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= winner = highest bidder above reserve price

= price = max{second-highest bid, reserve}




Truthtul Auctions

Utility Model: bidder 1 has valuation v,
o maximum willingness to pay

o known to bidder, unknown to seller
utility = v. - price paid; or 0 1f loses auction

submits bid b, to maximize its utility

Claim: an eBay auction 1s truthful
truthful bidding (b, = v.) 1s “foolproof™
1.e., a false bid never outperforms a true bid



cBay Is Truthful

Fix player 1, reserve r, other bids b

Observation #1: bidder 1 effectively faces a
“take-1t-or-leave 1t" offer at a fixed price
p = max{reserve, highest other bid}.

Observation #2: truthful bidding guaranteed to
maximize utility (a "dominant strategy")

case 1: (v <p) max utility = 0, achieved whenb =v

case 2: (v > p) max utility = v-p, achieved when b=v



Overarching Goals

want to design "optimal" truthful mechanisms and
auctions
for a wide range of problems
combinatorial auctions, scheduling, etc.
for different objectives (welfare, revenue)

often require polynomial running time as well
general design techniques, analysis frameworks

prove limits on what 1s possible



Why Truthful?

many mechanisms "in the wild" not truthful
sponsored search, combinatorial auctions

important for practical implementations

not clear when other mechanisms (with no dominant
strategies) are fundamentally more powerful than truthful
ones; sometimes have equivalence

e.g., "Revenue Equivalence" theorems

truthful mechanisms definitely a good "first-cut abstraction"
for foundations of mechanism design



How Theory CS Can Contribute

Unsurprising fact: very rich tradition and literature on mechanism
design in economics.

largely "Bayesian" (1.e., average-case) settings
emphasizes exact solutions/characterizations

usually 1gnores communication/computation

What we have to offer:
worst-case guarantees
approximation bounds
computational complexity



How To Think About Algorithmic
Mechanism Design

Philosophy: designing truthful mechanisms boils
down to designing algorithms in a certain
"restricted computational model".

Next: focus on simple class of problems where this
point 1s particularly clear and well understood.



Single-Parameter Problems

Outcome space: a set of vectors of the form
(X{, X,..., X;) [amount of "stuff" per player]

Utility Model: bidder 1 has private valuation v,
(per unit of "stuff")

utility = v, X, - payment
submits bid b, to maximize its utility

Examples: k-unit auction, "unit-demand" bidders; job
scheduling on related machines



Mechanism Design Space

The essence of any truthful mechanism (formalized via
the "Revelation Principle"):

collect bid b. from each player 1

invoke (randomized) allocation rule: b,'s—Xx,'s
o who gets how much (expected) stuff

invoke (randomized) payment rule: b,'s — p.'s

o and who pays what
truthfulness: for every 1, v,, other bids, setting v.= b,
maximizes expected utility v. x.(b) - p.(b)
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Two Definitions

Implementable Allocation Rule: 1s a function x (from
bids to expected allocations) that admits a payment

rule p such that (x,p) is truthful.
o  1.e., truthful bidding [b.;:=v.] always maximizes a bidder's
(expected) utility
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Two Definitions

Implementable Allocation Rule: 1s a function x (from
bids to expected allocations) that admits a payment

rule p such that (x,p) is truthful.
o  1.e., truthful bidding [b.;:=v.] always maximizes a bidder's
(expected) utility

Monotone Allocation Rule: for every fixed bidder 1,
fixed other bids b_, expected allocation only

increases in the bid b..
o example: highest bidder wins
o non-example: 2nd-highest bidder wins
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‘ Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos FOCS

01] an allocation rule x is implementable if and only
if it is monotone.
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Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos FOCS

01] an allocation rule x is implementable if and only
if it is monotone.

Moreover: for every monotone allocation rule x, there 1s
a unique payment rule p such that (x,p) 1s truthful
and losers always pay 0.
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Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos FOCS

01] an allocation rule x is implementable if and only
if it is monotone.

Moreover: for every monotone allocation rule x, there 1s
a unique payment rule p such that (x,p) 1s truthful
and losers always pay 0.

