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1 Introduction

We are given a network and a rate of traffic between a
source node and a destination node, and seek an assign-
ment of traffic to source-destination paths. We assume
that each network user controls a negligible fraction of
the overall traffic, so that feasible assignments of traf-
fic to paths in the network can be modeled as network
flows. We also assume that the time needed to traverse
a single link of the network is load-dependent, that is,
the common latency suffered by all traffic on the link
increases as the link becomes more congested.

We consider two types of traffic assignments. In
the first, we measure the quality of an assignment by
the total latency incurred by network users; an optimal
assignment is a feasible assignment that minimizes the
total latency. On the other hand, it is often difficult
in practice to impose optimal routing strategies on the
traffic in a network, leaving network users free to act
according to their own interests. We assume that, in
the absence of network regulation, users act in a selfish
manner. Under this assumption, we can expect network
traffic to converge to the second type of assignment that
we consider, an assignment at Nash equilibrium. An
assignment is at Nash equilibrium if no network user
has an incentive to switch paths; this occurs when all
traffic travels on minimum-latency paths.

The following question motivates our work: is
the optimal assignment really a “better” assignment
than an assignment at Nash equilibrium? While the
optimal assignment obviously dominates one at Nash
equilibrium from the viewpoint of total latency, it may
lack desirable fairness properties. For example, consider
a network consisting of two nodes, s and t, and two
edges, e1 and e2, from s to t. Suppose further that
one unit of traffic wishes to travel from s to t, that
the latency of edge e1 is always 2(1 − ε) (independent
of the edge congestion, where ε > 0 is a very small
number), and that the latency of edge e2 is the same
as the edge congestion (i.e., if x units of traffic are on
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edge e2, then all of this flow incurs x units of latency).
In the assignment at Nash equilibrium, all traffic is on
the second link; in the minimum-latency assignment,
1 − ε units of traffic use edge e2 while the remaining ε
units of traffic use edge e1. Roughly, a small fraction
of the traffic is sacrificed to the slower edge because
it improves the overall social welfare (by reducing the
congestion experienced by the overwhelming majority of
network users); needless to say, these martyrs may not
appreciate a doubling of their travel time in the name
of “the greater good”! Indeed, this drawback of routing
traffic optimally has inspired practitioners to find traffic
assignments that minimize total latency subject to
explicit length constraints [1], which require that no
network user experiences much more latency than in an
assignment at Nash equilibrium. The central question of
this paper is how much worse off can network users be in
an optimal assignment than in one at Nash equilibrium?
After reviewing some technical preliminaries in the next
section (all of which are classical; see [2] for historical
references), we provide an exact solution to this problem
under weak hypotheses on the class of allowable latency
functions.

2 Preliminaries

The Model. We consider a directed network G =
(V, E) with vertex set V , edge set E, source vertex s,
and destination vertex t. We denote the set of s-t paths
by P . A flow is a function f : P → R+; for a fixed
flow f we define fe =

∑
P :e∈P fP . With respect to a

finite and positive traffic rate r, a flow f is said to be
feasible if

∑
P∈P fP = r. Each edge e ∈ E is given

a load-dependent latency function that we denote by

e(·). We assume that 
e is nonnegative, continuous,
and nondecreasing. The latency of a path P with
respect to a flow f is then the sum of the latencies of
the edges in the path, denoted by 
P (f) =

∑
e∈P 
e(fe).

We call the triple (G, r, 
) an instance.
We define the cost C(f) of a flow f in G as the to-

tal latency incurred by f , i.e., C(f) =
∑

P∈P 
P (f)fP .
With respect to instance (G, r, 
), a feasible flow mini-
mizing C(f) is said to be optimal or minimum-latency.

Flows at Nash Equilibrium. A flow f feasible for
(G, r, 
) is said to be at Nash equilibrium (or is a Nash



flow) if for every two s-t paths P1, P2 ∈ P with fP1 > 0,

P1(f) ≤ 
P2(f). In particular, if a flow f is at Nash
equilibrium then all s-t flow paths have equal latency.
It is well known that Nash flows always exist and are
essentially unique.

Optimal Flows. Assuming mild extra conditions
on the latency functions of an instance, there is a well-
known characterization of optimal flows that mirrors the
definition of Nash flows. Let (G, r, 
) have the property
that, for each edge e, the function x · 
e(x) is convex.
Define the marginal cost function 
̂e by 
̂e = d

dx(x·
e(x)).
Then, a flow f̂ feasible for (G, r, 
) is optimal if and only
if it is at Nash equilibrium for (G, r, 
̂).

