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Overview 

1.  “Why Prices Need Algorithms” (w/Talgam-Cohen, 
EC ‘15) 
•  from complexity separations to non-existence results for 

Walrasian (i.e., market-clearing) equilibria 

2.  “Barriers to Near-Optimal Equilibria” (FOCS ’14) 
•  from communication lower bounds to lower bounds on the price 

of  anarchy 

3.  “The Borders of  Border’s Theorem” (w/Gopalan and 
Nisan, EC ‘15) 
•  from complexity separations to impossibility results for “nice 

descriptions” of  incentive-compatible mechanisms 
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Walrasian Equilibria 

Setup: n agents, m items to allocate.  (indivisible items) 

•  bidder i has valuation vi(S) for each bundle S of  items  

•  allocations ó partitions S1,...,Sn of  items 



Walrasian Equilibria 

Setup: n agents, m items to allocate.  (indivisible items) 

•  bidder i has valuation vi(S) for each bundle S of  items  

•  allocations ó partitions S1,...,Sn of  items 

 

Walrasian equilibrium: 

•  allocation S1,...,Sn and prices p on items s.t.. 

    (1) every bidder gets favorite bundle 
 (maximizes vi(S)-          pj over bundles S) 

    (2) market clears (unsold items have price 0) 
j∈S∑



Non-Existence of        
Walrasian Equilibria 

Easy fact: in general, Walrasian equilibria need not exist. 

•  2 bidders (1 an 2), 2 items (A and B) 

•  “single-minded (AND)” bidder: v1(AB) = 3, else v1(S)=0 

•  “unit-demand (OR)” bidder: v2(A) = v2(B) = v2(AB) = 2 

•  in allocation where 1 gets A and B: 
•  to deter bidder #2, need prices of  A and B at least 2 each 
•  then AB too expensive tor #1 

•  in allocations where 1 doesn’t get A and B: 
•  similar case analysis 



Characterizing Existence 

Theorem 1: [Kelso/Crawford 82, Gul/Stacchetti 99]  If  all vi’s satisfy 
a “gross substitutes” condition, then a Walrasian equilibrium is 
guaranteed to exist. 

Theorem 2: [Gul/Stacchetti 99] partial converse. 
     

Follow-up results: “Tables and chairs” [Sun-Yang’06] and 
generalizations [Teytelboym’14], GGS [Ben-Zwi/Lavi/
Newman ’13], complements [Parkes-Ungar’00, Sun-Yang’14], 
tree valuations [Candogan’15], graphical valuations 
[Candogan’14], feature-based valuations [Candogan-
Pekec’14], ...      (all prove non-existence by explicit example) 
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Main Result 

Theorem: Suppose that, for a class V of  valuations, 
“welfare maximization” does not reduce to “utility 
maximization” (polynomial Turing reductions). 

Then, there are markets with valuations in V without 
Walrasian equilibria. 

•  necessary condition for existence: welfare-
maximization no harder than utility-maximization 

•   connects a purely economic question (existence of                                       
equilibria) to a purely algorithmic one 
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Utility/Welfare Maximization 

Utility maximization problem:  (with 1 agent) 

•  input = a valuation v (succinctly described), item prices p 

•  output = favorite bundle (argmaxS v(S) -         pj) 

Welfare maximization problem:  (with n agents) 

•  input = valuations v1,...,vn (succinctly described) 

•  output = optimal allocation (argmax     vi(Si)) 

•  generally only harder than utility-maximization 
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Examples 

Single-minded bidders: agent i only wants the bundle Ti,      
vi(S) either vi (if  S includes Ti) or 0. 

•  utility maximization = trivial (either Ti or the empty set) 

•  welfare maximization = NP-hard (set packing) 
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Examples 

Single-minded bidders: agent i only wants the bundle Ti,      
vi(S) either vi (if  S includes Ti) or 0. 

•  utility maximization = trivial (either Ti or the empty set) 

•  welfare maximization = NP-hard (set packing) 
 

Budget-additive bidders:  for item valuations vi1,...,vim         
and a budget bi, vi(S) = min{        vij , bi} 

•  utility maximization = pseudo-poly-time (Knapsack) 

•  welfare maximization = strongly NP-hard (bin packing) 
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Proof  Sketch 

(Recall: Necessary condition for guaranteed existence – utility 
maximization as hard as welfare maximization) 

1.  Assume a Walrasian equilibrium is guaranteed to exist 

2.  Show that welfare maximization reduces to utility 
maximization 
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Proof  Sketch 

(Recall: Necessary condition for guaranteed existence – utility 
maximization as hard as welfare maximization) 

1.  Assume a Walrasian equilibrium is guaranteed to exist 

2.  Show that welfare maximization reduces to utility 
maximization 

Fact 1: [Nisan/Segal 06] fractional welfare maximization 
reduces to utility maximization. 

