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Part 1: Positive Results



Multi-Item Auctions

•  n bidders (e.g. telecoms), m items (e.g. licenses)

•  bidder i has private nonnegative valuation vi(S) 
for each subset S of items      [≈2m parameters!]

•  bidder i wants to maximize vi(Si) – payment
•   

•  social welfare of allocation S1,S2,...,Sn:  ∑i vi(Si)
•  objective is to allocate items to maximize this
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Preamble
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A Simple Auction Format

First cut: [McAfee, Milgrom-Wilson 93] simultaneous 
ascending auctions (one auction per item).
•  usually works decently, but:

Issue #1: demand reduction.
•  bidder buys fewer items to get a cheaper price

Issue #2: exposure problem.
•  example: 2 items; bidder #1 has value 6 for both 

items, bidder #2 wants one item, value = 5
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Inefficiency in Auctions

(P. Cramton, “The Efficiency of FCC Spectrum Auctions,” 1998)

“The setting of spectrum auctions is too complex to guarantee 
full efficiency.”

“Direct evidence of demand reduction was seen in the 
nationwide narrowband auction.  The largest bidder, PageNet, 
reduced its demand from three of the large licenses to two, at 
a point when prices were still will below its marginal valuation 
for the third unit.  PageNet felt that, if it continued to demand 
a third license, it would drive up the prices on all the others to 
disadvantageously high levels.”  

“Nonetheless, an examination of the bidding suggests that these 
problems, although present, probably did not lead to large 
inefficiencies.”
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Inefficiency in Auctions

“[T]he measured efficiency of the simultaneous 
ascending auction falls off markedly as 
complementarities increase, but the efficiency of 
the package auction is largely unaffected by 
complementarity.” (L. M. Ausubel and P. R. 
Milgrom, “Ascending Auctions with Package 
Bidding”, 2002.)
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Practical Rules of Thumb

Folklore belief #1: without strong 
complements,  simple auctions work pretty 
well.
•  loss in outcome quality appears small
•  demand reduction exists, but not a dealbreaker

Folklore belief #2: with strong complements, 
simple auctions aren’t good enough.
•  loss in outcome quality could be big
•  exposure problem exists, and is a dealbreaker
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A Representative Result

Example Theorem: [Syrgkanis/Tardos 13] (improving  
[Hassidim/Kaplan/Nisan/Mansour 11]) Suppose m items are 
sold simultaneously via first-price single-item auctions:
•  for every product distribution over submodular 

bidder valuations (independent, not necessarily 
identical), and

•  for every (mixed) Bayes-Nash equilibrium,
expected welfare of the equilibrium is within 63% of the 
maximum possible. 

(submodular = decreasing marginal values)
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First-Price Auctions
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First-Price Auctions
•  one item, n players
•  winner = highest bidder, price = highest bid
•  player i has private valuation vi, quasi-linear utility

Common Prior Assumption: valuations drawn from a 
distribution known to all players (independent, or not).
•  strategy: function from valuations to bids
•  semantics: “if my valuation is v, then I will bid b”

Bayes-Nash Equilibrium: every player i picks expected 
utility-maximizing action, given its knowledge (prior, 
own valuation, others’ strategies).
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The Role of Symmetry
Bayes-Nash Equilibrium: every player picks expected 

utility-maximizing action, given its knowledge.

Exercise: with n bidders, valuations drawn i.i.d. from 
U[0,1], the following is a Bayes-Nash equilibrium: all 
bidders use the strategy vi       [(n-1)/n] � vi.

•  highest-valuation player wins (maximizes welfare)

Exercise: with 2 bidders, valuations from U[0,1] and 
U[0,2], no Bayes-Nash equilibrium maximizes 
expected welfare.  (Second bidder shades bid more.)
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Correlated Valuations
Example: [Syrgkanis 14] 3 bidders.
•  v1 = 1 (deterministic)
•  v2=v3 with distribution fn F(v) = 1/(e(1-t)) on [0,1-1/e]

Expected optimal welfare: 1 (give item to bidder 1).

