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An eBay Single-Good Auction 

. 

Upshot: in an eBay auction: 

  winner = highest bidder above reserve price 
  price = max{second-highest bid, reserve} 
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Truthful Auctions 

Utility Model: bidder i has valuation vi  
  maximum willingness to pay 
  known to bidder, unknown to seller 

  utility = vi - price paid; or 0 if loses auction 
  submits bid bi to maximize its utility 

Claim: an eBay auction is truthful 
  truthful bidding (bi  = vi) is “foolproof” 
  i.e., a false bid never outperforms a true bid 
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eBay Is Truthful 

Fix player i, reserve r, other bids b-i 

Observation #1: bidder i effectively faces a                
“take-it-or-leave it" offer at a fixed price                  
p = max{reserve, highest other bid}. 

Observation #2: truthful bidding guaranteed to 
maximize utility (a "dominant strategy") 

  case 1: (v ≤ p) max utility = 0, achieved when b = v  
  case 2: (v ≥ p) max utility = v-p, achieved when b = v 
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Overarching Goals 

  want to design "optimal" truthful    mechanisms and 
auctions 
  for a wide range of problems 

  combinatorial auctions, scheduling, etc. 
  for different objectives (welfare, revenue) 
  often require polynomial running time as well 

  general design techniques, analysis frameworks 

  prove limits on what is possible  
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Why Truthful? 

  many mechanisms "in the wild" not truthful  
  sponsored search, combinatorial auctions 
  important for practical implementations 

  not clear when other mechanisms (with no dominant 
strategies) are fundamentally more powerful than truthful 
ones; sometimes have equivalence  
  e.g., "Revenue Equivalence" theorems 

  truthful mechanisms definitely a good "first-cut abstraction" 
for foundations of mechanism design 
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How Theory CS Can Contribute 

Unsurprising fact: very rich tradition and literature on mechanism 
design in economics. 

•  largely "Bayesian" (i.e., average-case) settings 
•  emphasizes exact solutions/characterizations 
•  usually ignores communication/computation 

What we have to offer: 
1.  worst-case guarantees 
2.  approximation bounds 
3.  computational complexity 
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How To Think About Algorithmic 
Mechanism Design 

Philosophy: designing truthful mechanisms boils 
down to designing algorithms in a certain 
"restricted computational model".  

Next: focus on simple class of problems where this 
point is particularly clear and well understood. 
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Single-Parameter Problems 

Outcome space: a set of vectors of the form                
(x1, x2,..., xn)   [amount of "stuff" per player] 

Utility Model: bidder i has private valuation vi             
(per unit of "stuff")  

  utility = vi xi - payment 
  submits bid bi to maximize its utility 

Examples: k-unit auction, "unit-demand" bidders; job 
scheduling on related machines 
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Mechanism Design Space 

The essence of any truthful mechanism (formalized via 
the "Revelation Principle"): 

  collect bid bi from each player i 
  invoke (randomized) allocation rule: bi's      xi's 

  who gets how much (expected) stuff 

  invoke (randomized) payment rule: bi's       pi's 
  and who pays what 

  truthfulness: for every i, vi, other bids, setting vi = bi  
maximizes expected utility vi xi(b) - pi(b) 



11 

Two Definitions 

Implementable Allocation Rule: is a function x (from 
bids to expected allocations) that admits a payment 
rule p such that (x,p) is truthful. 

  i.e., truthful bidding [bi:=vi] always maximizes a bidder's 
(expected) utility 
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Two Definitions 

Implementable Allocation Rule: is a function x (from 
bids to expected allocations) that admits a payment 
rule p such that (x,p) is truthful. 

  i.e., truthful bidding [bi:=vi] always maximizes a bidder's 
(expected) utility 

Monotone Allocation Rule: for every fixed bidder i, 
fixed other bids b-i, expected allocation only 
increases in the bid bi. 

  example: highest bidder wins 
  non-example: 2nd-highest bidder wins 
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Myerson's Lemma 

Myerson's Lemma: [1981; also Archer-Tardos FOCS 
01] an allocation rule x is implementable if and only 
if it is monotone. 
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Myerson's Lemma 

Myerson's Lemma: [1981; also Archer-Tardos FOCS 
01] an allocation rule x is implementable if and only 
if it is monotone. 

Moreover: for every monotone allocation rule x, there is 
a unique payment rule p such that (x,p) is truthful 
and losers always pay 0. 
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Myerson's Lemma 

Myerson's Lemma: [1981; also Archer-Tardos FOCS 
01] an allocation rule x is implementable if and only 
if it is monotone. 

Moreover: for every monotone allocation rule x, there is 
a unique payment rule p such that (x,p) is truthful 
and losers always pay 0. 