Fact 2: [Bikhchandani-Mamer 97]  Walrasian equilibrium exists 
ó optimal fractional allocation = optimal integral allocation 
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Other Results 

•  Similar results for oracle models 

•  With more general anonymous prices Q, efficiently 
verifiable equilibria exist only when welfare maximization 
reduces to utility-maximization (with prices in Q) 

•  Complexity-theoretic explanation for why no useful 
generalizations of  Walrasian equilibria: would require a 
non-standard polynomial-time algorithm for welfare-
maximization 
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Equilibria vs. Algorithms 

Motivating question: are game-theoretic equilibria more 
powerful computationally than poly-time algorithms? 

Recall: computing a (Nash) equilibrium is hard: 

•  e.g., computing a mixed Nash equilibrium of  a 2-player 
game is PPAD-complete [Chen/Deng/Teng 06,      
Daskalakis/Goldberg/Papadimitriou 06] 

•  even harder with >2 players [Etessami/Yannakakis 07] 

Goal: prove fundamental limits on what equilibria can do. 
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Results in a Nutshell 

Meta-theorem: equilibria are generally bound by the 
same limitations as algorithms with polynomial 
computation or communication. 

Meta-reason: equilibria are still “too easily computable” 
to overcome typical intractability results. 

Caveats: requires that equilibria are 

•  guaranteed to exist (e.g., mixed Nash equilibria) 

•  can be efficiently verified 

 

€ 



Combinatorial Auctions 

Welfare-maximization: n bidders, m non-identical goods 

•  allocation = partition S1,S2,...,Sn of  goods 

•  bidder i has valuation vi(S) (i.e., max willingness to 
pay) for each subset S of  goods 
•   [≈ 2m parameters]  
•  (assume integral + bounded) 

•  welfare of  allocation S1,S2,...,Sn:  ∑i vi(Si) 
•  goal is to allocate goods to (approximately) maximize this 
•  want communication polynomial in n and m 



When Do Simple      
Mechanisms Work Well? 



When Do Simple      
Mechanisms Work Well? 

Simultaneous First-Price Auction (S1A): [Bikhchandani 99] 

•  each bidder submits one bid per item 
•  m bids used to summarize  2m private parameters 

•  each item sold separately in a first-price auction 

Question: what is the worst-case POA of  S1A’s? 

•  e.g., for mixed Nash equilibria (pure NE need not exist) 

•  “price of  anarchy (POA)” = welfare(OPT)/welfare(worst EQ) 



From Protocol Lower Bounds to 
POA Lower Bounds 

Theorem: [Roughgarden 14] Suppose: 

 

 

 

Then worst-case POA of  ε-approximate mixed Nash equilibria 
of  every “simple” mechanism is at least α. 
•  “simple” = sub-doubly-exponential number of  actions per player 
•  ε can be as small as inverse sub-exponential in n and m 



From Protocol Lower Bounds to 
POA Lower Bounds 

Theorem: [Roughgarden 14] Suppose: 

•  no nondeterministic subexponential-communication 
protocol approximates the welfare-maximization 
problem (with valuations V) to within factor of  α. 
•  i.e., impossible to decide OPT  ≥  W* vs. OPT  ≤ W* /α 

Then worst-case POA of  ε-approximate mixed Nash equilibria 
of  every “simple” mechanism is at least α. 
•  “simple” = sub-doubly-exponential number of  actions per player 
•  ε can be as small as inverse sub-exponential in n and m 

Point: : reduces lower bounds for equilibria to lower 
bounds for nondeterministic communication protocols. 



Ex: Subadditive Valuations 

Theorem: [Dobzinski/Nisan/Schapira 05] No nondeterministic 
subexponential protocol approximates welfare with 
subadditive valuations better than a factor of  2. 

 



Ex: Subadditive Valuations 

Theorem: [Dobzinski/Nisan/Schapira 05] No nondeterministic 
subexponential protocol approximates welfare with 
subadditive valuations better than a factor of  2. 

Corollary: Worst-case POA of  ε-MNE of  every simple 
mechanism (including S1A’s) with subadditive bidder 
valuations is at least 2. 
•  known for S1A, exact MNE [Christodoulou/Kovacs/Sgouritsa/Tan 14]  

•  by [Feldman/Fu/Gravin/Lucier 13]: S1A = optimal simple mechanism 

•  contributes to ongoing debates on complex auction formats  
(“package bidding”, etc.) 

 



Why Approximate MNE? 