Bayes-Nash equilibrium: 
•  bidder 1 bids 0 (assume ties broken in favor of #1)
•  bidders 2, 3 bid truthfully
•  expected welfare = 1-1/e ≈ 63%
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Digression: Multiple Items
Example: [Engelbrecht-Wiggins/Weber 79] 
•  n bidders, n items 
•  each bidder has value 1 for each item (only wants one)
•  mechanism: each bidder bids on a single item, each 

item allocated via first-price auction

Optimal welfare: n (give one item to each bidder).

Symmetric mixed Nash equilibrium: 
•  each bidder picks an item uniformly at random
•  bid as in symmetric FPA with random # of bidders 
•  expected welfare -> 1-1/e ≈ 63% (as n-> infinity)



A Terminological Aside
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Price of Anarchy: Definition

Definition: [Koutsoupias/Papadimitriou 99]                    
price of anarchy (POA) of a game (w.r.t. some   
objective function, equilibrium concept):

•  if multiple equilibria, defined by the worst (farthest-from-
optimal) one

optimal obj fn value
equilibrium objective fn value the closer to 1 

the better
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The POA Goes Viral
Example domains: scheduling, routing, facility location, 

bandwidth allocation, network formation, network 
cascades, contention resolution, coordination games, 
firm competition, auctions, ...

                         



Back to First-Price Auctions
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Equilibrium Welfare Guarantees

Proof plan:
•  fix an arbitrary equilibrium b=(b1,...,bn)
•  choose i’s and b*

i’s to derive inequalities of form 
ui(b) ≥ ui(b*

i,b-i)     [b*
i’s = baseline strategies]

•  guideline: b* typically induces welfare-maximizing outcome

•  compile inequalities into one of the form 
welfare(b) ≥ λ �(max-possible welfare)

For best results: choose baselines b*
i’s 

independently of b.



Guarantees for PNE

Assume: for suitable choice of b*, for every b,
Σi ui(b*

i,b-i)  ≥  λ�[OPT Welfare] – Rev(b).

Claim: POA of pure Nash equilibria is ≥ λ.

Proof: Let b = a pure Nash equilibrium.  Then:
     welfare(b) = Rev(b) + Σi ui(b)           [defn of utility]

 ≥ Rev(b) + Σi ui(b*
i,b-i)     [b a Nash eq]

 ≥ Rev(b) + [λ�[OPT Welfare] – Rev(b)]
 = λ�[OPT Welfare] 
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Guarantee for FPAs

Step 1: fix valuation profile v.  (Full-information case.)

Technical claim: for suitable choice of b*, for every b,
Σi ui(b*

i,b-i)  ≥  ½�[OPT Welfare] – Revenue(b).

Proof: Set b*
i = vi/2 for every i.  (a la [Lucier/Paes Leme 11])

•  since LHS ≥ 0, can assume ½�[maxi vi] > maxi bi

•  suppose bidder 1 has highest valuation.  Then:
u1(b*

1,b-1) = v1 – (v1/2) = v1/2  ≥  ½�[OPT Welfare] 
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The Return of 63%

Step 1: fix valuation profile v.  (Full-information case.)

Technical claim: for suitable choice of b*, for every b,
Σi E[ui(b*

i,b-i)]  ≥  .63�[OPT Welfare] – Revenue(b).

Proof: Draw b*
i from [0,.63vi], density 1/(v-b) [Syrgkanis 12]

•  suppose bidder 1 has highest valuation.  Then:
E[u1(b*

1,b-1)] ≥  .63�[OPT Welfare]-Revenue(b) 

Note: “private” baseline b*
i depends on vi but not on v-i.
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Guarantees for BNE

Assume: for suitable choice of b*
1(),..., b*

n(), for every v 
and b:  Σi ui(b*

i(vi),b-i)  ≥  λ�[OPT Welfare(v)] – Rev(b).

Claim: (≈[Lucier/Paes Leme 11]) for all (possibly correlated) 
valuation distributions, POA of Bayes-Nash eq is ≥ λ.

