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Abstract

We consider a model of game-theoretic network design initially studied by Anshele-
vich et al. [2], where selfish players select paths in a network to minimize their cost,
which is prescribed by Shapley cost shares. If all players are identical, the cost share
incurred by a player for an edge in its path is the fixed cost of the edge divided by
the number of players using it. In this special case, Anshelevich et al. [2] proved that
pure-strategy Nash equilibria always exist and that the price of stability—the ratio
between the cost of the best Nash equilibrium and that of an optimal solution—is
O©(log k), where k is the number of players. Little was known about the existence of
equilibria or the price of stability in the general weighted version of the game. Here,
each player ¢ has a weight w; > 1, and its cost share of an edge in its path equals w;
times the edge cost, divided by the total weight of the players using the edge.

This paper presents the first general results on weighted Shapley network design
games. First, we give a simple example with no pure-strategy Nash equilibrium.
This motivates considering the price of stability with respect to a-approximate Nash
equilibria—outcomes from which no player can decrease its cost by more than an «
multiplicative factor. Our first positive result is that O(log wyq.)-approximate Nash
equilibria exist in all weighted Shapley network design games, where w4, is the max-
imum player weight. More generally, we establish the following trade-off between the
two objectives of good stability and low cost: for every o = Q(logwyqz), the price
of stability with respect to O(«a)-approximate Nash equilibria is O((log W)/«), where
W is the sum of the players’ weights. In particular, there is always an O(log W)-
approximate Nash equilibrium with cost within a constant factor of optimal.

Finally, we show that this trade-off curve is nearly optimal: we construct a family
of networks without o(log wy,q./ 10g10g Wyq. )-approximate Nash equilibria, and show
that for all @ = Q(log Winas/ 10g 10g Wynas ), achieving a price of stability of O(log W/«)
requires relaxing equilibrium constraints by an {2(«) factor.
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1 Introduction

1.1 The Price of Stability in Network Design Games

Understanding the interaction between incentives and optimization in networks is an impor-
tant problem that has recently been the focus of much work by the theoretical computer
science community. Despite the wealth of results obtained in this area over the past five
years, network design and formation remains a fundamental topic that is not well under-
stood. While economists and social scientists have long studied game-theoretic models for
how networks are or should be created with self-interested agents (see e.g. [6, 14, 15] and
the references therein), the mathematical techniques for quantifying the performance of such
networks are currently limited.

The goal of quantifying performance (or lack thereof) in the presence of selfish behavior
naturally motivates the twin concepts of the price of anarchy and the price of stability. To
define these, first recall that a (pure-strategy) Nash equilibrium is an assignment of all of the
players of a noncooperative game to strategies so that the following stability property holds:
no player can switch strategies and become better off, assuming that all other players hold
their strategies fixed. As the outcome of selfish, uncoordinated behavior, Nash equilibria are
typically inefficient and do not optimize natural objective functions [11].

The price of anarchy and the price of stability are two ways to measure the inefficiency
of Nash equilibria of a game, with respect to a notion of “social good” (such as the total cost
incurred by all of the players). The price of anarchy of a game, first defined in Koutsoupias
and Papadimitriou [16], is the ratio of the objective function value of the worst Nash equilib-
rium and that of an optimal solution. The price of anarchy is natural from the perspective
of worst-case analysis—an upper bound on the price of anarchy bounds the inefficiency of
every possible stable outcome of a game.

The price of stability, by contrast, is the ratio of the objective function value of the best
Nash equilibrium and that of an optimal solution. The price of stability was first studied
in Schulz and Stier Moses [25] and was so-called in Anshelevich et al. [2]. The price of
stability has primarily been studied in network design games [2, 3], with the interpretation
that the network will be designed by a central authority (for use by selfish agents), but
that this authority is unable or unwilling to prevent the network users from acting selfishly
after the network is built. In such a setting, the best Nash equilibrium—the best network
that accounts for the incentives facing the network users—is an obvious solution to propose.
In this sense, the price of stability measures the necessary degradation in solution quality
caused by imposing the game-theoretic constraint of stability.

1.2 Shapley Cost Sharing with Unweighted Players

The goal of analyzing the cost of networks created by or designed for selfish users was first
proposed by Papadimitriou [21] and initially explored independently by Anshelevich et al. [3]
and Fabrikant et al. [12]. These two papers studied different types of network design games;
also, the first considered the price of stability (where it was called the “optimistic price of



anarchy”), the second the price of anarchy. (See also [1, 10, 18] for more recent work on
these and related models.) Closest to the present work is a variation on the model of [3] that
was proposed and studied by Anshelevich et at. [2], which they called network design with
Shapley cost sharing and we will abbreviate to Shapley network design games.

The most basic model considered in [2] is the following. The game occurs in a directed
graph G = (V| E), where each edge e has a nonnegative cost c., and each player i is identified
with a source-sink pair (s;,¢;). Every player i picks a path P; from its source to its destination,
thereby creating the network (V, U; F;) at a social cost of ), . ce. This social cost is shared
among the players in the following way. First, if edge e lies in f. of the chosen paths, then
each player choosing such a path pays a proportional share m, = ¢./f. of the cost. The
overall cost ¢;(Py, ..., Pg) to player i is then the sum » _p 7. of these proportional shares.

This proportional sharing method enjoys numerous desirable properties. It is “budget
balanced”, in that it partitions the social cost among the players; it can be derived from
the Shapley value, and as a consequence is the unique cost-sharing method satisfying certain
fairness axioms (see e.g. [19]); and, as shown in [2], it coaxes benign behavior from the players.
Specifically, Anshelevich et al. [2] showed that a pure-strategy Nash equilibrium always
exists—in contrast to the more general cost-sharing that was allowed in the predecessor
model [3]—and that the price of stability under Shapley cost-sharing is at most the kth
harmonic number H; = O(log k), where k is the number of players. Anshelevich et al. [2]
also provided an example showing that this upper bound is the best possible, and proved
numerous extensions.

