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Example: The Vickrey Auction 

Setup: Single-item auction, welfare-maximization. 

•  one seller with one item 

•  n bidders, bidder i has private valuation vi 

•  goal: maximize welfare (i.e., winner = largest vi) 

•  [Vickrey 61] solution = second-price auction 
•  winner = highest bidder 
•  price = 2nd-highest bid 
•  bidders follow dominant strategies => maximizes welfare 

Looking ahead: what about selling multiple items? 
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Example: Myerson’s Auction 

Setup: Single-item auction, revenue-maximization. 

•  private valuations vi drawn i.i.d. from known prior F 

•  goal: maximize seller’s expected revenue 

•  [Myerson 81] solution = 2nd-price auction + reserve 
•  reserve price r = monopoly price for F  [i.e., argmaxp p(1-F(p))] 
•  winner = highest bidder above r (if  any) 
•  price = maximum of  r and 2nd-highest bid 

Looking ahead: what about heterogeneous bidders? 
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The Optimal Mechanism 
Design Paradigm 

•  define mechanism design space 
•  e.g., sealed-bid auctions 

•  define desired properties 
•  e.g., max welfare (ex post) or expected revenue (w.r.t. F) 

•  identify one or all mechanisms with properties 

•  identify specific mechanisms or mechanism          
features that are potentially useful in practice 

•  optimal mechanism can serve as benchmark               
for comparing different “second-best” solutions 
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The Approximately Optimal 
Mechanism Design Paradigm 

•  define design space, objective function 
•  e.g., limited distributional knowledge; low-dimensional bid spaces 

•  define a benchmark 
•  e.g., max welfare/revenue of  an arbitrarily complex mechanism 

•  identify mechanisms that approximate benchmark 

•  identify specific mechanisms or mechanism          
features that are potentially useful in practice 

•  quantify cost of  side constraints (e.g., “simplicity”) 
•  e.g., complex bids requiredó best approx far from 100% 
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Two Case Studies 

Case Study #1: revenue-maximization, non-i.i.d. bidders. 

•  Issue: Myerson’s optimal auction requires detailed 
knowledge of  valuation distributions. 

•  Question: is this essential for near-optimal revenue? 

Case Study #2: welfare-maximization, multiple items. 

•  Issue: direct revelation (as in VCG) requires a complex 
bidding space (exponential in # of  items). 

•  Question: is this essential for near-optimal welfare? 
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Many Applications of  the 
Approximation Paradigm 

•  limited communication [Nisan/Segal 06], ... 
•  limited computation [Lehmann/O’Callaghan/Shoham 

99], [Nisan/Ronen 99], ... 

•  unknown prior [Neeman 03], [Baliga/Vohra 03], [Segal 
03], [Dhangwatnotai/Roughgarden/Yan 10], ... 

•  worst-case revenue guarantees [Goldberg/Hartline/
Karlin/Saks/Wright 06], ... 

•  simple allocation rules [Chawla/Hartline/Kleinberg 07], 
[Hartline/Roughgarden 09], ... 

•  simple pricing rules [Lucier/Borodin 10], [Paes Leme/
Tardos 10], .... 

8 



Outline 

1.  The optimal and approximately optimal mechanism 
design paradigms: Vickrey, Myerson, and beyond. 

2.  Case study #1: do good single-item auctions require detailed 
distributional knowledge? 

3.  Case study #2: do good combinatorial auctions 
require complex bid spaces? 

4.  Conclusions 

9 

€ 



Optimal Single-Item Auctions 

[Myerson 81]: characterized the optimal auction, as a 
function of  the prior distributions F1,...,Fn. 

•  Step 1: transform bids to virtual bids: 
•  formula depends on distribution:  

•  Step 2: winner = highest positive virtual bid (if  any) 

•  Step 3: price = lowest bid that still would’ve won 

I.i.d. case: 2nd-price auction with monopoly reserve price. 

General case: requires full knowledge of  F1,...,Fn. 
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Motivating Question 

Question: Does a near-optimal single-item auction 
require detailed distributional knowledge?  

Reformulation: How much data is necessary and 
sufficient to justify revenue-optimal auction theory? 

•  “data” = samples from unknown F1,...,Fn  
•  formalism inspired by learning theory [Valiant 84] 
•  Yahoo! example: [Ostrovsky/Schwarz 09] 

•  benchmark: Myerson’s optimal auction for F1,...,Fn  
•  want expected revenue at least (1-ε) times benchmark 

Answer: governed by degree of  heterogeneity of  bidders. 
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Formalism: Single Buyer 

Step 1: seller gets s samples v1,...,vs from unknown F  

Step 2: seller picks a price p = p(v1,...,vs) 

Step 3: price p applied to a fresh sample vs+1 from F 

 

 

 

 

Goal: design p so that                       
is close to        (no matter F is)  
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m samples 
v1,...,vs  

price 
p(v1,...,vs) 

valuation vs+1 

revenue of  
p on vs+1 

 Ev1,...,vs
[p(v1,...,vs ) i (1− F(p(v1,...,vs ))]

 max p[p i (1− F(p)]



Results for a Single Buyer 

1.  no assumption on F: no finite number of  samples 
yields non-trivial revenue guarantee (for every F) 

2.  if  F is “regular”: with s=1, setting p(v1) = v1 yields a 
½-approximation (consequence of  [Bulow/Klemperer 96]) 

3.  for regular F, arbitrary ε:      
≈ (1/ε)3 samples necessary and sufficient for (1-ε)-
approximation [Dhangwatnotai/Roughgarden/Yan 10], 
[Huang/Mansour/Roughgarden 14]  