Proof: Let b() = a Bayes-Nash equilibrium.  Then:
Ev[welfare(b(v))] = Ev[Rev(b(v))] + Σi Ev[ui(b(v))]     [defn of utility]

 ≥ Ev[Rev(b(v))] + Σi Ev[ui(b*
i(vi),b-i(v-i))]     [b a BNE]

 ≥ Ev[Rev(b(v))]+[λ�Ev[OPT Welfare(v)] – Ev[Rev(b(v))]]
 = λ�Ev[OPT Welfare(v)] 
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Smoothness Paradigm

1.  Fix a setting and the private valuations v. 

2. Choose private baseline strategies b*.
(i.e., b*

i can depend on vi but not on v-i)

3. Fix outcome b.

4. Prove Σi ui(b*
i,b-i)  ≥  λ�[OPT Welfare] – Revenue(b).

5. Conclude that POA of Bayes-Nash equilibria is ≥ λ.
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Smoothness Paradigm

1.  Fix a setting and the private valuations v. 

2. Choose private baseline strategies b*.
(i.e., b*

i can depend on vi but not on v-i)

3. Fix outcome b.

4. Prove Σi ui(b*
i,b-i)  ≥  λ�[OPT Welfare] – Revenue(b).

5. Conclude that POA of Bayes-Nash equilibria is ≥ λ.
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Extension Theorem (Informal)

25

full-information games
•  i.e., certain payoffs

pure Nash equilibria

incomplete-info games
•  i.e., uncertain payoffs

mixed Bayes-Nash
 equilibria

easier

POA
extension
theorem

what we care about
(e.g., for auctions)

what’s easy
to analyze

[Roughgarden 09], [Lucier/Paes Leme 11], [Roughgarden 12], 
[Syrgkanis 12], [Syrgkanis/Tardos 13], ...



The Story So Far

Summary: for all (possibly correlated) valuation 
distributions, every Bayes-Nash equilibrium of a first-
price auction has welfare at least 63% of the maximum 
possible.
•  63% is tight for correlated valuations [Syrgkanis 14]

•  independent valuations = worst-case POA unknown 
•  worst known example = 87% [Hartline/Hoy/Taggart 14]

•  next: to what extent does 63% extend to 
simultaneous single-item auctions?
•  would be tight even with full-info [Engelbrecht-Wiggins/Weber 79] 
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Simultaneous                      
First-Price Auctions 

(A Composition Theorem) 
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Multi-Item Auctions

•  suppose m different items
•  for now: unit-demand valuations
•  each bidder i has private valuation

vij for each item j
•  vi(S) := maxj in S vij

•  submodular: if ,

28

GS

submod

subadd

general

UD

you are here 

j ∈S ⊆ T
vi (S + j)− vi (S) ≥ vi (T + j)− vi (T )



Simultaneous Composition

•  suppose have mechanisms M1,...,Mm

•  in their simultaneous composition:
•  new action space = product of the m action spaces
•  new allocation rule = union of the m allocation rules
•  new payment rule = sum of the m payment rules

•  example: each Mj a single-item first-price auction

Question: as a unit-demand bidder, how should you bid?
(not so easy)
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Does Composition    
Preserve Smoothness?

Hypothesis: every single-item auction Mj is λ-smooth: 
there exist private baselines b*

1(),..., b*
n() such that, for 

every v and b:
Σi ui(b*

i,b-i)  ≥  λ�[OPT Welfare(v)] – Rev(b).

Question: is composed mechanism also λ-smooth?

Proof idea: Fix unit-demand valuations v, fixes OPT.
•  baseline strategy for a bidder i that gets item j in OPT 
•  bid 0 in mechanisms other Mj
•  in Mj, use assumed baseline strategy for Mj

30



Public vs. Private Baselines

First-price auction: set b*
i=vi/2 for every i.

•  independent of v-i   (private baseline strategies)

Simultaneous first-price auctions: proposed b*
i is “bid 

half your value only on the item j you get in OPT(v).”
•  public baseline strategies
•  not well defined unless v-i known
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Extension Theorem (BNE)
Assume: there exist private baselines b*

1(),..., b*
n() such 

that, for every v and b:
Σi ui(b*

i,b-i)  ≥  λ�[OPT Welfare(v)] – Rev(b).

Claim: (≈[Lucier/Paes Leme 11]) for all (possibly correlated) 
valuation distributions, POA of Bayes-Nash eq is ≥ λ.