1.3 Shapley Cost Sharing with Weighted Players

A natural and important extension that Anshelevich et al. [2] identified but proved few results
for is that to weighted players. In most network design settings, we expect the amount of
traffic to vary across source-sink pairs. Such non-uniformity arises for many reasons. For
example, players could represent populations of customers of Internet Service Providers,
which cannot be expected to possess a common size; players could represent individuals
with different bandwidth requirements; or collusion among several players could yield a
single “virtual” player with size equal to the sum of those of the colluding players.

The definition of network design with Shapley cost-sharing extends easily to include
weighted players: if w; denotes the weight of player ¢, then i’s cost share of an edge e
is ce - w;/We, where W, is the total weight of the players that use a path containing the
edge e. While easy to define, this weighted network design game appeared challenging
to analyze. Indeed, prior to the present work, the primary results known for this weighted
game were essentially suggestions that it exhibits more complex behavior than its unweighted
counterpart. In particular, Anshelevich et al. [2] proved the following: that the key “potential
function” proof technique for the unweighted case cannot be directly used for games with
weighted players; and that the price of stability can be as large as Q(k + log W), where k is
the number of players and W = ). w; is the sum of the players’ weights (assuming w; > 1
for all 7). The positive results of [2] for weighted games concerned only the special cases
of 2-player games and single-source, single-sink games, where pure-strategy Nash equilibria



were shown to exist. No further positive or negative results on either the existence of pure-
strategy Nash equilibria or on the price of stability were known for weighted Shapley network
design games.

1.4 Our Results

In this paper, we give the first general results for weighted Shapley network design games.
We set the stage for our work in Section 3 by exhibiting such a game with no pure-strategy
Nash equilibrium. This example has only three players, employs a single-sink undirected
network, and the ratio between the maximum and minimum player weights can be made
arbitrarily small. (Pure-strategy Nash equilibria are known to exist in all weighted Shapley
network design games with two players [2].) Thus there are no large classes of weighted
Shapley network design games that always possess pure-strategy Nash equilibria beyond
those identified in [2].

Our example motivates considering a larger class of equilibria to recover a guarantee that
equilibria exist. Once existence has been established, we can then attempt to bound the price
of stability with respect to this larger set of equilibria. There are several possible approaches
to accomplishing this goal, and we compare these at length in the next subsection. In this
paper, we pursue the same line of inquiry as in Anshelevich et al. [3]—where for a different
but related network design game, pure-strategy Nash equilibria did not necessarily exist—
and consider approximate pure-strategy Nash equilibria. An outcome is an a-approzrimate
Nash equilibrium if no player can decrease its cost by more than an o multiplicative factor
by deviating. The obvious goal is then to prove that a-approximate Nash equilibria always
exist and that some such equilibrium has cost within a § factor of optimal, where o and 3
are as small as possible. Since these two parameters work against each other, we seek to
understand more generally the interaction between the best-possible values of o and 3. How
much stability must we give up in order to achieve a low-cost solution, and vice versa? Is
it possible to take one or both of «, § to be an absolute constant? The present paper is the
first to study the trade-off curve for these two parameters in Shapley network design games.

Our main results give a complete solution to these questions. To describe them, scale
players’ weights so that the minimum player weight is 1, and let w,,,, and W denote the
maximum weight and the sum of all weights, respectively. On the positive side, we show
that every weighted Shapley network design game admits an O(log w4, )-approximate Nash
equilibrium, and that the price of stability with respect to such equilibria is O(log W).
More generally, we prove the following trade-off between the two objectives: for every
a = Q(log Wa:), the price of stability with respect to O(«)-approximate Nash equilibria
is O((logW)/a). Thus to implement a network with cost within a constant factor of the
optimal solution, it suffices to relax the equilibrium constraints by a logarithmic (in W)
factor. This is a new result even for unweighted Shapley network design games. (Recall that
in unweighted games, it is impossible to approximate the cost to within an o(log k) factor
without relaxing the equilibrium constraints [2].)

On the negative side, we demonstrate that this trade-off curve is very close to the
best possible. In our most involved construction, we exhibit a family of weighted Shap-
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ley network design games without o(logwg./10g10g Wpe, )-approximate Nash equilibria.
Recovering the existence of equilibria therefore requires relaxing the equilibrium constraints
by a super-constant (though only logarithmic) factor. We also show that for every a =
Q(log Wiz / 10glog Winas ), & price of stability of O((log W)/a) can only be obtained by re-
laxing the equilibrium constraints by an Q(«) factor.

1.5 Discussion of Alternative Approaches

We conclude the Introduction by justifying our decision to focus on a-approximate pure-
strategy Nash equilibria and by discussing three alternative ways of relaxing the problem.

First, we could ignore the non-existence of pure-strategy Nash equilibria and prove
bounds on the price of stability for instances in which such equilibria do exist. This approach
has been successfully applied to bounding the price of anarchy in weighted unsplittable self-
ish routing games [5, 9], which do not always possess pure-strategy Nash equilibria [23].
Unfortunately, for weighted Shapley network design games, a consequence of our construc-
tions is that no sublinear bound on the price of stability is possible in the parameter range
where pure-strategy Nash equilibria need not exist. Precisely, we show in Section 4.4 that
for every function f(z) = o(logx/loglogx), there is a family of weighted Shapley network
design games in which f(w,,q,)-approximate Nash equilibria exist, but all such equilibria
have cost an (W) factor times that of optimal.