3 Our Results

We saw in Section 1 that some traffic in a minimum-
latency flow may be routed on paths with larger latency
than that incurred by all traffic in a Nash flow; our goal
is to quantify this phenomenon. Define the unfairness
of instance (G, r, 
) as the maximum ratio between the
latency of a flow path of an optimal flow for (G, r, 
)
and that of a flow path of a Nash flow for (G, r, 
). We
denote the unfairness of (G, r, 
) by u(G, r, 
). Our first
observation is that u(G, r, 
) can be arbitrarily large if
we do not place additional restrictions on the class of
allowable latency functions. To see this, modify the
example of Section 1 as follows: for any positive integer
p, define the latency of the first edge as the constant
function 
(x) = (p+1)(1−ε) and that of the second edge
as 
(x) = xp. In this example, u(G, r, 
) = (p+1)(1−ε).

Thus, we aim to quantify the worst possible un-
fairness as a function of the class of allowable latency
functions. Toward this end, let L denote a class of al-
lowable latency functions (that are continuous and non-
decreasing), with the additional property that for each

 ∈ L, the function x · 
(x) is convex. For 
 ∈ L, de-
fine 
̂ as in the previous section. For 
 ∈ L, define γ(
)
by γ(
) = supx>0 
̂(x)/
(x). Recalling the characteriza-
tions of Nash and optimal flows from the previous sec-
tion, we may interpret γ(
) as the biggest discrepancy
between how optimal and Nash flows evaluate the per-
unit cost of using an edge (via the “socially aware” or
“conscientious” marginal cost function 
̂ and the “self-
ish” latency function 
, respectively). Define γ(L) by
γ(L) = sup�∈L γ(
). Then, we have the following result.

Theorem 3.1. If (G, r, 
) is an instance with latency
functions drawn from L, then u(G, r, 
) ≤ γ(L).

Proof. Let (G, r, 
) be such an instance, admitting Nash
flow f and optimal flow f̂ . We need to show that the
maximum latency of a flow path of f̂ is at most γ ≡ γ(L)
times the latency of a flow path of f .

Suppose for contradiction that P1, P2 are paths
satisfying fP1 > 0, f̂P2 > 0, and 
P2(f̂) > γ · 
P1(f).
First, we introduce some notation. Since f is at Nash
equilibrium for (G, r, 
), there is a value L such that

P (f) = L whenever fP > 0 (i.e., all flow paths of f have
a common latency with respect to latency functions 
).
Similarly, there is a value L̂ such that all flows paths of
f̂ have latency L̂ with respect to latency functions 
̂.

Now, as every latency function is nondecreasing, we
have 
e(x) ≤ 
̂e(x) for all e and x. Thus, we may derive

L = 
P1(f) <
1
γ


P2(f̂) ≤ 1
γ


̂P2(f̂) =
L̂

γ
.

We next note that the cost of the flow f is C(f) =
rL. The cost of the optimal flow f̂ is not so easy to
compute (as flow paths have equal latency with respect
to functions 
̂ but not with respect to 
). However,
since every latency function is drawn from L, we obtain

̂P (f̂) ≤ γ · 
P (f̂) for every flow path P of f̂ and hence

C(f̂) ≥ 1
γ

∑

P∈P

̂P (f̂)f̂P =

1
γ

rL̂ > rL = C(f),

which contradicts the optimality of f̂ .

For example, an instance whose latency functions
are polynomials with nonnegative coefficients of degree
at most p has unfairness at most p + 1. A simple varia-
tion on the previous example shows that the theorem is
best possible in the following sense: for any real number
c ≥ 1, there is a class L of latency functions (namely, the
constant functions along with xc−1) satisfying γ(L) ≤ c
such that there are instances with latency functions
from L with unfairness arbitrarily close to c. In fact, this
style of argument shows the following stronger state-
ment: if L is a class of latency functions that includes
the constant functions, then sup(G,r,�) u(G, r, 
) (where
the supremum ranges over instances with latency func-
tion in L) is precisely γ(L) (possibly +∞). The hypoth-
esis that L includes the constant functions is necessary;
indeed, there are classes of latency functions with arbi-
trarily large values of γ (e.g., latency functions of the
form axp where p is a fixed positive integer and a ≥ 0)
with respect to which all instances have unfairness 1
(see [2]).
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