Explicit formula for p,(b):
keep b fixed, increase z from O to b,
consider breakpoints y,,...,y, at which x; jumps
set pi(b) := X.y; ® [jump in x;at y;]
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Myerson's Lemma (Proof Idea)

Proof idea: let x be an allocation rule, fix 1 and b-..
Write X(Z)a p(Z) for Xi(za b_i)a pi(za b_i)°

apply purported truthfulness of (x,p) to two
scenarios: true value = z, false bid = z + € and true
value =z + ¢, false bid = z

take € to zero get
a0 p'(z)=z°x'(z) [if x differentiable at z] or
O Jumpinpatz=ze [jump in X at Z]

Integrating from O to b;, get sole candidate:

pi(b) == % y; @ [jump in x;at y;]
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Example: Profit Extractor

[Fiat/Goldberg/Hartline/Karlin STOC 02]
Allocation Rule: bids b + revenue target R:
= 1nitialize S = all bidders

= while there is an 1 in S such that b, < R/|S]:

o remove such a bidder from S
» winners = final set S
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Example: Profit Extractor

[Fiat/Goldberg/Hartline/Karlin STOC 02]
Allocation Rule: bids b + revenue target R:
initialize S = all bidders

while there 1s an 1 in S such that b, < R/|S]:
o remove such a bidder from S

winners = final set S
Note: allocation rule 1s monotone.

By Myerson's Lemma: forms a truthful auction if and
only 1f every winner charged price p = R/|S|
o 1f halts with non-empty set, raises revenue R

18



Revenue Maximization

Setting: k-1tem auction, n unit-demand bidders.

Goal: truthful auction with "optimal"” revenue.
0 but different auctions do better on different inputs
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Revenue Maximization

Setting: k-1tem auction, n unit-demand bidders.

Goal: truthful auction with "optimal"” revenue.
0 but different auctions do better on different inputs

Approach #1: Bayesian/average-case analysis.
"optimal" auction maximizes expected revenue

Approach #2: worst-case guarantee.
"optimal" auction tricky to define, standard
competitive analysis 1s useless
use "Bayesian thought experiment" instead
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Bayesian Profit Maximization

Example: 1 bidder, 1 item, v ~ known distribution F
truthful auctions = posted prices p
expected revenue of p: p(1-F(p))

o given F, can solve for optimal p°
o eg.,p =% forv~uniform[0,1]
but: what about k,n >1 (with 1.1.d. v.'s)?
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Bayesian Profit Maximization

Example: 1 bidder, 1 item, v ~ known distribution F

truthful auctions = posted prices p
need

expected revenue of p: p(1-F(p)) o
o given F, can solve for optimal p° t:eo%hdri]’ii(;ar:s
o eg.,p =% forv~uniform[0,1] onF

but: what about k,n >1 (with 1.1.d. v.'s)?

Theorem: [Myerson 81] auction with max expected
revenue is Vickrey with above reserve p”.

0 note p”is independent of k and n
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Toward Worst-Case Analysis

Goal: prove approximation results of the form:

"Theorem: for every valuation profile v:
auction A's revenue on v is at least OPT(v)/o."

(for a hopefully small constant o)
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Toward Worst-Case Analysis

Goal: prove approximation results of the form:

"Theorem: for every valuation profile v:
auction A's revenue on v is at least OPT(v)/o."

(for a hopefully small constant o)

Idea for OPT(v): sum of k largest v.'s.

Problem: too strong, not useful.
o makes all auctions A look equally bad.

o every auction A has a bad v [no finite a possible]
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Bayesian Thought Experiment

Question: what would an 1.1.d. Bayesian do?

formulate prior F, run the optimal auction for F
[by Myerson => Vickrey with suitable reserve]

Ambition: design auction A that is simultaneously
competitive with all Bayesian optimal auctions!

[.e.: For every F, corresponding opt auction A;:

A's expected revenue > (Ag's expected revenue)/a

o [Bulow/Klemperer AER 96], [Hartline/Roughgarden EC
09], [Dhangwotnotai/Roughgarden/Yan EC 10]

25



Distribution-Free Benchmarks

Myerson: for all F, Vickrey + a reserve 1s optimal.