Second, we could study the recent notion of “sink equilibria” due to Goemans, Mirrokni,
and Vetta [13]. A sink equilibrium of a game is a strongly connected component with no
outgoing arcs in the best-response graph of the game (where nodes correspond to outcomes,
arcs to best-response deviations by players). Note that once a sequence of best-response
deviations leads to a sink equilibrium, it will never again escape it. Sink equilibria always
exist, although they can be extremely large (such as the entire best-response graph). The
social value (or cost) of a sink equilibrium is defined in [13] as the expected value of a random
state, where the expectation is over the stationary distribution of a random walk in the
directed graph corresponding to the equilibrium. While sink equilibria are a well-motivated
concept and make analyses of the price of anarchy more robust and realistic (and this was the
motivation in [13]), it is not clear that they are relevant to price of stability analyses, where
we envision a single solution being proposed to players as a low-cost, stable outcome. Note
in particular that a sink equilibrium offers no guarantee to an individual player except for a
trivial one: if a node is reached via a best-response deviation by that player, then of course
it will not want to deviate again. Unfortunately, this is small consolation to a player that
spends most of its time in undesirable states while other players take their turns performing
their own best-response deviations.

Third, and perhaps most obviously, we could study mized-strateqy Nash equilibria, where
each player can randomize over its path set to minimize its expected cost. Every weight-
ed Shapley network design game admits at least one mixed-strategy Nash equilibrium by
Nash’s Theorem [20]. As with sink equilibria, however, it is not clear how to interpret
mixed-strategy equilibria in the context of the price of stability of network design (see also
the discussion in [3]). For example, a mixed-strategy Nash equilibrium could randomize



only over outcomes that are not a-approximate Nash equilibria for any reasonable value of
a, leading only to realizations that would be extremely difficult to enforce. One possible
solution would be to implement some type of contract binding the players to the realization
of a mixed-strategy Nash equilibrium. Once enforceable contracts are assumed, however, it
is arguably more realistic to simply build a near-optimal network and appropriately transfer
payments from players incurring small cost to those incurring large cost. Finally, if one
insists on making assumptions that cause mixed-strategy Nash equilibria to be realistically
implementable, then we advocate correlated equilibria [4] as a more suitable candidate for
price of stability analyses. Correlated equilibria are no harder to justify than mixed-strategy
Nash equilibria for the price of stability of network design. Moreover, since they form
a convex set containing all mixed-strategy Nash equilibria, they seem likely to be both
more powerful and more analytically tractable. We note that the inefficiency of correlated
equilibria in different applications has largely resisted analysis so far (though see [8]), and
leave this direction open for future research.

2 The Model

We now briefly formalize the model of network design with selfish players that we outlined
in the Introduction. A weighted Shapley network design game is a directed graph G = (V, E)
with k source-sink pairs (s1,%1),. .., (Sk, tx), where each pair (s;,t;) is associated with a
player ¢ that has a positive weight w;. By scaling, we can assume that min; w; = 1. Finally,
each edge e € F has a nonnegative cost c,.

The strategies for player i are the simple s;-t; paths P; in G. An outcome of the game is
a vector (P, ..., P) of paths with P, € P; for each i. For a given outcome and a player ¢,
the cost share 7 of an edge e € P is ¢, - w; /W, where W, = Zj;eepj wj is the total weight
of the players that select a path containing e. The cost to player ¢ in an outcome is the sum
of its cost shares: ¢;(Py,..., Px) = Y cp e

An outcome (Py, ..., Py) is a (pure-strategy) Nash equilibrium if, for each i, P; minimizes
¢; over all paths in P; while keeping P; fixed for j # i. An outcome (Pi,...,FP;) is an
a-approximate Nash equilibrium if for each 7,

Ci(Pl,...,Pi,...,Pk)SO&'Ci(Pl,...,Pi/,...,Pk)

for all P/ € P;.

The cost C(Py, ..., P;) of an outcome (P, ..., Py) is defined as ) ., p c.. The price of
stability of a game that has at least one Nash equilibrium is C(N)/C(O), where N is a Nash
equilibrium of minimum-possible cost and O is an outcome of minimum-possible cost. The
price of stability of a-approrimate Nash equilibria is defined analogously. Finally, we will
sometime use the expression («, 3)-approzimate Nash equilibrium to mean an outcome that
is an a-approximate Nash equilibrium and that has cost at most a ( factor times that of
optimal.



3 Non-Existence of Equilibria with Weighted Players

In this section, we prove that weighted Shapley network design games need not possess a
pure-strategy Nash equilibrium.

Proposition 3.1 There is a 3-player weighted Shapley network design game that admits
no pure-strateqy Nash equilibrium. Moreover, the underlying network is undirected with a
single sink, and the ratio between the maximum and minimum player weights can be made
arbitrarily small.

Recall that Anshelevich et al. [2] proved that every two-player weighted Shapley network
design game has a pure-strategy Nash equilibrium.

Proof of Proposition 3.1: We first present a directed network with no pure-strategy Nash
equilibrium and then describe how to convert it into an undirected example. The directed
version is shown in Figure 1. Let G denote this graph and w > 1 a parameter. The players
with sources s, so, and s3 have weights w?, 1, and w, respectively. All three players share
a common sink t. Costs for the edges of G are defined as in Table 1, where we assume that
¢ > 0 is much smaller than 1/w?.

Figure 1: A three-player weighted Shapley network design game with a single-sink network
and no pure-strategy Nash equilibrium.

Let ¢; denote the cost of edge e;. Our argument will rely on the following two chains of
inequalities, which follow from our choice of edge costs:

w2 2 w2
Cg———7 > > C e 1
Gl T eyl T T e (1)
and
cg+ ¢ > 5> Cgr—— + Oy —— (2)
ST W w1 o 1 7 w1



Edge Cost Edge Cost Edge Cost
el 0 €9 3€ es 0
e4 0 es w3/ (w+w+1)—€ |eg w3/ (w4 w+1) +€
er |+ w)/(wtw+D)]|es | [(w+w)/(w+w+1)]| e 1
—[e(2w? + 1)/ (2w? + 2)] +e(2w + 1)/ (2w + 2)]

Table 1: Edge costs for the graph G in Proposition 3.1.

(For the reader who wishes to verify these, we suggest initially taking w = 2.)

Now suppose for contradiction that a (pure-strategy) Nash equilibrium exists in G. Sup-
pose further that the second player uses the path e; — e5 — eg in this equilibrium. The first
half of the inequality (2) implies that the third player must be using the one-hop path eg (it
would share edge eg with no other player, and in the best case would share edge eg with both
of the other players). The first half of inequality (1) then implies that the first player must
use the one-hop path e;. But then the second player would prefer the path e3 — eg — eg,
contradicting our initial assumption.

