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Talk Themes 

•  many economic concepts directly relevant for 
reasoning about applications in computer science 
•  Shapley value, correlated equilibria, etc. 

•  tools from computer science can yield new insights 
into basic economic models 
•  transportation networks, cost-sharing, etc. 
•  using approximation to reason about efficiency loss 

•  shared concern: theory to guide design 
•  traditional approaches: axiomatic, optimization 
•  here: minimize worst-case efficiency loss 
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Pigou's Example 

Example: one unit of  traffic wants to go from s to t 

 

Question: what will selfish drivers do? 

•  assume everyone wants smallest-possible cost 

•  [Pigou 1920] 

 

s" t"

c(x)=x"

c(x)=1"

cost depends on congestion"

no congestion effects"
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Equilibrium in Pigou’s Example 

Claim: all traffic will take the top link. 

 

Reason: 
•  Є > 0 => traffic on bottom is envious 

•  Є = 0 => equilibrium 
•  all traffic incurs one unit of  cost 

s" t"

c(x)=x"

c(x)=1"

Flow = 1-Є"

Flow = Є"
this flow     
is envious!"
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Can We Do Better? 

Consider instead: traffic split equally 

 

Improvement: 
•  half  of  traffic has cost 1 (same as before) 
•  half  of  traffic has cost ½ (much improved!) 
•  “price of  anarchy” [Kousoupias/Papadimitriou 99] = 4/3 

s" t"

c(x)=x"

c(x)=1"

Flow = ½"

Flow = ½"
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Braess’s Paradox 

   Initial Network: 

s" t"
x" 1"

½"

x"1"
½

½

½"

 Cost = 1.5"
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Braess’s Paradox 

   Initial Network:                Augmented Network: 

s" t"
x" 1"

½"

x"1"
½

½

½" s" t"
x" 1"
½"

x"1"
½

½

½"0"

 Now what?" Cost = 1.5"
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Braess’s Paradox 

   Initial Network:                Augmented Network: 

 

 

 

 

 
 

 

Price of  anarchy = 4/3 in augmented network      (again!) 

s" t"
x" 1"

½"

x"1"
½

½

½"

 Cost = 2"

s" t"
x" 1"

x"1"
0"

 Cost = 1.5"
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A Nonlinear Pigou Network 

Bad Example:                             (d large) 

equilibrium has cost 1, min cost -> 0  

=> price of  anarchy unbounded as d -> infinity 
 

Goal: weakest-possible conditions under which the price 
of  anarchy is small. 

s" t"

xd"

1"
0"

1" 1-Є"

Є"
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When Is the Price of  Anarchy 
Bounded? 

Examples so far: 

Hope: imposing additional structure on the cost functions 
helps 
•  worry: bad things happen in larger networks 

s" t"
x"
1"

s" t"
xd"
1"

s" t"
x" 1"

x"1"
0"
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Affine Cost Functions 

Defn: affine cost function is of  form ce(x)=aex+be 

 

Theorem: [Roughgarden/Tardos 00] for every 
network with affine cost functions:  

 

                        ≤  4/3 ×  

 

 cost of      
eq flow"

cost of            
opt flow"

s" t"
x"
1"
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The Potential Function 

Easy fact: [BMW 56] Nash flows minimize           
“potential function”                              
(over all flows). 

Proof: FOC + convexity. 

Corollary: for affine cost functions: 

•  cost, potential functions differ by factor of  ≤ 2 

•  gives upper bound of  2 on price on anarchy 

     C(f) ≤ 2×PF(f) ≤ 2×PF(f*) ≤ 2×C(f*) 

ce(fe)"

0"
0" fe"

e
∑ ce(x)dx0

fe∫
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General Cost Functions 

Theorem: [Roughgarden 02], [Correa/Schulz/Stier 

Moses 03]  fix any set of  cost functions. Then, a 
Pigou-like example --- 2 nodes, 2 links, 1 link w/
a constant cost function --- achieves the worst 
P.O.A. 

 

 

 

s" t"
xd"
1"

tight"
example"
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General Cost Functions 

Theorem: [Roughgarden 02], [Correa/Schulz/Stier 

Moses 03]  fix any set of  cost functions. Then, a 
Pigou-like example --- 2 nodes, 2 links, 1 link w/
a constant cost function --- achieves the worst 
P.O.A. 

 

 

Take-away: worst-case inefficiency governed by 
cost function nonlinearity, not network structure. 