Corollary: for all F and all v, behavior of optimal auction for F
equivalent to offering every bidder a common take-it-or-
leave-it offer.

o namely: max{reserve price, (k+1)th highest bid of v}

Upper Bound: RB(v) : = man 1v, [assume sorted v;'s]

i<

By Design: 1f auction A achieves revenue RB(v)/a for every v,
then 1t also has "simultaneous Bayesian" guarantee.

s [Goldberg/Hartline/Karlin/Saks/Wright GEB 06]

s [Hartline/Roughgarden STOC 08], [Devanur/Hartline EC 09]
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‘ Intermission

GO GIANTS!
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Combinatorial Auctions (CA)

Setting: n bidders, m goods. Player 1 has private
valuation v, (S) for each subset S of goods.

Assume: v; (®) =0 and v. is
monotone: S subset of T =>v.(S) <v.(T)
subadditive: v.(S U T)<v.(S)+ v, (T)
1gnore representation issues
[want running time polynomial in n and m]

Facts: there 1s a poly-time 2-approximation for
welfare X. v.(S,) [Feige STOC 06]. No good
truthful approximation known.
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Multi-Parameter Problems

Outcome space: an abstract set €2

Utility Model: bidder 1 has private valuation v, (®) for
each outcome o

utility = v, (o) - payment

Example: 1n a combinatorial auction, (2 = all possible
allocations of goods to players
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How To Think About Algorithmic
Mechanism Design

Philosophy: designing truthful mechanisms boils
down to designing algorithms in a certain
"restricted computational model".

Single-Parameter Special Case:

Implementable rules
= monotone rules
(Myerson's Lemma)
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The Multi-Parameter World

Implementable rules
= "cyclic monotone" rules
(still have uniqueness of
truthful payment rule) [Rochet]
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The Multi-Parameter World

iInscrutable

Implementable rules
= "cyclic monotone" rules
(still have uniqueness of
truthful payment rule) [Rochet]
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The Multi-Parameter World

iInscrutable

Implementable rules
= "cyclic monotone" rules
(still have uniqueness of
truthful payment rule) [Rochet]

mechanisms that
we understand

VCGe
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The VCG Mechanism

Utility Model: bidder 1's utility: v, (w) - payment
Vickrey-Clarke-Groves: (1961/71/73)
collect bid b. (w) for all 1, all outcomes ® 1n Q
select ®” in argmax {Z. b. (®)}
charge p; = [-X;,; b; (®)] + suitable constant

o align private objectives with global one

Facts: truthful, maximizes welfare 2, v, (®) over Q
(assuming truthful bids).
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Approximation Mechanisms

Assume: want to maximize welfare 2. v. (o)
a0 revenue also interesting, wide open

Why Not VCG?: communication/computation lower

bounds for many important problems.
o e.g., players =nodes of graph G;
o Q=1ndependent sets of G;
o v.(w)=11f11n w, 0 otherwise

Goal: mechanisms that are (1) truthful; (2) run in time
polynomial 1n natural parameters; and (3)
guarantee near-optimal welfare
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Approximation Mechanisms

Goals: [Nisan/Ronen 99] (1) truthful; (2) run in time

polynomial in natural parameters; and (3)
guarantee near-optimal welfare

Best-case scenario: match approximation factor of best
polynomial-time approximation algorithm (with
valuations given freely as input).

Holy Grail: "black-box reduction" that turns an
approximation algorithm into a truthful
approximation mechanism.
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Approximation Mechanisms

Idea: [Nisan/Ronen 00] use VCG mechanism but

substitute approximation algorithm for the previous
step "select o in argmax {Z. b, (m)}".

Implementable =
"cyclic monotone"

mechanisms
we understand. VCG
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Approximation Mechanisms

Idea: [Nisan/Ronen 00] use VCG mechanism but

substitute approximation algorithm for the previous
step "select o in argmax {Z. b, (m)}".

I[ssue: only truthful
for a very special
type of approximation
algorithm (discussed
next).

Implementable =
"cyclic monotone"

mechanisms
we understand. VCG

more on
this next
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VCG-Based Mechanisms

Outcome space: an abstract set €2

Utility Model: bidder 1's utility: v, (w) - payment

Step 1: pre-commit to a subset Q' of €
Step 2: run VCG with respect to €'

Facts: truthful, maximizes welfare X, v, () over Q'

Hope: can choose ' to recover tractability while
controlling approximation factor.
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Combinatorial Auctions (CA)

Setting: n bidders, m goods. Player 1 has private
valuation v, (S) for each subset S of goods.