Similarly, if the second player uses the path e3 — e — e9 in a Nash equilibrium,
then the second half of inequality (2) implies that the third player must be using the path
e; — eg — e9. The second half of inequality (1) then implies that the first player must
use €; — e5 — eg. Since this would cause the path ey — e5 — eg to be preferable to the
second player, we again arrive at a contradiction. There is thus no Nash equilibrium in this
weighted Shapley network design game.

To convert this directed example into an undirected one, simply make all of the edges
undirected and add a large constant M >> w? to the costs of the edges e, es, €3, €4, €7, and
es. The cost of every path in the original directed network increases by exactly M; the cost
of new paths are at least 2M. As long as M is sufficiently large, no player will use one of the
new undirected paths in an equilibrium, and all of the arguments for the directed network
carry over without change. W

4 Low-Cost Approximate Nash Equilibria: Lower Bounds

In this section we present negative results on the existence and price of stability of a-
approximate Nash equilibria in weighted Shapley network design games. We state our lower
bound on the feasible trade-offs between cost and stability in Subsection 4.1. The technical
heart of this lower bound is Subsection 4.3, where we construct weighted Shapley network
design games without o(log W/ 10g10g Wiye, )-approximate Nash equilibria. To illustrate
our main ideas, we present a simpler version of this construction in Subsection 4.2. Finally,
Section 4.4 proves that even when o(log W,/ 10g1og wq. )-approximate Nash equilibria
exist, such equilibria can have arbitrarily large cost.
We will give nearly matching positive results in Section 5.



4.1 Lower Bounds for Trading Stability for Cost

The goal of this section is to establish the following lower bound on the feasible trade-
offs between the stability and the cost of approximate Nash equilibria: for every a =
Q(log Wiz / 10glog Winas ), & price of stability of O((logW)/a) can be achieved only by re-
laxing equilibrium constraints by an 2(«) factor. Precisely, we will prove the following.

Theorem 4.1 Let f and g be two bivariate real-valued functions, increasing in each argu-
ment, such that every weighted Shapley network design game with maximum player weight
Winaz and sum of player weights W admits an f(wpmaz, W)-approzimate Nash equilibrium
with cost no more than a (1 + g(Wmaz, W)) factor times that of optimal. Then:

(a) for some constant c,

1 max
f(Winae, W) > ¢ lmar
log log wyas

for all W > Wpae > 1;

(b) for some constant c,
f(wmaxa W) : g(wmam7 W) > ClOgW

for all W > Wpae > 1.

As we will see in the next section, Theorem 4.1 is optimal up to a doubly logarithmic factor
in part (a).

4.2 Networks Without Approximate Nash Equilibria

Our proof of Theorem 4.1 is fairly technical. To introduce the main ideas in the proof, we
first briefly describe a simpler family of networks. These networks can be used to define
weighted Shapley network design games without (2 — €)-approximate Nash equilibria, where
€ > 0 is arbitrarily small. Since proving this fact is not easy, we discuss only the construction.
In Section 4.3 we build on this construction to prove Theorem 4.1.

We consider the network and source-sink pairs shown in Figure 2. (Each source of the
form s ; corresponds to the sink #y.) In the figure, all sources and sinks have only one incident
arc, except for s* and s*, which each have one incoming and one outgoing arc. There are
two primary paths, which contain all of the edges on the lower and upper horizontal paths,
respectively. Loosely speaking, each player chooses between two “short” paths (one for each
primary path), and long paths that “wrap around” the network and intersect both primary
paths. For suitable choices of edge costs and player weights, long paths will not be used
in any approximate Nash equilibrium. Edges not on either primary path have cost 0. We
refrain from precisely specifying the costs of other edges or the players’ weights; roughly,
the former quantity increases exponentially while the latter quantity decreases exponentially
from “left” to “right” in Figure 2.

The plan for proving that these networks do not have approximate Nash equilibria is as
follows. The player with source-sink pair (s;,t;), which has the largest weight, must choose
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S*

Figure 2: A network with no (2 — €)-approximate Nash equilibria. The two primary paths
are shown in bold.

one of the primary paths. This decision makes the edges on this path look cheap to the
other players. Second, whichever primary path the largest player chooses, its decision must
cascade through the rest of the players. Third, the n players with sink #; then wrap around
to the other primary path, which in turn causes the largest player to want to switch to the
other primary path, thereby precluding any stable outcome. We give a rigorous version of
this argument for a more complex network in the next section.

4.3 Networks Without o(logw,q./loglogw,..)-Approximate Nash
Equilibria

We next build on the construction in the previous section to show a near-optimal lower
bound on the existence of approximate Nash equilibria.

Theorem 4.2 For every function f(x) = o(logx/loglogx), there is a family of weighted
Shapley network design games that do not admit f(Wyae)-approzimate Nash equilibria as
Winaz — O0.

The high-level idea behind the proof of Theorem 4.2 is similar to that of the previous
construction, with upper and lower primary paths that wrap around and cross over at their
ends. As before, only edges on the primary paths have nonzero cost and most players choose
between short paths on the upper and lower primary paths.

The source of amplification in the new construction is that, instead of having a sequence
of players with exponentially decreasing weights, we will use a group of players in each weight
class. For each stage of the network, there will be a corresponding sequence of edges on each
of the primary paths instead of just one. The details follow.

Set the parameter p to the square of a sufficiently large integer. Let o denote H g,
where H,; = ;:1 1/¢ ~ Inj is the jth Harmonic number; this will be roughly our lower
bound on the approximation factor necessary to guarantee the existence of approximate Nash
equilibria. Set i to [5log, a] +2 and n to 2p* . We consider a network that comprises i — 1
stages that are connected in series. All stages but the first and last have the structure shown
in Figure 3(a). The first and last stages are depicted in Figure 3(b) and (c), respectively.
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Primary paths are defined as in the previous section. A path is short if it contains edges
from only one of the primary paths, and is long otherwise. We further classify a short path
as upper or lower, depending on which of the two primary paths it intersects.

