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Example: The Vickrey Auction

Setup: Single-1item auction, welfare-maximization.
* one seller with one item

* n bidders, bidder 1 has private valuation v,

« goal: maximize welfare (1.e., winner = largest v.)

» [Vickrey 61] solution = second-price auction
winner = highest bidder

price = 2"d-highest bid
bidders follow dominant strategies => maximizes welfare

Looking ahead: what about selling multiple items?




Example: Myerson’s Auction

Setup: Single-1item auction, revenue-maximization.
* private valuations v, drawn 1.1.d. from known prior F
* goal: maximize seller’s expected revenue

* [Myerson 81] solution = 2nd-price auction + reserve
reserve price r = monopoly price for F [i.e., argmax, p(1-F(p))]

winner = highest bidder above r (if any)
price = maximum of r and 2"4-highest bid

Looking ahead: what about heterogeneous bidders?




The Optimal Mechanism
Design Paradigm

define mechanism design space
e.g., sealed-bid auctions

define desired properties — how

e.g., max welfare (ex post) or expected revenue (w.r.t. F)

identify one or all mechanisms with properties

—

identify specific mechanisms or mechanism =
features that are potentially useful in practice

optimal mechanism can serve as benchmark

for comparing different “second-best” solutions |




The Approximately Optimal
Mechanism Design Paradigm

=

define design space, objective function
e.g., limited distributional knowledge; low-dimensional bid spaces

define a benchmark — how
e.g., max welfare/revenue of an arbitrarily complex mechanism

1dentify mechanisms that approximate benchmark

identify specific mechanisms or mechanism )

features that are potentially useful in practice

. . . e 4. . = Why

quantify cost of side constraints (e.g., “simplicity”)
e.g., complex bids required < best approx far from 100%

—




Two Case Studies

Case Study #1: revenue-maximization, non-1.1.d. bidders.

* Issue: Myerson’s optimal auction requires detailed
knowledge of valuation distributions.

* Question: 1s this essential for near-optimal revenue?

Case Study #2: welfare-maximization, multiple items.

» Issue: direct revelation (as in VCQG) requires a complex
bidding space (exponential in # of items).

* Question: 1s this essential for near-optimal welfare?




Many Applications of the
Approximation Paradigm

limited communication [Nisan/Segal 06], ...

limited computation [Lehmann/O’Callaghan/Shoham
99], [Nisan/Ronen 99], ...

unknown prior [Neeman 03], [Baliga/Vohra 03], [Segal
03], [Dhangwatnotai/Roughgarden/Yan 10], ...

worst-case revenue guarantees [Goldberg/Hartline/
Karlin/Saks/Wright 06], ...

simple allocation rules [Chawla/Hartline/Kleinberg 07],
[Hartline/Roughgarden 09], ...

simple pricing rules [Lucier/Borodin 10], [Paes Leme/
Tardos 10], ....
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Optimal Single-Item Auctions

[Myerson 81]: characterized the optimal auction, as a
function of the prior distributions Fy,...,F..

» Step 1: transform bids to virtual bids: b, =¢,(b,)
formula depends on distribution: ¢,(b,)=b,—[1-F b))/ f.(b,)

» Step 2: winner = highest positive virtual bid (if any)

» Step 3: price = lowest bid that still would’ve won

[.i.d. case: 2Md-price auction with monopoly reserve price.
General case: requires full knowledge of F,,....F_.




Motivating Question

Question: Does a near-optimal single-item auction
require detailed distributional knowledge?

Reformulation: How much data 1s necessary and
sufficient to justify revenue-optimal auction theory?

* “data” = samples from unknown F,...,F_
formalism inspired by learning theory [Valiant 84]

Yahoo! example: [Ostrovsky/Schwarz 09]

* benchmark: Myerson’s optimal auction for F,,....F_
want expected revenue at least (1- € ) times benchmark

Answer: governed by degree of heterogeneity of bidders.




Formalism: Single Buyer

Step 1: seller gets s samples v,...,v, from unknown F
Step 2: seller picks a price p = p(v,...,Vy)
Step 3: price p applied to a fresh sample v, ; from F

m samples | price — revenue of
Virees Vs (V.. V) ponvg,

1

valuation v,

Goal: design pso that E,_ [p(v,,...v)*(1- F(p(v,,...v,))]
is close to max,[p-(1-F(p)]  (no matter F'is)

12




Results for a Single Buyer

no assumption on F: no finite number of samples
yields non-trivial revenue guarantee (for every F)

if F'1s “regular”: with s=1, setting p(v,) = v, yields a
Y2-approximation (consequence of [Bulow/Klemperer 96])
for regular F, arbitrary € :

~ (1/ € )3 samples necessary and sufficient for (1- € )-

approximation [Dhangwatnotai/Roughgarden/Yan 10],
[Huang/Mansour/Roughgarden 14]

for Fwith a montone hazard rate, arbitrary € :
~ (1/ € )/? samples necessary and sufficient for (1- € )-
approximation [Huang/Mansour/Roughgarden 14]




