on G.

Proof. We first map the algorithm’s clustering to the true clustering {X,}. Our
algorithm outputs k clusters, each with an associated “center” (the starting vertex).
These are denoted Si,S9,..., with centers si,s2,..., in order of extraction. We
determine if there exists some true cluster X, such that s; € N*(X,). If so, we map
S1 to X,. (Recall the N*(X,)’s are disjoint, so X, is unique if it exists.) If no X,
exists, we simply do not map S;. We then perform this for Sy, Ss, ..., except that we
do not map Sy, if we would be mapping it to an X, that has previously been mapped
to. We finally end up with a subset P C [k] such that for each a € P, S, is mapped
to some X, . By relabeling the true clustering, we can assume that for all a € P, S,
is mapped to X,. The remaining clusters (for X,¢p) can be labeled with an arbitrary
permutation of [k] \ P.

Our aim is to bound | X, \ Sa| by O(|B)).

We perform some simple manipulations.

U(Xa\Sa): U(Xa\sa)u U(Xa\Sa)

a a€EP ag P
= J&En S u X\ U S)u [ X\ Sa)
a€P b<a aceP b<a a¢ P
CUXﬂUSb U &\ U s u U Xe
b<a aceP b<a a¢ P

So we get the following sets of interest:

o L1 = U,(Xa NUpeqa Sp) = Up(So N Uysp Xa) is the set of vertices that are
“stolen” by clusters before S,.

o Ly =J,cp(Xa\Up<qy Sb) is the set of vertices that are left behind when S, is
created.

o [3= X, 1s the set of vertices that are never clustered.

Note that f | Xa\Sa| = | U, (Xa\Sa)| < |L1|+|Lz2|+]|L3|. The proof is completed
by showing that |Li| + |L2| + |Ls| = O(|B]). This will be done through a series of
claims.

We first state a useful fact.
CraM 24. Suppose for some b € {1,2,...,k}, s, € N(X;). Then Ny is parti-
tioned into Ny N Xp and Ny N B.
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Proof. Any vertex in Nj \ X}, must be in B. This is because N, is contained in a
two-hop neighborhood from Xj, which cannot intersect any other X,. O

Cram 25. For any b, |Sy N,y Xal < 6]SpN B

Proof. We split into three cases. For convenience, let U be the set of vertices
Sp N Ugsp Xa- Recall that [Sp| < 2dy.

e For some ¢, s, € X.. Note that ¢ < b by the relabeling of clusters. Observe
that S is contained in a two-hop neighborhood of s, and hence cannot intersect any
cluster X, for a # c. Hence, U is empty.

e For some (unique) ¢, s € N(X.). Again, ¢ < b. By Claim 24, d, = |Ny| =
[Ny N X¢| + | Ny N B|. Suppose |N, N B| > dp/3. Then |S, N B| > |Ny N B| > dp/3.
We can easily bound |Sp| < 2d, < 6|S, N B).

Suppose instead |[N,NB| < dp/3, and hence [NyNX,| > 2d;,/3. Note that |[NyNX,|
is a clique. Each vertex in Ny N X, makes (‘Nm‘;(clfl) > (deg/BJ) triangles in V. On
the other hand, the only vertices of N} that any vertex in X, for a # ¢ can connect
to is in Ny N B. This forms fewer than (Ld”Q/BJ) triangles in Ny. If (Ldbz/BJ) > 0, then
(L2dg/3j) > (Lde/BJ)'

Consider the construction of S,. We take the top d; vertices with the most
triangles to Ny, and say we insert them in decreasing order of this number. Note that
in the modified version of the algorithm, we only insert them while this number is
positive. Before any vertex of X, (a # b) is added, all vertices of N, N X, must be
added. Hence, at most d, — [N, N X.| = |Np N B| < |Sy N B| vertices of Uy X, can
be added to Sy. Therefore, |U| < |S, N B].

e The vertex sp is at least distance 2 from every X.. Note that N, C S, N B.
Hence, |Sy| < 2d, < 2|S, N BY. O

CLAIM 26. For any a € P, | X, \ Up<, So| <15, N BJ.

Proof. Since a € P, either s, € X, or s, € N(X,). Consider the situation of the
algorithm after the first a — 1 sets S, So,...,S,—1 are removed. There is some subset
of X, that remains; call it X; = Xo \ U, -

Suppose s, € X,. Since X is still a clique, X C N, and (X4 \ Up<, Sp) is
empty. a

Suppose instead s, € N(X,). Because s, has maximum degree and X/ is a
clique, d, > | X/| — 1. Note that | X/ \ S,| is what we wish to bound, and | X/ \ S,| <
| X!\ Ng|. By Claim 24, N, partitions into N, N X, = N,N X! and N, N B. We have
| X!\ No| = | XL = INoN X,y <dy+1—|N,NXy| =|N,NB|+1<|5,NB|. O

Cram 27. |Lg| < |B| + |L1].

Proof. Consider some X, for a ¢ P. Look at the situation when S1,...,S5,_1 are
removed. There is a subset X/ (forming a clique) left in the graph. All the vertices in
X, \ X/ are contained in L;. By maximality of degree, d, > |X/| — 1. Furthermore,
since a ¢ P, N, C B implying d, < |S, N B| — 1. Therefore, | X/| < |S, N B|. We can
bound ¢ p(Xa \ X;) € L1, and 3, p | X;| < [B|, completing the proof. a

To put it all together, we sum the bound of Claims 25 and 26 over b € [k] and
a € P, respectively, to get |L1| < 6|B| and |Ls| < |BJ|. Claim 27 with the bound on
|L1| yields |Ls| < 7|B|, completing the proof of Theorem 23. a

6. Conclusions. This paper proposes a “model-free” approach to the analysis
of social and information networks. We restrict attention to graphs that satisfy a
combinatorial condition—constant triangle density—in lieu of adopting a particular
generative model. The goal of this approach is to develop structural and algorithmic
results that apply simultaneously to all reasonable models of social and information
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networks. Our main result shows that constant triangle density already implies sig-
nificant graph structure: every graph that meets this condition is, in a precise sense,
well approximated by a disjoint union of clique-like graphs.

Our work suggests numerous avenues for future research.

1.

Can the dependence of the intercluster edge and triangle density on the orig-
inal graph’s triangle density be improved?

. The relative frequencies of four-vertex subgraphs also exhibit special patterns

in social networks—for example, there are usually very few induced four-
cycles [UBK13]. Is there an assumption about four-vertex induced subgraphs,
in conjunction with high triangle density, that yields a stronger decomposition
theorem?

. Are there interesting additional conditions under which the decomposition

into a tightly knit family is essentially unique?

. Are stronger decomposition results possible for graphs that are also dense

with larger cliques, such as 4-cliques?

Which computational problems are easier for triangle-dense graphs than for
arbitrary graphs? Just as planar separator theorems lead to faster algorithms
and better heuristics for planar graphs than for general graphs, we expect
our decomposition theorem to be a useful tool in the design of algorithms for
triangle-dense graphs.
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