The cost of the edges are:

o c(ey;) = c(ey) = p*;

o c(eia) = c(@ai- )Zp%/a;

® Cl€2i— 1) (€2z 1) = 3]9

(€2
(
o c(egjy) = c(Eg)p) =279~ 1pzl/ﬁa2 forj=1,2,...,i—2and (=1,2,...,/p;
o clegj_1) = c(fyj_1) = 2797 1p%H3 for j = 2,3, ... i —1;

o c(ep;) =c(ey;) =a, forj=1,2,...,n;

e all other edges have cost 0.

The players in the network game are as follows. Every player will be classified as either even,
odd, or small.

e Players Ay, A*, and A* (with corresponding source-sink pairs (s;,t;), (s*,t*), and
(5*,17)) have weight p*. Player Ay; is an even player; the other two are odd.

e For each j = 3,4,...,i—1and ¢ = 1,2,...,,/p, there is an even player Ay;, with
weight p* and source-sink pair (sa;, t2;¢).

e Foreach j =1,2,...,i—1, there are two odd players Ay;,; and Ay, with source-sink
pairs (sg;41,%2j41) and (Saj41, taj11), respectively, and with weight p?*1.

e There are even players A, and A, with respective weights p* and p? and respective
source-sink pairs (s4,t4) and (sq,t).

e Foreach ¢/ =1,2,...,n, there is a small player Ay, with weight 1 and source-sink pair
(80,6, %0)-

We now give the proof.

Proof of Theorem 4.2: Consider the weighted Shapley network design game described above,
where the parameter p is sufficiently large. We begin with a few preliminary observations.
First, the maximum and minimum player weights are p* and 1, respectively. Thus wye, =
pPUoglogr) while o = H 5 = ©(10g Winae/ 10108 Winae ). Second, odd players have only one
available (simple) path. Third, the sum W of the player weights is
i—1 i—1
3p2z’ + \/Z—)Zp% + 2Zp2j+1 +p4 —l—p2 + 2p2ia < 3p2ia (3)
Jj=3 J=1

for p sufficiently large. We now establish the following six claims in turn.
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previous stage s, k< \»t ezl /‘+t 2Ae22

S, Sz /+to > 5 szr<next stage
\ , |

previous stage S,

S 3

(c)

Figure 3: (a) The structure of the (i — k)-th stage. (b) The structure of the first stage. (¢) The
structure of the last stage.
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(C1) In every a/6-approximate Nash equilibrium, no small player uses a path that contains
both of the edges ey; and €;.

(C2) In every a/6-approximate Nash equilibrium, player Ay; uses a short path.
(C3) In every a/6-approximate Nash equilibrium, every even player uses a short path.

(C4) In every a/6-approximate Nash equilibrium in which player Ay; uses its lower (upper)
short path, all of the even players also use lower (upper) short paths.

(C5) In every «/6-approximate Nash equilibrium in which player Ay; uses its lower (upper)
short path, all of the small players use paths that include edge €s; (e9;).

(C6) In every «/6-approximate Nash equilibrium in which each of the small players chooses
a path that contains € (ey;) but not eq; (€;), player As; chooses its upper (lower)
short path.

Since a/6 = O(log Wiz / loglog W) and claims (C1), (C5), and (C6) cannot simultane-
ously hold, claims (C1)—(C6) imply the theorem.

To prove (C1), note that if a small player Ap, uses a path that includes both ey; and
€9, then it traverses either edge eg; _; or edge €y;_1. Since the cost of each of these edges is
3p*a?, the player incurs cost at least 3p*‘a3 /W, where W is the sum of the players’ weights.
(Recall this player has unit weight.) By (3), this is at least a?. On the other hand, if the
player Ay, chooses a path containing only the non-zero cost edges ey ; and €y; or €, and
ez, then it incurs cost at most a + p* /(1 + p*) < a+ 1 < 2a. (The player will share
edge eq; or €; with the player A* or A*, respectively.) Thus in every a/6-approximate Nash
equilibrium, no small player uses a path containing both ey; and ;.

The proof of (C2) is similar. If player As; does not use a short path, then it uses a path
that contains either edge ey;_; or edge €y_; and incurs cost at least 3p?a?- (p* /W) > p*a?.
If it uses a short path, then its incurred cost is at most p* (1 + 1/a) < 2p?.

For claim (C3), we first prove the assertion for all even players of the form As;,, by
downward induction on j. For the base case, consider a player Ay;,_o, for arbitrary ¢ €
{1,2,...,/p}. Player Ay must use either edge ey_s or €;_o. The odd players Ay_;
and Ay_; must occupy the edges es;_; and @9_1. Thus, there is a short path available
to player Ag;_o, with cost at most

21 21—2 21—2 £ 21 21—2 21 21
| 2 . 2 3
= <%) +3p*a’ <%) + o<Vl ity 2 <2
a \p +p D +p

ma? T« o «
m=1

for p sufficiently large. On the other hand, every long path of player As; o, contains either
edge e9;_3 or edge €y_3. By (Cl) and (C2), the total weight on this edge is at most the
weight of the corresponding odd player plus the total weight of the even players other than

Ay;, which is at most
i—1

P28 4 \/ﬁzp% fplept< 2p21'—(3/2) (4)
j=3
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for p sufficiently large. Therefore, if player Ag;_2, chooses a long path, it incurs cost at least

2i—2 2
2i+(1/2) p p—
p (p2i—2 +2p2i—(3/2)) - (5)

Inequalities (4) and (5) imply claim (C3) for players of the form Ay;_o,.