 

s" t"
xd"
1"

tight"
example"
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Benefit of  Overprovisioning 
M/M/1 Cost Functions: c(x) = 1/(ue-x) 

Suppose: network is overprovisioned by β > 0                    
(i.e., β fraction of  each edge unused). 

Then: Price of  anarchy is at most ½(1+1/√β)  

•  arbitrary network size/topology, traffic matrix 

 

Moral: Even modest (10%) over-provisioning               
sufficient for near-optimal routing. 

fe"

ce(fe)"



Outline 

1.  The price of  anarchy in routing games. 

2.  Learnable equilibria: robust POA bounds. 
1.  Connections to learning in games. 
2.  POA bounds: the next generation. 

3.  Cost-sharing mechanisms: worst-case inefficiency. 

4.  Optimal cost-sharing in routing games. 

5.  Simple auctions for complex settings. 
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POA Bounds Without Convergence 

Meaning of  a POA bound: if the game is at an 
equilibrium, then outcome is near-optimal. 

Problem: what if  can’t reach an equilibrium? 

•  non-existence (pure Nash equilibria) 

•  intractability (mixed Nash equilibria) [Daskalakis/
Goldberg/Papadimitriou 06], [Chen/Deng/Teng 06], 
[Etessami/Yannakakis 07] 

•  hard to learn Nash equilibria [Hart/Mas-Colell 03], ... 

Worry: fail to converge, so POA bound doesn’t apply. 
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Learnable Equilibria 

Fact: simple strategies converge quickly to more permissive 
equilibrium sets. 

•  correlated equilibria: [Foster/Vohra 97], [Fudenberg/
Levine 99], [Hart/Mas-Colell 00], ... 

•  coarse/weak correlated equilibria (of  [Moulin/Vial 
78]): [Hannan 57], [Littlestone/Warmuth 94], ... 
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Learnable Equilibria 

Fact: simple strategies converge quickly to more permissive 
equilibrium sets. 

•  correlated equilibria: [Foster/Vohra 97], [Fudenberg/
Levine 99], [Hart/Mas-Colell 00], ... 

•  coarse/weak correlated equilibria (of  [Moulin/Vial 
78]): [Hannan 57], [Littlestone/Warmuth 94], ... 

Question: are there good “robust” POA bounds, which 
hold more generally for such “easily learned” equilibria? 
[Mirrokni/Vetta 04], [Goemans/Mirrokni/Vetta 05], [Awerbuch/
Azar/Epstein/Mirrokni/Skopalik 08], [Christodoulou/Koutsoupias 
05], [Blum/Even-Dar/Ligett 06], [Blum/Hajiaghayi/Ligett/Roth 08] 
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A Hierarchy of  Equilibria 

pure"
Nash"

mixed Nash"

correlated eq"

no regret""
"
"
"
"
"
"
"
"
Recall: POA determined by worst equilibrium 
(only increases with the equilibrium set)."

need not"
exist"

hard to"
compute"

easy to"
compute/"
learn"
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POA Bounds Without Convergence 

Theorem: [Roughgarden 2009] most known POA bounds 
hold even for all coarse correlated equilibria. 

Part I: [extension theorem] every POA bound proved for 
pure Nash equilibria in a prescribed way extends 
automatically, with no quantitative loss, to all no-regret 
outcomes. 

•  eludes non-existence/intractability critiques. 

Part II: most known POA bounds were proved in this way 
(so extension theorem applies). 
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Extension Theorems 

permissive equilibrium 
concept (e.g., no-regret 
outcomes)"

what we care about"
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Extension Theorems 

permissive equilibrium 
concept (e.g., no-regret 
outcomes)"

easier"

what we care about"
what’s easy"
to analyze"

pure Nash equilibria"
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Extension Theorems 

permissive equilibrium 
concept (e.g., no-regret 
outcomes)"

easier"

POA"
extension"
theorem"

what we care about"
what’s easy"
to analyze"

pure Nash equilibria"



Outline 

1.  The price of  anarchy in routing games. 

2.  Learnable equilibria: robust POA bounds. 

3.  Cost-sharing mechanisms: worst-case inefficiency. 
1.  Inefficiency in mechanism design. 
2.  Designing to minimize worst-case efficiency loss. 

4.  Optimal cost-sharing in routing games. 

5.  Simple auctions for complex settings. 
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Public Excludable Good 

E.g., [Deb/Razzolini 99], [Moulin 99] 
•  player i has valuation vi for winning 
•  welfare of S = v(S) ‐C(S)    [where v(S) =Σivi] 
•  C(ø) = 0, C(S) = 1 if  S ≠ ø 

Constraints: want a dominant strategy IC + IR, budget-
balanced mechanism, no positive transfers. 
•  [Green/Laffont 79] efficiency loss inevitable  

Design goal: mechanism with minimum worst-case loss. 
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Equal-Share Mechanism 

The Mechanism: (which is BB+DSIC, even GSP) 

•  collects bids (bi for each i) 

•  initialize S = all players 

•  if  bi ≥ 1/|S| for all i in S, halt. 