Formalism: Multiple Buyers

Step 1: seller gets s samples vy,...,v;from  F=F x---xF,

* each v, an n-vector (one valuation per bidder)

Step 2: seller picks single-item auction A = A(vy,...,V)

Step 3: auction 4 is run on a fresh sample v, from F

m samples
Viyee, Vg

—

auction
A(vy,...,Vy)

1

— revenue of
Aonvg,

valuation profile v,

Goal: design Aso  E, ,[E, [Rev(A(v,,...v)(v,, )]l close to OPT

14




Positive Results

One sample (s=1) still suffices for Y:-approximation
 2ndprice auction with reserves = samples
* consequence of [Hartline/Roughgarden 09]

Polynomial (in € -! only) samples still suffice for (1- € )-
approximation if bidders are 1.1.d.

* only need to learn monopoly price

Take-away: for these cases,
* modest amount of data (independent of n) suffices
* modest distributional dependence suffices




Negative Results

Theorem: [Cole/Roughgarden 14] at least = n / \/E
samples are necessary for (1- € )-approximation.

 for every sufficiently small constant &

* even when distributions guaranteed to be truncated
exponential distributions (monotone hazard rate)

Corollary (of proof): near-optimal auctions require
detailed knowledge of the valuation distributions.




Motivating Question Revisited

Question: does a near-optimal single-item auction
require detailed distributional knowledge?

Answer: if and only if bidders are heterogeneous.

Reformulation: How much data 1s necessary and
sufficient to justify revenue-optimal auction theory?

Answer : polynomial in € -! but also linear in the
“amount of heterogeneity” (i.e., # of distinct F.’s)
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The VCG Mechanism

Setup: n bidders, m non-i1dentical goods

* bidder 1 has private valuation v,(S) for each subset S
of goods [= 2™ parameters]

« welfare of allocation S,,S,,...,S.: > v(S)
goal is to allocate goods to maximize this quantity

VCG mechanism: [Vickrey 61, Clarke 71, Groves 73]
 each player reports full valuation (yikes!)

* compute welfare-maximizing allocation

* charge payments to incentive truthful revelation




Motivating Question

Question: When can simple auctions perform well in
complex settings?

“simple” = low-dimensional bid space
polynomial in m, rather than exponential in m

benchmark = VCG welfare (i.e., maximum-possible)

want equilibrium welfare close to benchmark

example interpretation: is package bidding essential?

Answer: governed by structure of bidders’ valuations
(e.g., extent to which items are complements).




A Simple Auction:
Selling Items Separately

Simultaneous First-Price Auction (S1A): [Bikhchandani 99]

each bidder submits one bid per item
m parameters instead of 2™

each item sold separately in a first-price auction

Question: when do S1A’s have near-optimal equilibrium welfare?

seems unlikely if items are complements (exposure problem)

expect mefficiency even with known gross substitutes
valuations (demand reduction)

expect inefficiency even with m=1 (1.e., first-price single-item
auction) with non-11d valuations




Valuation Classes

complements;
exposure problem

general

V(S+T)=v(S)+v(T)
can have “hidden
complements”

subadditive

submodular o
“diminishing
returns” but no

gross Walrasian eq

substitu

Walrasian eq exist;
demand reduction




When Do S1A’s Work Well?

General valuations: S1A’s can have equilibria with

welfare arbitrarily smaller than the maximum possible.
[Hassidim/Kaplan/Mansour/Nisan 11]

Subadditive valuations: [vy(S+T) < v,(S)+v,(T)]
every equilibrium of a S1A 1s at least 50% of the

maximum possible. [Feldman/Fu/Gravin/Lucier 13]
full-info Nash equilibria or Bayes-Nash equilibria

63% when valuations are submodular [Syrgkanis/Tardos 13]

Take-away: S1A’s work reasonably well if and only 1f
there are no complements.




Digression on Approximation Ratios

Recall: main motivations for approximation approach:

* 1dentify specific mechanisms or mechanism
features that are potentially useful in practice

» quantify cost of side constraints (e.g., “simplicity”)
e.g., complex bids required < best approx far from 100%

Also: (if you insist on a literal interpretation)
* by construction, can’t achieve 100% of benchmark

* non-asymptotic => bounded below 100%
possible escapes: large markets, parameterized approximation




Negative Results

Theorem: [Roughgarden 14]

« With subadditive bidder valuations, no simple auction
guarantees equilibrium welfare better than 50% OPT.
“simple”: bid space dimension < polynomial in # of goods

« With general valuations, no simple auction guarantees
non-trivial equilibrium welfare.

Take-aways:
1. Inthese cases, S1A’s optimal among simple auctions.

2.  With complements, complex bid spaces (e.g., package
bidding) necessary for welfare guarantees.
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Conclusions

Thesis: approximately optimal mechanisms significantly
extend reach of optimal mechanism design theory.

Example #1: identify when distributional knowledge is
essential for near-optimal revenue-maximization.

* open: beyond single-item auctions

Example #2: identify when high-dimensional bid spaces
are essential for near-optimal welfare-maximization.

* open: better understanding of specific formats