Proof: Let b() = a Bayes-Nash equilibrium.  Then:
Ev[welfare(b(v))] = Ev[Rev(b(v))] + Σi Ev[ui(b(v))]     [defn of utility]

 ≥ Ev[Rev(b(v))] + Σi Ev[ui(b*
i(vi),b-i(v-i))]     [b a BNE]

 ≥ Ev[Rev(b(v))] + [λ�Ev[OPT Welfare] – Ev[Rev(b(v))]]
 = λ�Ev[OPT Welfare] 
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deviation can depend 
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Counterexample

Fact: [Feldman/Fu/Gravin/Lucier 13], following 
[Bhawalkar/Roughgarden 11] there are (highly 
correlated) valuation distributions over unit-
demand valuations such that every Bayes-Nash 
equilibrium has expected welfare arbitrarily 
smaller than the maximum possible.
•  idea: plant a random matching plus some additional 

highly demanded items; by symmetry, a bidder can’t 
detect the item “reserved” for it
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Does Composition    
Preserve Smoothness?

Hypothesis: every single-item auction Mj is λ-smooth 
with public baselines: for every v, there exists baselines 
b* such that, for every b:

Σi ui(b*
i,b-i)  ≥  λ�[OPT Welfare(v)] – Rev(b).

Theorem: [Syrgkanis/Tardos 13] with unit-demand bidders, 
composed mechanism is λ-smooth w/public baselines.
•  holds for arbitrary smooth Mj’s, submodular valuations

Proof idea: Baseline strategy for a bidder i that gets item 
j in OPT: use baseline strategy for Mj, 0 on other items.
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Modified Extension Theorem

Hypothesis: mechanism is λ-smooth with public 
baselines: for every v, there exists baselines b* such that, 
for every b:

Σi ui(b*
i,b-i)  ≥  λ�[OPT Welfare(v)] – Rev(b).

Theorem: [Syrgkanis/Tardos 13], following [Christodoulou/Kovacs/
Schapira 08] for all product valuation distributions, POA of 
Bayes-Nash eq is ≥ λ.

Proof idea: transform public baseline to interim deviation:
•  sample w-i from prior distribution
•  play baseline strategy for valuation profile (vi,w-i)
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A Promise Fulfilled
Consequence: for all product unit-demand (or 
submodular) valuation distributions, every Bayes-Nash 
equilibrium of simultaneous first-price auctions has 
welfare at 63% of the maximum possible.

Proof sketch: 
1.  a single-item first-price auction is .63-smooth
2.  composition => simultaneous FPAs also .63-smooth 

with public baseline strategies
3.  modified extension theorem => Bayes-Nash POA of 

simultaneous FPAs ≥ .63 (any product distribution)
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Part 2: Impossibility Results



Communication 
Complexity
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General references: 
•  Kushilevitz/Nisan, Communication 

Complexity, 1996 
•  Roughgarden, Communication 

Complexity (for Algorithm Designers), 
2016.



39

Are Two Strings Identical?

Bob

private input = 10110

Alice

private input = 10101

bits



Communication Complexity 
(Deterministic)

•  fix f:{0,1}n × {0,1}n -> {0,1}  (e.g., EQUALITY)

•  Alice, Bob agree on “communication protocol”
•  specifies who sends what bit (0 or 1) when

•  each sent bit depends only on that player’s private input 
and the history-so-far of protocol (for now, deterministic)

•  at end of protocol, at least one player should know the 
result f(x,y)  [x = Alice’s input, y = Bob’s input]

•  cost of protocol = max # of bits sent (for worst-case x,y)
•  communication complexity of f = min-cost of any protocol
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Example: EQUALITY

•  deterministic communication complexity (DCC) of 
EQUALITY is ≤ n   (n = length of x and y)
•  Alice can always send her entire input to Bob

•  intuition: DCC(EQUALITY) ≥ n as well

•  issue: communication protocols can be very clever!

Bob

private input = 10100

Alice

private input = 10101

bits



The Cost of Convincing

Question: if I know x and y:
•  how hard is it to convince Alice & Bob that x≠y?              