•  else drop a player i with bi < 1/|S|  and iterate    
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Equal-Share Mechanism 

The Mechanism: (which is BB+DSIC, even GSP) 
•  collects bids (bi for each i) 
•  initialize S = all players 
•  if  bi ≥ 1/|S| for all i in S, halt. 
•  else drop a player i with bi < 1/|S|  and iterate    

Efficiency loss: 
•  set vi = (1/i) –ε  for i=1,2,...,k 
•  max welfare ≈ ln k – 1 
•  mechanism welfare = 0 

28 
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Equal-Share Mechanism 

The Mechanism: (which is BB+DSIC, even GSP) 
•  collects bids (bi for each i) 
•  initialize S = all players 
•  if  bi ≥ 1/|S| for all i in S, halt. 
•  else drop a player i with bi < 1/|S| and iterate    

Efficiency loss: 
•  set vi = (1/i) –ε  for i=1,2,...,k 
•  max welfare ≈ ln k – 1 
•  mechanism welfare = 0 
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Worst-Case Efficiency Loss 

Theorems: [Moulin/Shenker 01, Roughgarden/Sundararajan 06] 

•  ≈ (ln k – 1) is worst-case welfare loss. 
•  analogous results for general submodular 

(“diminishing marginal costs”) functions 
•  ex: C(S) = concave function of  player weights in S 

•  analog of  equal-split: cost shares = Shapley values 
•  worst-case welfare loss = value of  potential function 

defined in [Hart/Mas-Colell 90] 
•  corresponds also to a simple worst-case example 
•  never worse than for a public excludable good 
•  less severe as C gets “more linear” 
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Can We Do Better? 

Cost-sharing method: assigns cost share χ(i,S) to each 
player i in S (for every set S).   (e.g., Shapley value) 
•  constraints: budget-balance, “cross-monotonicity” 

Question: which cost-sharing method minimizes the 
worst-case efficiency loss (over all valuation profiles)? 

Theorem: [Moulin/Shenker 01, Roughgarden/Sundararajan 06] 

the Shapley value is optimal (any submodular cost fn). 

Extensions: [Dobzinski et al 08], [Juarez 13], ... 
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Cost Sharing at Google 

Motivation: attribution problems. 

•  marketer or advertiser compares                                                
Q1 vs Q2 revenue 

•  suppose several variables changed in Q2 
•  better targeting 
•  better matching algorithms 
•  stronger economy 

•  what percentage of  change to attribute to each variable? 
•  essentially a budget-balanced cost-sharing problem! 

Theorem: [Sun/Sundararajan 11] axiomatic justification 
of  Aumann-Shapley value for multi-linear revenue fns. 
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Outline 

1.  The price of  anarchy in routing games. 

2.  Learnable equilibria: robust POA bounds. 

3.  Cost-sharing mechanisms: worst-case inefficiency. 

4.  Optimal cost sharing in routing games. 
1.  Designing to minimize the POA. 
2.  More magical properties of  the Shapley value. 

5.  Simple auctions for complex settings. 
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Routing Games, Revisited 

Weighted routing games: (w/finite number of  players) 

•  player i has origin si, destination ti, chooses an si-ti 
path on which to route wi units of  traffic 

•  cost on edge e: ce(fe)fe, where fe = total weight using e 

 

 

Design question: how to share joint cost among users? 

Traditional answer: proportional to players’ weights. 
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Can We Do Better? 

Proportional Cost Sharing:  

•  corresponds to a FIFO queueing policy [Shenker 95] 

•  pure Nash equilibria need not exist [Rosenthal 73] 

•  worst-case POA well understood; modest if  cost funtions 
“close to linear” [Awerbuch/Azar/Epstein 05], [Christodoulou/
Koutsoupias 05], [Aland et al 06] 

Design Questions: 

•  can different cost shares restore pure Nash equilibria? 

•  can different cost shares reduce the worst-case POA? 
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Restoring Pure Equilibria 

Theorem: [Kollias/Roughgarden 11] sharing costs using a 
weighted Shapley value ([Shapley 53], [Kalai/Samet 87]) 
induces a potential game  ([Monderer/Shapley 96]). 