For the inductive step, fix j € {3,4,...,7 — 2} and assume that every player of the form
Agjr g with j > j uses a short path. Consider a player Ay;, for some ¢ € {1,2,...,,/p}.
Arguing as in the base case, the player can choose a short path and incur cost at most

C oimj—1,2i i i—j 2 i—j—1,2i i—j 2 i—j 2
2T v P 20T 2T gy, 27000200

mao2 p2i—4 + p2i—3 a2 — a o2 a

Y

m=1

provided p is sufficiently large. On the other hand, every long path contains either edge e;_1
or edge €y;_1. By (C1), (C2), and the inductive hypothesis, the total weight on this edge is
at most

J
PPy \/]322927” fplept< 2p2j+(1/2)

m=3

for p sufficiently large. Thus, if player Ay;, chooses a long path, it incurs cost at least

2j

2i—j—1p2i+(1/2) ( P

i—j—2 2i
¥+ 2p2j+(1/2)) > 20

This completes the inductive step.
Finally, we establish (C3) for players Ay and Ay. Given that (C3) holds for all other
players, player A, has a short path on which it would incur cost at most

2i—3p2i

2i—2p2i _ 2i—2p2i

4 9im22i=(12) .
Q Q

Y

while every long path contains either e3 or €3 and causes the player to incur cost at least

4
i—2 2 p i—3 2%
9 2p2 +(1/2) <p4 e +p2) <9 3p2 +(1/2)

for large p. For player Aj, previous steps imply that one of the edges es,€21 contains
player A4 while the other is unoccupied by other players. Long paths contain both of these,
so if player A, chooses one of them it incurs cost at least 2°2p**(1/2) On the other hand,
there is a short path with cost at most
9i=2p2i
a2

+ 2i—2p2i—(3/2) + 2p2ia2 < 2i—2p2ia2‘

Assuming p is large, this implies that player A; must choose a short path, completing the
proof of (C3).
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For (C4), by symmetry we can assume that player A,; takes its lower short path. We
proceed by contradiction. Among all even players that choose an upper short path, select
the “leftmost” one—the one with maximum index j and, subject to this, with maximum
index ¢. Suppose this player is Ay;, with j > 3. If j =4 — 1, then the cost to this player on
its minimum-cost lower short path is at most

2i—2 % 2%
p 2i-1 3 , 2P 4p
3 <
TopT A la? a2
for p large. The key point is this: by (C3) and the definition of ¢, the only players eligible
for using edge €y,_5 are Agj1,..., Asj,. Thus, if Ay;, chooses an upper short path, it incurs

cost at least p?*/fc, providing a contradiction.

Similarly, if the player is Ay;, with j € {3,4,...,7—2}, then our choice of j ensures that
the cost to the player on its minimum-cost lower short path is at most

v (12 Qi=ip2i  9imitly2i
P + o2 S e
while our choice of ¢ ensures that the cost incurred on every upper short path is at least
2i=3=1p? /lv, a contradiction. Finally, suppose that the “leftmost” even player choosing a
short upper path is A4 or As. The contradiction in the former case is essentially the same
as that for the previous case of a player As;, with j € {3,4,...,¢ — 2}. In the latter case,
the cost incurred by player A, on its lower short path is at most

1—2,.21—2
2"p
Oé2

9i=j—1y,2i-2

+2i—2p2i—(1/2) + op¥a? < 4p¥a?

for p large. Since edge €5, is occupied by no other player, our choice of i = [5log, a] + 2
ensures that the cost incurred by player A, on its upper short path is at least
9i=2p2

: > p2za3
«

— Y

which completes the proof of (C4).

We prove claim (C5) by contradiction. Assume that player As; chooses its lower short
path. Let ¢ be the minimum index for which player Aj, chooses a path containing the edge
eg;. By (C1)-(C4) and our choice of ¢, this player incurs the full « cost of edge &y ,. On the
other hand, if the player chooses the sg,-t path containing e, and €y (and no other edges
with non-zero cost), then it shares the former edge with player As and incurs cost at most

Q p2i

1+ p? 1y p*
This completes the contradiction and the proof of (C5).
Finally, assume the hypothesis in claim (C6) holds. By (C1)—(C3), if player Ay; chooses
its lower short path, then it shares edge es; only with player A* and incurs cost at least p* /2.
On the other hand, the cost of its upper short path is

p2i p2i N p_2z p2i _ 2p2z
2p2i + 2p2ia o p2i + p2i—1 o ’
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which completes the proof of (C6) and of the theorem. W

With Theorem 4.2 in hand, we can easily finish the proof of Theorem 4.1.

Proof of Theorem j.1: Part (a) follows immediately from Theorem 4.2. Part (b) holds even
for the special case of unweighted Shapley network design games and follows from a minor
modification of an example in [2]. Specifically, Anshelevich et al. [2] presented an unweighted
Shapley network design game in which the minimum-cost solution has cost 1 4 ¢, where
€ > 0 is arbitrarily small, and the unique Nash equilibrium has cost Hy. Moreover, these two
outcomes use disjoint edge sets. For each fixed value of W, we can take this example with
k = |W ] players and scale down the costs of the edges used by the Nash equilibrium by an
f(1,W) factor. This yields an (unweighted) game in which the only f(1,WW)-approximate
Nash equilibrium has cost Q(log W/ f(1,W)); there is still a solution with cost 1 4 €. Thus
fA,W)-g(1, W) =QogW) forall W >1. B

4.4 A Lower Bound on the Price of Stability

In this section, we employ the networks of Section 4.3 to show that, in addition to the evap-
oration of a-approximate Nash equilibria once o = o(log Wz / 10g10g Wpnas ), in instances
where such equilibria do exist, their cost can be extremely high. This stands in contrast to
recent work on routing games [5], where there are good upper bounds on the price of anarchy
even in classes of networks where Nash equilibria are not guaranteed to exist.

Proposition 4.3 For every function f(x) = o(logx/loglogx), there are weighted Shapley
network design games that admit pure-strateqy Nash equilibria, but in which all f(wWmaz)-
approximate Nash equilibria have cost Q(W') times that of optimal.