Explicit formula for pi(b):  
  keep b-i fixed, increase z from 0 to bi 
  consider breakpoints y1,...,yq at which xi jumps 
  set  pi(b) :=  Σj yj ● [jump in xi at yj] 
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Myerson's Lemma (Proof Idea) 

Proof idea: let x be an allocation rule, fix i and b-i.  
Write x(z), p(z) for xi(z, b-i), pi(z, b-i). 

  apply purported truthfulness of  (x,p) to two 
scenarios: true value = z, false bid = z + ε and true 
value = z + ε, false bid = z 

  take ε to zero get 
  p'(z) = z ◦ x'(z)    [if x differentiable at z] or 
  jump in p at z = z ◦ [jump in x at z] 

Integrating from 0 to bi, get sole candidate: 
       pi(b) :=  Σj yj ● [jump in xi at yj] 
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Example: Profit Extractor 

[Fiat/Goldberg/Hartline/Karlin STOC 02] 
Allocation Rule: bids b + revenue target R: 
  initialize S = all bidders 
  while there is an i in S such that bi <  R/|S|: 

  remove such a bidder from S 
  winners = final set S 
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Example: Profit Extractor 

[Fiat/Goldberg/Hartline/Karlin STOC 02] 
Allocation Rule: bids b + revenue target R: 
  initialize S = all bidders 
  while there is an i in S such that bi <  R/|S|: 

  remove such a bidder from S 
  winners = final set S 

Note: allocation rule is monotone. 

By Myerson's Lemma: forms a truthful auction if and 
only if every winner charged price p = R/|S| 

  if halts with non-empty set, raises revenue R 
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Revenue Maximization 

Setting: k-item auction, n unit-demand bidders. 

Goal: truthful auction with "optimal" revenue. 
  but different auctions do better on different inputs 
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Revenue Maximization 

Setting: k-item auction, n unit-demand bidders. 

Goal: truthful auction with "optimal" revenue. 
  but different auctions do better on different inputs 

Approach #1: Bayesian/average-case analysis. 
  "optimal" auction maximizes expected revenue 

Approach #2: worst-case guarantee. 
  "optimal" auction tricky to define, standard 

competitive analysis is useless 
  use "Bayesian thought experiment" instead 
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Bayesian Profit Maximization 

Example: 1 bidder, 1 item, v ~ known distribution F 
  truthful auctions = posted prices p 
  expected revenue of p:  p(1-F(p)) 

  given F, can solve for optimal p* 

  e.g., p* = ½ for v ~ uniform[0,1] 
  but: what about k,n >1 (with i.i.d. vi's)? 
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Bayesian Profit Maximization 

Example: 1 bidder, 1 item, v ~ known distribution F 
  truthful auctions = posted prices p 
  expected revenue of p:  p(1-F(p)) 

  given F, can solve for optimal p* 

  e.g., p* = ½ for v ~ uniform[0,1] 
  but: what about k,n >1 (with i.i.d. vi's)? 

Theorem: [Myerson 81] auction with max expected 
revenue is Vickrey with above reserve p*. 
  note p* is independent of k and n 

need 
minor 
technical 
conditions 
on F 
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Toward Worst-Case Analysis 

Goal: prove approximation results of the form: 

"Theorem: for every valuation profile v:                
auction A's revenue on v is at least OPT(v)/α." 
 (for a hopefully small constant α) 
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Toward Worst-Case Analysis 

Goal: prove approximation results of the form: 

"Theorem: for every valuation profile v:                
auction A's revenue on v is at least OPT(v)/α." 
 (for a hopefully small constant α) 

Idea for OPT(v): sum of k largest vi's. 

Problem: too strong, not useful. 
  makes all auctions A look equally bad. 
  every auction A has a bad v [no finite α possible] 
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Bayesian Thought Experiment 

Question: what would an i.i.d. Bayesian do? 

  formulate prior F, run the optimal auction for F      
[by Myerson => Vickrey with suitable reserve] 

Ambition: design auction A that is simultaneously 
competitive with all Bayesian optimal auctions! 

I.e.: For every F, corresponding opt auction AF: 

  A's expected revenue  ≥ (AF's expected revenue)/α 
  [Bulow/Klemperer AER 96], [Hartline/Roughgarden EC 

09], [Dhangwotnotai/Roughgarden/Yan EC 10] 
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Distribution-Free Benchmarks 

Myerson: for all F, Vickrey + a reserve is optimal. 

Corollary: for all F and all v, behavior of optimal auction for F 
equivalent to offering every bidder a common take-it-or-
leave-it offer. 
  namely: max{reserve price, (k+1)th highest bid of v} 

Upper Bound:  RB(v) : =  max  ivi     [assume sorted vi's] 

By Design: if auction A achieves revenue RB(v)/α for every v, 
then it also has "simultaneous Bayesian" guarantee. 