•  also, worst-case POA of  unweighted Shapley value only 
slightly bigger than with proportional cost-sharing 
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Restoring Pure Equilibria 

Theorem: [Kollias/Roughgarden 11] sharing costs using a 
weighted Shapley value ([Shapley 53], [Kalai/Samet 87]) 
induces a potential game  ([Monderer/Shapley 96]). 

•  also, worst-case POA of  unweighted Shapley value only 
slightly bigger than with proportional cost-sharing 

Theorem: [Gopalakrishnan/Marden/Wierman 13] these are the 
only cost-sharing methods guaranteed to induce a pure 
Nash equilibrium in every weighted routing game! 
•  a potential is necessary for guarnateed existence of  PNE 

•  extension of  [Chen/Roughgarden/Valiant 08] 
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Minimizing the POA 

Theorem: [Gkatzelis/Kollias/Roughgarden 14] among all 
budget-balanced cost-sharing methods that guarantee 
existence of  pure Nash equilibria, the Shapley value 
minimizes the worst-case POA in weighted routing games. 

•  slightly worse POA than with proportional cost-sharing 

Theorem: [Gkatzelis/Kollias/Roughgarden 14] among all 
budget-balanced cost-sharing methods, proportional cost 
shares minimize the worst-case POA in weighted routing 
games. 
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Outline 

1.  The price of  anarchy in routing games. 

2.  Learnable equilibria: robust POA bounds. 

3.  Cost-sharing mechanisms: worst-case inefficiency. 

4.  Optimal cost-sharing in routing games. 

5.  Simple auctions for complex settings. 
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Motivating Question 

Question: When can simple auctions perform well in 
complex settings?  

Example: welfare maximization with multiple non-
identical goods (combinatorial auctions). 

•  theoretically optimal: VCG mechanism 

•  simple: selling items separately 
•  when is equilibrium welfare close to optimal? 

•  example interpretation: is package bidding essential to 
good combinatorial auction designs? 
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The POA of  Simple Auctions 

[Christodoulou/Kovacs/Schapira 08], [Lucier/Borodin 10], 

[Paes Leme/Tardos 10], [Bhawalkar/Roughgarden 11], 

[Hassidim/Kaplan/Mansour/Nisan 11], [Lucier/Paes Leme 11], 

[Caragiannis/Kaklamanis/Kanellopoulos/Kyropoulou 11], 

[Lucier/Singer/Syrgkanis/Tardos 11], [Markakis/Telelis 12], 

[Paes Leme/Syrgkanis/Tardos 12], [Bhawalkar/Roughgarden 12], 
[Feldman/Fu/Gravin/Lucier 13], [Syrgkanis/Tardos 13], 

[de Keijzer/Markakis/Schaefer/Telelis 13], 

[Duetting/Henzinger/Starnberger 13], 

[Babaioff/Lucier/Nisan/Paes Leme 13], 

[Devanur/Morgenstern/Syrgkanis 13], … 
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The High-Order Bits 

incomplete-info games 
•  i.e., uncertain payoffs 

mixed Bayes-Nash 
  equilibria 

what we care about 
(e.g., for auctions) 
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The High-Order Bits 

full-information games 
•  i.e., certain payoffs 

pure Nash equilibria 

incomplete-info games 
•  i.e., uncertain payoffs 

mixed Bayes-Nash 
  equilibria 

easier 

what we care about 
(e.g., for auctions) 

what’s easy 
to analyze 
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The High-Order Bits 

full-information games 
•  i.e., certain payoffs 

pure Nash equilibria 

incomplete-info games 
•  i.e., uncertain payoffs 

mixed Bayes-Nash 
  equilibria 

easier 

POA 
extension 
theorem 

what we care about 
(e.g., for auctions) 

what’s easy 
to analyze 
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The High-Order Bits 

•  extension theorems for Bayes-Nash equilibria: 
[Roughgarden 12], [Syrgkanis/Tardos 13] 

full-information games 
•  i.e., certain payoffs 

pure Nash equilibria 

incomplete-info games 
•  i.e., uncertain payoffs 

mixed Bayes-Nash 
  equilibria 

easier 

POA 
extension 
theorem 



Concluding Remarks 

•  reasoning about inefficiency through approximation 
gives new insights into fundamental economic models 
•  try applying these ideas to your favorite model! 

•  good bounds for many games of  interest,                
even for easy-to-learn equilibria 

•  crisp advice for designing mechanisms and systems 
•  overprovisioning communication networks 
•  the many magical properties of  the Shapley value  
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