Assume: v. (¢) =0 and v; 1s
monotone: S subset of T =>v.(S) <v.(T)
subadditive: v.(S U T)<v.(S)+ v, (T)
1gnore representation issues
[want running time polynomial in n and m]

Fact: there 1s a 2-approximation for welfare X. v.(S;)
[Feige STOC 06], but this allocation rule 1s
not implementable.
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VCG-Based Solution

Key Claim: for every instance, there is a
approximate allocation that either:
assigns all goods to a single player; OR
assigns at most one good to each player

(1/2m)-

41



VCG-Based Solution

Key Claim: for every instance, there isa  (1/2Vm)-
approximate allocation that either:
assigns all goods to a single player; OR
assigns at most one good to each player

Corollary: [Dobzinski/Nisan/Schapira STOC 05] there 1s a

truthful (1/2Vm)-approximate mechanism for CAs
with subadditive bidder valuations.

Proof: define Q' as above; can optimize in poly-time
via max-weight matching + case analysis.
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VCG-Based Solution

Proof of Key Claim: Fix v,'s. Call a player big 1f it gets
> \m goods in the optimal allocation. (So there
are at most Vm of them.)

Case 1: big players account for more than half of
optimal welfare, so one big player accounts for a
1/27m fraction. Give all goods to this player.

Case 2: otherwise, small players account for half. Give

each its favorite good; by subadditivity, still have a
1/2m fraction of optimal welfare.
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Can We Do Better?

[Dobzinski/Nisan STOC 07]: Can't do much better using a
deterministic VCG-based mechanism.
results and techniques launched very active

research agenda on lower bounds
o [Papadimitriou/Schapira/Singer FOCS 08], ...

The good news: randomized mechanisms seem to hold

much promise, for specific problems and for black-
box reductions.

some rigorous randomized vs. deterministic
separations already known
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Randomized VCG-Based
Mechanisms

Step 1: precommit to subset A' of A(Q)
= "lotteries" over outcomes

Step 2: run VCG with respect to A

Facts: truthful (in expectation), maximizes expected
welfare E[2. v. (0)] over A

Hope: can choose A ' to recover tractability while

controlling approximation factor.
s [Lavi/Swamy FOCS 05], [Dobzinski/Dughmi FOCS 09]
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A Black-Box Reduction

Theorem: [Dughmi/Roughgarden FOCS 10] If a welfare-

maximization problem admits an FPTAS, then it
admits a truthful FPTAS.

Proof idea: Choosing A ' suitably and "dualizing", the
relevant optimization problem 1s a slightly
perturbed version of the original one. Can use
techniques from smoothed analysis [Roglin/Teng
FOCS 09] to get expected polynomial running time.
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Black-Box Reduction for
Bayes-Nash Implementations

Theorem: [Hartline/Lucier STOC 10], [Bei/Hartline/Huang/Kleinberg/
Malekian SODA 11] In many Bayesian settings (where
valuations are drawn from known distributions), every
approximation algorithm for welfare maximization can be
transmuted into an equally good truthful (in Bayes-Nash
equilibrium) approximation mechanism.

Suggestive: Bayes-Nash implementations might elude lower
bounds for dominant-strategy truthful mechanisms (should
such lower bounds exist).
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Recap: Mechanism Design as
Constrained Algorithm Design

Philosophy: designing truthful mechanisms boils down
to designing algorithms in a certain "restricted
computational model".
single-parameter <=> monotone algorithms
multi-parameter: includes all the obvious VCG
variants, but what else?

Research Challenge: usefully characterize the
implementable allocation rules for as many multi-
parameter problems as possible.
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Recap: Revenue Maximization

Bayesian single-parameter case well solved

worst-case guarantees for single-parameter problems: need
novel analysis frameworks ("Bayesian thought experiment")
but lots of recent progress

Research Challenges:
non-1.1.d. version of Bayesian thought experiment

(approximate) analog of Myerson's theory for multi-

parameter problems (even relatively simple ones)
[Bhattacharya et al STOC 10], [Chawla et al STOC 10]

worst-case guarantees for multi-parameter problems
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Recap: Welfare Maximization

ignoring tractability, VCG works even for arbitrary multi-
parameter problems

truthful approximation mechanisms so far mostly restricted
to randomized variants of VCG

but this already enough for some interesting results

Research Challenges:
better (randomized) approximation mechanisms for
combinatorial auctions
more general black-box reductions
better lower bounds, especially for randomized mechanisms
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