  [Goldberg/Hartline/Karlin/Saks/Wright GEB 06] 
  [Hartline/Roughgarden STOC 08], [Devanur/Hartline EC 09] 

i ≤ k 
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Intermission 

GO GIANTS! 
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Combinatorial Auctions (CA) 

Setting: n bidders, m goods.  Player i has private 
valuation vi (S) for each subset S of goods. 

Assume: vi (ϕ) = 0 and vi is 
  monotone:  S subset of T => vi (S) ≤ vi (T) 
  subadditive:  vi (S ∪ T) ≤ vi (S) + vi (T) 
  ignore representation issues                                    

[want running time polynomial in n and m] 

Facts: there is a poly-time 2-approximation for         
welfare Σi vi(Si) [Feige STOC 06].  No good     
truthful approximation known.  
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Multi-Parameter Problems 

Outcome space: an abstract set Ω 

Utility Model: bidder i has private valuation vi (ω) for 
each outcome ω 

  utility = vi (ω) - payment 

Example: in a combinatorial auction, Ω = all possible 
allocations of goods to players 
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How To Think About Algorithmic 
Mechanism Design 
Philosophy: designing truthful mechanisms boils 

down to designing algorithms in a certain 
"restricted computational model".  

Single-Parameter Special Case: 

implementable rules 
= monotone rules 
(Myerson's Lemma) 
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The Multi-Parameter World 

implementable rules 
= "cyclic monotone" rules 
(still have uniqueness of 
truthful payment rule) [Rochet] 
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The Multi-Parameter World 

implementable rules 
= "cyclic monotone" rules 
(still have uniqueness of 
truthful payment rule) [Rochet] 

inscrutable 
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The Multi-Parameter World 

inscrutable 

implementable rules 
= "cyclic monotone" rules 
(still have uniqueness of 
truthful payment rule) [Rochet] 

mechanisms that 
we understand 

VCG 
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The VCG Mechanism 

Utility Model: bidder i's utility: vi (ω) - payment 

Vickrey-Clarke-Groves: (1961/71/73) 
  collect bid bi (ω) for all i, all outcomes ω in Ω 
  select ω* in argmax {Σi bi (ω)} 
  charge pi  = [-Σj!=i bi (ω)] + suitable constant 

  align private objectives with global one 

Facts: truthful, maximizes welfare Σi vi (ω) over Ω 
(assuming truthful bids). 
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Approximation Mechanisms 

Assume: want to maximize welfare Σi vi (ω) 
  revenue also interesting, wide open 

Why Not VCG?: communication/computation lower 
bounds for many important problems. 

  e.g., players = nodes of graph G; 
  Ω = independent sets of G;  
  vi (ω) = 1 if i in ω, 0 otherwise 

Goal: mechanisms that are (1) truthful; (2) run in time 
polynomial in natural parameters; and  (3) 
guarantee near-optimal welfare  
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Approximation Mechanisms 

Goals: [Nisan/Ronen 99]  (1) truthful; (2) run in time 
polynomial in natural parameters; and  (3) 
guarantee near-optimal welfare  

Best-case scenario: match approximation factor of best 
polynomial-time approximation algorithm (with 
valuations given freely as input). 

Holy Grail: "black-box reduction" that turns an 
approximation algorithm into a truthful 
approximation mechanism. 
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Approximation Mechanisms 

Idea: [Nisan/Ronen 00]  use VCG mechanism but 
substitute approximation algorithm for the previous 
step "select ω* in argmax {Σi bi (ω)}". 

implementable = 
"cyclic monotone" 

mechanisms 
we understand VCG 
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Approximation Mechanisms 

Idea: [Nisan/Ronen 00]  use VCG mechanism but 
substitute approximation algorithm for the previous 
step "select ω* in argmax {Σi bi (ω)}". 

Issue: only truthful 
for a very special 
type of approximation 
algorithm (discussed 
next). 

implementable = 
"cyclic monotone" 

mechanisms 
we understand VCG 

more on 
this next 
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VCG-Based Mechanisms 

Outcome space: an abstract set Ω 
Utility Model: bidder i's utility: vi (ω) - payment 

Step 1: pre-commit to a subset Ω' of Ω 
Step 2: run VCG with respect to Ω' 

Facts: truthful, maximizes welfare Σi vi (ω) over Ω' 
Hope: can choose Ω' to recover tractability while 

controlling approximation factor. 
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Combinatorial Auctions (CA) 

Setting: n bidders, m goods.  Player i has private 
valuation vi (S) for each subset S of goods. 