(if indeed x≠y)
•  what about that x=y?   (if indeed x=y)

Bob

private input = 10100

Alice

private input = 10101

bits



Communication Complexity 
(Nondeterministic)

•  Alice, Bob want to evaluate f on priviate inputs x,y
•  an omniscient third party (the “prover” P) knows x,y
•  nondeterministic communication protocol:
•  prover writes an alleged proof that f(x,y)=b in public view
•  Alice, Bob simultaneously decide whether to accept or reject the 

proof (as a function only of private input and the prover’s proof)

•  correctness: never the case that Alice, Bob accept proof 
that f(x,y)=b when in fact f(x,y)≠b  [also, “completeness”]

•  cost of protocol = max proof length, in bits (for worst x,y)
•  nondeterministic CC of f = min-cost of any protocol
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EQUALITY Resolved

44

Theorem: [Yao 79] The nondeterministic communication 
complexity of EQUALITY is n (to prove that f(x,y)=1).
•  automatically implies same for deterministic case

Lemma: Let π be an alleged proof.   Suppose Alice, 
Bob both accept when inputs are (x1,y1) or (x2,y2).  
Then Alice, Bob also accept π when inputs are (x1,y2) 
or (x2,y1).
•  accept/reject decisions depend only on private input 

and proof π



EQUALITY Resolved
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Lemma: Let π be an alleged proof.   Suppose Alice, Bob both 
accept when inputs are (x1,y1) or (x2,y2).  Then Alice, Bob also 
accept π when inputs are (x1,y2) or (x2,y1).

Corollary: For every w≠z, there is no proof π such that 
Alice, Bob accept π for inputs (w,w) and (z,z).
•  if there were, π would also convince Alice, Bob that f(w,z) and 

f(z,w)=1  (contradicts correctness)

Corollary: Prover must use different proof for each of 
the 2n inputs of form (w,w).    [“fooling set”]
•  => at least one proof uses ≥ n bits  [proves Theorem]



Communication 
Complexity of    

Welfare-Maximization
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Distinguishing High vs. Low 
Social Welfare

47

Welfare-maximization problem: n players.
•  private inputs: valuations vi over set of m items
•  goal: evaluate function f where:  [for known W,α]
•        f(v1,...,vn) = 1 if there is an allocation with welfare ≥ W
•        f(v1,...,vn) = 0 if there is no allocation with welfare ≤ αW
•        f(v1,...,vn)  undefined otherwise

•  protocol only need to be correct on inputs where f is 
defined (can behave arbitrarily otherwise)
•  only easier than computing the maximum-welfare allocation
•  impossibility results only stronger



Nondeterministic Protocols
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•  nondeterministic communication protocol: prover 
writes an alleged proof π that f(v1,...,vn)=b in public 
view  (b in {0,1})

•  all players simultaneously decide to accept or reject 
the proof (as a function only of own input and π) 

•  correctness: never the case that all players accept 
proof that f(v1,...,vn)=b for an input with f(v1,...,vn)=1-b

•  [also, “completeness”]

•  note: when f(v1,...,vn)=1, easy to prove it
•  prover writes down allocation S1,...,Sn and players’ values 

v1(S1),...,vn(Sn), players can check legitimacy
•  proof length = scales roughly linearly with n, m



Known Lower Bounds
Theorem: [Nisan 02]  For every constant α > 0, for all large 
enough m, every nondeterministic protocol differentiating    
             OPT welfare(v) ≥ W vs. OPT welfare(v) ≤ αW
for general valuations v has cost (i.e., max proof length) 
exponential in m.

Theorem: [Dobzinski/Nisan/Schapira 05] For every constant      
α > ½, for all large enough m, every nondeterministic 
protocol differentiating    
             OPT welfare(v) ≥ W vs. OPT welfare(v) ≤ αW
for subadditive valuations v has cost exponential in m.



Optimal Simple 
Auctions
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Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/
Kovacs/Sgouritsa/Tang 14] the worst-case POA of 
simultaneous first-price auctions with subadditive 
bidder valuations is precisely 50%.
•  Bayes-Nash equilibria,                                           

arbitrary product prior

subadditive valuations: 
•  vi(A U B) ≤ vi(A) + vi(B) for

all disjoint A,B

51
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Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/
Kovacs/Sgouritsa/Tang 14] the worst-case POA of 
simultaneous first-price auctions with subadditive 
bidder valuations is precisely 50%.

52
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Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/
Kovacs/Sgouritsa/Tang 14] the worst-case POA of 
simultaneous first-price auctions with subadditive 
bidder valuations is precisely 50%.