Proof: We adopt the notation used in Section 4.3. For every function f(x) = o(log z/ loglog x),
we can find a sufficiently large constant p such that the corresponding weighted Shapley net-
work design game G constructed in that section has no f(w.)-approximate Nash equilibria.
We note that the sum of the edge costs in G is at most p**!, provided p is sufficiently large.

We then construct a new network game as follows. We take m copies G1,Gs,...,G,,
of G and remove the player A* in each of them. As shown in Figure 4, we add the extra
nodes N1, Na, ..., N,,, Ny and T. We add the following edges:

e one edge from Ny to T with cost C' = mp*;

e for each j =1,2,...,m, one edge from N; to T" with cost C;

e for each j =1,2,...,m, one zero-cost edge from N; to G;’s copy of the vertex s*;
e for each j =1,2,...,m, one zero-cost edge from G’s copy of the vertex t* to Nyp.

We also add m players By, Ba, ..., By,. For each j, the player B; has weight p* and source-
sink pair (N;,T). By construction, the only players that can use edges inside the network G;
are the players internal to this game and the new player B;.
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Figure 4: A network in which all approximate Nash equilibria have cost far from optimal.
Every rectangle represents a network of the type described in Section 4.3.

First suppose that a player B; connects to 1" via the vertices s* and ¢* internal to Gj.
By the argument in the proof of Theorem 4.2, in every such outcome, some player internal
to the network G, has a deviation that decreases its cost by more than an f(w,q,) factor;
here, B; is playing the role of the deleted player A* in the game G;. Thus no such outcome
is an f(wpmae)-approximate Nash equilibrium of the game. On the other hand, one such
outcome—with each B; choosing the path that intersects the network G;—has cost at most
C + mp**t, provided p is sufficiently large.

Now suppose that each player B; avoids GG; and connects directly to 7". No player of the
form B; can profitably deviate, since it would bear the full cost of the edge from Ny to T
Moreover, consider the following strategies for the players internal to a game G;. Each even
player of GG chooses its minimum-cost upper short path. Each small player of G; chooses
its minimum-cost path that includes the edge €3,—beginning on the lower primary path and
wrapping around to the upper one. We claim that in this case, no player internal to G
has an incentive to deviate. This claim is easy to see for the even players. (Recall odd
players only have one available strategy.) No small player wants to deviate; since player B;
is avoiding the game G, the edge ey; is unoccupied, and every deviation that includes it
would cost a small player the full p* amount.

In conclusion, the network game admits a pure-strategy Nash equilibrium, but every f(wa.)-
approximate Nash equilibrium has cost at least mC', which is an Q(m) factor times larger
than the optimal cost. Since m can be arbitrarily large, the proposition follows. B
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5 Low-Cost Approximate Equilibria: Upper Bounds

In this section we prove our main positive result, that every weighted Shapley network design
game admits an approximate Nash equilibrium with low cost. Specifically, we show that for
all & = Q(log W), every such game admits an O(«)-approximate Nash equilibrium with
cost an O((log W) /a) times that of optimal. (Recall that w,,,, and W denote the maximum
player weight and the sum of the players’ weights, respectively.) In particular, every weighted
Shapley network design game possesses an O(log W )-approximate Nash equilibrium with cost
at most a constant times that of optimal. This is a new result even for unweighted Shapley
network design games.

At a high level, our proof is based on the “potential function method” that has been
previously used to bound the price of anarchy and stability in a number of different games
(see [24]). A real-valued function ® defined on the outcomes of a game is a potential function
if, for every player 7 and every possible deviation by that player, the change in the value of
® equals the change in player i’s objective function. Thus a potential function “tracks” suc-
cessive deviations by players. In particular, local optima of a potential function are precisely
the pure-strategy Nash equilibria of the game. Potential functions were originally applied in
noncooperative game theory by Beckmann, McGuire, and Winsten [7], Rosenthal [22], and
Monderer and Shapley [17], in successively more general settings, to prove the existence of
Nash equilibria. Potential functions can also be used to bound the price of stability: if a
game has a potential function ® that is always close to the true social cost, then a global
optimum of ®, or any local optimum reachable from the min-cost outcome via best-response
deviations, has cost close to optimal. Indeed, Anshelevich et al. [2] proved both the existence
of Nash equilibria and an H; upper bound on the price of stability in unweighted Shapley
network design games using a potential function.

Proposition 3.1 implies that weighted Shapley network design games do not generally
admit a potential function (see also [2]). We nonetheless show that ideas from potential
functions can be used to derive a nearly optimal stability vs. cost trade-off for approximate
Nash equilibria of weighted Shapley network design games. The initial idea is simple: we
identify an “approximate potential function”, which decreases whenever a player deviates
and decreases its cost by a sufficiently large factor. This argument will imply the existence
of an O(log wyq.)-approximate Nash equilibrium with cost within an O(log W) factor of
optimal in every weighted Shapley network design game.

Extending this argument to obtain a stability vs. cost trade-off requires further work.
The reason is that we will use a common approximate potential function for all points on
the trade-off curve, and this potential function can overestimate the true cost by as much as
a ©(log W) factor. This function therefore seems incapable of proving an o(log W) approx-
imation factor for the cost, even if we relax equilibrium constraints by a large factor. We
overcome this problem by more carefully considering how extra cost is incurred throughout
best-response dynamics starting from a minimum-cost outcome. More precisely, we show
that as we increase the relaxation factor on the equilibrium constraints, the allowable best-
response deviations lead to more rapid decreases in the value of our approximate potential
function. The formal statement is as follows (cf., Theorem 4.1).
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Theorem 5.1 Let f and g be two bivariate real-valued functions satisfying:
(a)
f(wmaxa W) > 2log, [6(1 + wmax)] (6)
for all W > wyee > 1; and
(b)
f(wmama W) ' g(wmaxa W) Z 2 10g2(1 + W)
for all W > wpae > 1.

Then every weighted Shapley network design game with mazimum player weight Wy,q, and
sum of player weights W admits an f(Wpae, W)-approximate Nash equilibrium with cost at
most (1 4+ g(Wmaz, W)) times that of optimal.