Assume: vi (φ) = 0 and vi is 
  monotone:  S subset of T => vi (S) ≤ vi (T) 
  subadditive:  vi (S ∪ T) ≤ vi (S) + vi (T) 
  ignore representation issues                                    

[want running time polynomial in n and m] 

Fact: there is a 2-approximation for welfare Σi vi(Si) 
[Feige STOC 06], but this allocation rule is              
not implementable. 
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VCG-Based Solution 

Key Claim: for every instance, there is a     (1/2√m)-
approximate allocation that either: 

  assigns all goods to a single player; OR 
  assigns at most one good to each player 
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VCG-Based Solution 

Key Claim: for every instance, there is a     (1/2√m)-
approximate allocation that either: 

  assigns all goods to a single player; OR 
  assigns at most one good to each player 

Corollary: [Dobzinski/Nisan/Schapira STOC 05] there is a 
truthful (1/2√m)-approximate mechanism for CAs 
with subadditive bidder valuations. 

Proof: define Ω' as above; can optimize in poly-time 
via max-weight matching + case analysis. 
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VCG-Based Solution 

Proof of Key Claim: Fix vi 's.  Call a player big if it gets  
> √m goods in the optimal allocation.    (So there 
are at most √m of them.) 

Case 1: big players account for more than half of  
optimal welfare, so one big player accounts for a 
1/2√m fraction.  Give all goods to this player. 

Case 2: otherwise, small players account for half.  Give 
each its favorite good; by subadditivity, still have a 
1/2√m fraction of optimal welfare. 
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Can We Do Better? 

[Dobzinski/Nisan STOC 07]: Can't do much better using a 
deterministic VCG-based mechanism. 

  results and techniques launched very active 
research agenda on lower bounds 

  [Papadimitriou/Schapira/Singer FOCS 08], ... 

The good news: randomized mechanisms seem to hold 
much promise, for specific problems and for black-
box reductions. 

  some rigorous randomized vs. deterministic 
separations already known 
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Randomized VCG-Based 
Mechanisms 

Step 1: precommit to subset Δ' of Δ(Ω) 
  "lotteries" over outcomes 
Step 2: run VCG with respect to Δ ' 

Facts: truthful (in expectation), maximizes expected 
welfare E[Σi vi (ω)] over Δ' 

Hope: can choose Δ ' to recover tractability while 
controlling approximation factor. 

  [Lavi/Swamy FOCS 05], [Dobzinski/Dughmi FOCS 09] 
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A Black-Box Reduction 

Theorem: [Dughmi/Roughgarden FOCS 10] If a welfare-
maximization problem admits an FPTAS, then it 
admits a truthful FPTAS. 

Proof idea: Choosing Δ ' suitably and "dualizing", the 
relevant optimization problem is a slightly 
perturbed version of the original one.  Can use 
techniques from smoothed analysis [Roglin/Teng 
FOCS 09] to get expected polynomial running time. 
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Black-Box Reduction for       
Bayes-Nash Implementations 
Theorem: [Hartline/Lucier STOC 10], [Bei/Hartline/Huang/Kleinberg/

Malekian SODA 11]   In many Bayesian settings (where 
valuations are drawn from known distributions), every 
approximation algorithm for welfare maximization can be 
transmuted into an equally good truthful (in Bayes-Nash 
equilibrium) approximation mechanism. 

Suggestive: Bayes-Nash implementations might elude lower 
bounds for dominant-strategy truthful mechanisms (should 
such lower bounds exist). 
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Recap: Mechanism Design as 
Constrained Algorithm Design 
Philosophy: designing truthful mechanisms boils down 

to designing algorithms in a certain "restricted 
computational model".  

  single-parameter <=> monotone algorithms 
  multi-parameter: includes all the obvious VCG 

variants, but what else? 

Research Challenge: usefully characterize the 
implementable allocation rules for as many multi-
parameter problems as possible. 
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Recap: Revenue Maximization 

  Bayesian single-parameter case well solved  
  worst-case guarantees for single-parameter problems: need 

novel analysis frameworks ("Bayesian thought experiment") 
but lots of recent progress 

Research Challenges:  
  non-i.i.d. version of Bayesian thought experiment 
  (approximate) analog of Myerson's theory for multi-

parameter problems (even relatively simple ones) 
[Bhattacharya et al STOC 10], [Chawla et al STOC 10] 

  worst-case guarantees for multi-parameter problems  
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Recap: Welfare Maximization 

  ignoring tractability, VCG works even for arbitrary multi-
parameter problems 

  truthful approximation mechanisms so far mostly restricted 
to randomized variants of VCG 

  but this already enough for some interesting results 

Research Challenges:  
  better (randomized) approximation mechanisms for 

combinatorial auctions 
  more general black-box reductions 
  better lower bounds, especially for randomized mechanisms 