Question: Can we do better?
(without resorting to the VCG mechanism)
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The Upshot

Meta-theorem: equilibria are generally bound by the 
same limitations as algorithms with polynomial 
computation or communication.
•  lower bounds without explicit constructions!

Caveats: requires that equilibria are
•  guaranteed to exist (e.g., mixed Nash equilibria)
•  can be efficiently verified

Example consequence: no “simple” auction has POA 
> 50% for bidders with subadditive valuations.
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From Protocol Lower Bounds to 
POA Lower Bounds

Main Theorem: [Roughgarden 14] Suppose:
•  no nondeterministic subexponential-communication 

protocol approximates the welfare-maximization 
problem (with valuations V) to within factor of α.
•  i.e., impossible to decide OPT  ≥  W vs. OPT  ≤ αW

Then worst-case POA of ε-approximate mixed Nash 
equilibria of every “simple” mechanism is at most α.
•  simple = number of strategies sub-doubly-exponential in m
•  ε can be as small as inverse polynomial in n and m

Point: : reduces impossibility results for equilibria to 
impossibility results for communication protocols.
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Consequences (I)

Theorem: [Dobzinski/Nisan/Schapira 05] For every constant   
α > ½, for all large enough m, every nondeterministic 
protocol differentiating    
             OPT welfare(v) ≥ W vs. OPT welfare(v) ≤ αW
for subadditive valuations v has cost exponential in m.

Corollary: (via Main Theorem) simultaneous first-price 
auctions is an optimal simple mechanism for 
subadditive valuations.
•  best-possible worst-case POA (of ε-equilibria)
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Consequences (II)

Theorem: [Nisan 02]  For every constant α > 0, for all 
large enough m, every nondeterministic protocol 
differentiating    
             OPT welfare(v) ≥ W vs. OPT welfare(v) ≤ αW
for general valuations v has cost (i.e., max proof 
length) exponential in m.

Corollary: (via Main Theorem) no simple mechanism has 
a non-trivial (i.e., constant-factor) welfare guarantee for 
bidders with general valuations.
•  complexity (e.g., package bidding) appears necessary
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Practical Rules of Thumb

Folklore belief #1: without strong 
complements,  simple auctions work pretty 
well.
•  loss in outcome quality appears small
•  demand reduction exists, but not a dealbreaker

Folklore belief #2: with strong complements, 
simple auctions aren’t good enough.
•  loss in outcome quality could be big
•  exposure problem exists, and is a dealbreaker
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Proof of Main Theorem
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Why Approximate MNE?

Issue: in simultaneous first-price auctions, number of 
strategies per-player N=(Vmax + 1)m      [exponential in m]

•  valuations, bids assumed integral and poly-bounded
•  can’t efficiently communicate a MNE.

Theorem: [Lipton/Markakis/Mehta 03] a game with n players 
and N strategies per player has an ε-approximate 
mixed Nash equilibrium with support size polynomial in 
n, log N, and ε-1.
•  proof idea based on sampling from an exact MNE
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Proof of Theorem

Suppose worst-case POA of ε-MNE is ρ>α:

Key point: every ε-MNE is a short, privately    
verifiable certificate for membership in case (ii). 

61
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Input: vi’s s.t. 
either (i) OPT 
≥ W or (ii) 
OPT ≤ αW 

Protocol: 
“proof ” =       
ε-MNE x with 
small support 
(exists by 
LMM); players 
verify it privately 

if  E[wel(x)] > αW 
then OPT > αW 
so in case (i) 

if  E[wel(x)] ≤ αW 
then OPT ≤       
(α/ρ)W < W     
so in case (ii) 



Two Open Questions

1.  Tight POA bounds for important auction formats
1.  e.g. first-price auctions, independent valuations (63% vs. 87%)

2.  Best simple auction for submodular valuations?
1.  simultaneous first-price auctions give 63% [Syrgkanis/Tardos 13], 

[Christodoulou et al 14]
2.  > 77% impossible with a simple auction [Dobzinski/Vondrak 13] + 

[Roughgarden 14]
3.  > 63% is possible with only polynomial communication [Feige/

Vondrak 06]
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