4.  for F with a montone hazard rate, arbitrary ε:              
≈ (1/ε)3/2 samples necessary and sufficient for (1-ε)-
approximation [Huang/Mansour/Roughgarden 14] 



Formalism: Multiple Buyers 

Step 1: seller gets s samples v1,...,vs from  

•  each vi an n-vector (one valuation per bidder) 

Step 2: seller picks single-item auction A = A(v1,...,vs) 

Step 3: auction A is run on a fresh sample vs+1 from F 

 

 

 

 

Goal: design A so        close to OPT 
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F = F1 ×!×Fn

m samples 
v1,...,vs  

auction 
A(v1,...,vs) 

valuation profile vs+1 

revenue of  
A on vs+1 

Ev1,...,vs
[Evs+1

[Rev(A(v1,...,vs )(vs+1))]]



Positive Results 

One sample (s=1) still suffices for ¼-approximation 
•  2nd-price auction with reserves = samples 
•  consequence of  [Hartline/Roughgarden 09] 

Polynomial (in ε-1 only) samples still suffice for (1-ε)-
approximation if  bidders are i.i.d. 
•  only need to learn monopoly price 

Take-away: for these cases, 
•  modest amount of  data (independent of  n) suffices 
•  modest distributional dependence suffices 
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Negative Results 

Theorem: [Cole/Roughgarden 14] at least                         
samples are necessary for (1-ε)-approximation. 

•  for every sufficiently small constant ε 

•  even when distributions guaranteed to be truncated 
exponential distributions (monotone hazard rate) 

Corollary (of  proof): near-optimal auctions require 
detailed knowledge of  the valuation distributions. 
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Motivating Question Revisited 

Question: does a near-optimal single-item auction 
require detailed distributional knowledge?  

Answer: if  and only if  bidders are heterogeneous. 

Reformulation: How much data is necessary and 
sufficient to justify revenue-optimal auction theory? 

Answer : polynomial in ε-1  but also linear in the 
“amount of  heterogeneity” (i.e., # of  distinct Fi’s) 
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The VCG Mechanism 

Setup: n bidders, m non-identical goods 
•  bidder i has private valuation vi(S) for each subset S 

of  goods [≈ 2m parameters] 
•  welfare of  allocation S1,S2,...,Sn:  ∑i vi(Si) 
•  goal is to allocate goods to maximize this quantity 

VCG mechanism: [Vickrey 61, Clarke 71, Groves 73] 

•  each player reports full valuation (yikes!) 
•  compute welfare-maximizing allocation 
•  charge payments to incentive truthful revelation 
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Motivating Question 

Question: When can simple auctions perform well in 
complex settings?  

•  “simple” = low-dimensional bid space 
•  polynomial in m, rather than exponential in m 

•  benchmark = VCG welfare (i.e., maximum-possible) 

•  want equilibrium welfare close to benchmark 

•  example interpretation: is package bidding essential? 

Answer: governed by structure of  bidders’ valuations 
(e.g., extent to which items are complements). 
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A Simple Auction:          
Selling Items Separately 

Simultaneous First-Price Auction (S1A):  [Bikhchandani 99] 

•  each bidder submits one bid per item 
•  m parameters instead of  2m 

•  each item sold separately in a first-price auction 

Question: when do S1A’s have near-optimal equilibrium welfare? 

•  seems unlikely if  items are complements (exposure problem) 
•  expect inefficiency even with known gross substitutes 

valuations (demand reduction) 

•  expect inefficiency even with m=1 (i.e., first-price single-item 
auction) with non-iid valuations 
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Valuation Classes 
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When Do S1A’s Work Well? 

General valuations: S1A’s can have equilibria with 
welfare arbitrarily smaller than the maximum possible. 
[Hassidim/Kaplan/Mansour/Nisan 11] 

Subadditive valuations: [vi(S+T) ≤ vi(S)+vi(T)]          
every equilibrium of  a S1A is at least 50% of  the 
maximum possible.  [Feldman/Fu/Gravin/Lucier 13] 
•  full-info Nash equilibria or Bayes-Nash equilibria 
•  63% when valuations are submodular [Syrgkanis/Tardos 13] 

Take-away: S1A’s work reasonably well if  and only if  
there are no complements. 
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Digression on Approximation Ratios 

Recall: main motivations for approximation approach: 

•  identify specific mechanisms or mechanism          
features that are potentially useful in practice 

•  quantify cost of  side constraints (e.g., “simplicity”) 
•   e.g., complex bids requiredó best approx far from 100% 

Also: (if  you insist on a literal interpretation) 

•  by construction, can’t achieve 100% of  benchmark 

•  non-asymptotic => bounded below 100% 
•  possible escapes: large markets, parameterized approximation 
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Negative Results 

Theorem: [Roughgarden 14] 

•  With subadditive bidder valuations, no simple auction 
guarantees equilibrium welfare better than 50% OPT. 
•  “simple”: bid space dimension ≤ polynomial in # of  goods 

•  With general valuations, no simple auction guarantees 
non-trivial equilibrium welfare. 

Take-aways: 

1.  In these cases, S1A’s optimal among simple auctions. 

2.  With complements, complex bid spaces (e.g., package 
bidding) necessary for welfare guarantees. 
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Conclusions 

Thesis: approximately optimal mechanisms significantly 
extend reach of  optimal mechanism design theory. 

Example #1: identify when distributional knowledge is 
essential for near-optimal revenue-maximization. 

•  open: beyond single-item auctions 

Example #2: identify when high-dimensional bid spaces 
are essential for near-optimal welfare-maximization. 

•  open: better understanding of  specific formats 
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