Before proving the theorem, we establish some preliminary results.

Fact 5.2 Let x and y be real numbers, and suppose that y > 1 and that x = 0 or x > 1.
Then:

(a) logy(1 +z +y) —logy(1 + ) = 27 and

(b) logy(1+ = +y) — logy(1 + ) <log,le(1 +y)] - .

Proof: For both parts, we will use the fact that (1 4 ;)x approaches e monotonically from
below as & — oo. For part (a), first note that if x > 0 and y > 1 4 z, then the inequality
holds: the right-hand side is at most 1 while the left-hand side equals logy(1 + 127) > 1. So
suppose that y < 1 4 x; then

zty 14z

1+ )" >(1+42L )" >2
1+2x 1+2x

Raising both sides of this inequality to the y/(z+y) power and then taking logarithms (base
2) verifies the claim.
For part (b), we have

z+y 14z y—1

(ert5) " = (o) (erts)”
< (+v) (o)

< e(l+y).

As before, raising both sides of this inequality to the y/(x 4+ y) power and then taking
logarithms (base 2) verifies the claimed inequality. Wl

We next consider the existence of approximate Nash equilibria without worrying about
their cost.
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Lemma 5.3 For every function f(wmaes, W) satisfying

f(wma:va W) > 10g2[€(1 + wmaw)] (7>

for all W > Wy > 1, every weighted Shapley network design game admits an f(wmae, W)-
approzimate Nash equilibrium.

Proof: We define an approximate potential function ® for a weighted Shapley network design
game as follows: for an outcome (P, ..., P;) of the game, define

O(Pr,...,P) = celogy(1+We),

ecE

where W, = > jiecp, Wi- Call a deviation by a player from one outcome to another a-
improving if the deviation decreases the cost incurred by the player by at least an a mul-
tiplicative factor. Thus a-approximate Nash equilibria are those outcomes from which no
a-improving deviations exist. Since there are a finite number of outcomes, we can prove the
lemma by showing that f(wa., W)-improving deviations strictly decrease the approximate
potential function .

Consider an a-improving deviation of player i from the outcome (Py, ..., Py), say to the
path @;, where a equals f(waz, W). We assume that P; and @); are disjoint; if this is not
the case, the following argument can be applied to P; \ Q; and Q; \ P; instead. By the
definition of a-improving, we have

w; 1 w;
S U< S ®)
e€Q; We + %% f(wma:w W) ecP; We
where W, = Zj:ee p, Wj denotes the total weight on edge e before player i’s deviation.

We can then derive the following:

Ad = Z Ce - [logy(1 + We +w;) — logy (1 + We)| —

e€Q;
> e [logy(1+ We) — logy(1+ W, — w;)] (9)
ech;
w; w;
< > e {logﬂe(l +w,.)]m} - e = (10)
e€cqQ); e v ecP; €
w; w;
< logye(l + Wiar)] Y et — = > o
e€Q); We + Wi ech; We
< - Z Co - W . f(wmamu W) - 10g2[€(1 + wmaw)] (11)
o W f(Winaz, W)
< 0.

In this derivation, the equality (9) follows from the definition of ®; the inequality (10)
follows from Fact 5.2, with Fact 5.2(b) applied to each term in the first sum with z = W,
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and y = w;, and Fact 5.2(a) applied to each term in the second sum with z = W, — w; and

y = wy; inequality (11) follows from (8); and the final inequality follows from assumption (7).
|

We now extend the argument in the proof of Lemma 5.3 to account for the cost of
approximate equilibria.

Proof of Theorem 5.1: Consider a maximal sequence of f(wyqs, W)-improving deviations
that begins in a minimum-cost outcome with cost C*. By Lemma 5.3, this sequence is finite
and terminates at a f(wWyqs, W)-approximate Nash equilibrium. Consider a deviation in this
sequence by a player ¢ from a path P; to a path @Q);, and let A denote the cost of the edges
of @); that were previously vacant (i.e., used by no player). We then have

Wi f(Wiaz, W) — logs[e(1 + Winaz)]
AD < —S ¢ 12
o Z ¢ We f(wmamv W) ( )
ecP;
1 w;
< iyl (13)
2 ecP; We
1
S _§A : f(wmaxa W)a (14)

where inequality (12) is the same as inequality (11) in the proof of Lemma 5.3; inequality (13)
follows from assumption (6); and inequality (14) follows from the fact that the cost incurred
by player i before its deviation is at least f(wyqe, W) times the cost it incurs after the
deviation, which is at least the sum A of the costs of the previously vacant edges.

Hence, in the maximal sequence of f (W, W)-improving deviations, whenever the cost
of the current outcome increases by an additive factor of A, the potential function ® decreases
by at least A - f(Wpmaz, W)/2. By the definition of ®, the potential function value of the
optimal outcome is at most a log,(1 + W) multiplicative factor larger than its cost C*.
Moreover, the potential function is always nonnegative and only decreases throughout the
sequence of deviations. Therefore, the cost only increases by a 2C*logy (1 4+ W)/ f(wmaz, W)
additive factor throughout the entire sequence of deviations. The sequence thus terminates
in a (f(Wmaz, W), 1+ (2logy(1 + W)/ f(wWmaz, W)))-approximate Nash equilibrium. W

Remark 5.4 Our proof of Theorem 5.1 is quite flexible and carries over to extensions known
for the unweighted case [2]. For example, Theorem 5.1 and its proof hold for congestion games
(where the strategy set of a player is an arbitrary collection of subsets of a ground set) and
for concave (instead of constant) edge costs.

6 Future Directions

The present paper gives an essentially tight analysis of the feasible trade-offs between the
stability and cost of approximate Nash equilibria in Shapley network design games. On
the other hand, the corresponding trade-off curve in several natural special cases is not
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well understood. For example, what are the feasible trade-offs in undirected networks? In
single-sink networks? Or when there is only a small number of distinct player weights?
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