Issue: in an S1A, number of  strategies = (Vmax + 1)m 

•  valuations, bids assumed integral and poly-bounded 
•    

Consequence: can’t efficiently guess/verify a MNE. 

Theorem: [Lipton/Markakis/Mehta 03] a game with n players 
and N strategies per player has an ε-approximate mixed 
Nash equilibrium with support size polynomial in n, log 
N, and ε-1. 
•  proof  idea based on sampling from an exact MNE 

 



From Protocol Lower Bounds to 
POA Lower Bounds 

Theorem: [Roughgarden 14] Suppose: 

•  no nondeterministic polynomial-communication 
protocol approximates the welfare-maximization 
problem (with valuations V) to within factor of  α. 
•  i.e., impossible to decide OPT  ≥  W* vs. OPT  ≤ W* /α 

Then worst-case POA of  ε-approximate mixed Nash equilibria 
of  every “simple” mechanism is at least α. 
•  ε can be as small as inverse polynomial in n and m 

Point: : reduces lower bounds for equilibria to lower 
bounds for communication protocols. 



Proof  of  Theorem 

Suppose worst-case POA of  ε-MNE is ρ<α: 
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Input: game 
G s.t. either 
(i) OPT ≥ W* 
or (ii) OPT ≤ 
W*/α 

Protocol: 
“advice” =       
ε-MNE x with 
small support 
(exists by 
LMM); players 
verify it privately 
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Input: game 
G s.t. either 
(i) OPT ≥ W* 
or (ii) OPT ≤ 
W*/α 

Protocol: 
“advice” =       
ε-MNE x with 
small support 
(exists by 
LMM); players 
verify it privately 

if  E[wel(x)] > W*/
α then OPT > 
W*/αso in case (i) 



Proof  of  Theorem 

Suppose worst-case POA of  ε-MNE is ρ<α: 

 

 

 

 

 

 
Key point: every ε-MNE is a short, efficiently           
verifiable certificate for membership in case (ii).  
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Input: game 
G s.t. either 
(i) OPT ≥ W* 
or (ii) OPT ≤ 
W*/α 

Protocol: 
“advice” =       
ε-MNE x with 
small support 
(exists by 
LMM); players 
verify it privately 

if  E[wel(x)] > W*/
α then OPT > 
W*/αso in case (i) 

if  E[wel(x)] ≤ W*/
α then OPT ≤       
(ρ/α)W* < W* 
so in case (ii) 



More Applications 

•  optimality results for “simple” auctions with other 
valuation classes (general, XOS) 

•  analogous results for combinatorial auctions with 
succinct valuations (assuming coNP not in MA) 

•  analogous results for routing and scheduling games 
(assuming PLS not in P) 
•  e.g., tolls don’t reduce the POA in atomic routing games 

•  unlikely to reduce planted clique to ε-Nash hardness 
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Single-Item Auctions 

Bayesian assumption: bidders’ valuations v1,...,vn 
drawn independently from distributions F1,...,Fn. 

•  Fi’s known to seller, vi’s unknown 

Goal: find auction that maximizes expected revenue. 

35 

(Sealed-Bid) Auction: 
•  collect one bid per bidder 
•  decide on a winner (if any) 
•  decide on a selling price 
 

Example:  
2nd price auction with reserve r. 
•  winner = highest bidder   
above r (if any) 
•  price = r or 2nd-highest bid, 
whichever is larger 



Optimal Single-Item Auctions 

[Myerson 81]: characterized the optimal auction, as a 
function of  the prior distributions F1,...,Fn. 

•  e.g., for i.i.d. valuations (all Fi’s the same), optimal 
auction = second price with suitable reserve 

[Maskin/Riley 84]: to generalize to harder problems (like 
risk-adverse bidders), can optimization help? 

•  want to express “feasible region” via linear constraints 

•  assume finite-support distributions 
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A Naive Linear Program 

•  decision variable xi(b) = probability that bidder i wins 
when the bids are b 

•  decision variable pi(b) = bidder i’s payment to seller 
when the bids are b 
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A Naive Linear Program 

•  decision variable xi(b) = probability that bidder i wins 
when the bids are b 

•  decision variable pi(b) = bidder i’s payment to seller 
when the bids are b 

•  incentive constraints: truthful bidding an equilibrium 

•  individual rationality constraints: truthful bidding 
guarantees non-negative expected utility 

•  feasibility: can only sell one item (                  ) 

Problem: way too big!  (exponentially many b’s) 

xi (b) ≤1
i
∑



A Projected Linear Program 

•  variable yi(bi)  (intent:                                            ) 

•  variable qi(bi)  (intent:                                            ) 

•  can express constraints “truthful bidding an 
equilibrium” and “truthful bidding guarantees non-
negative expected utility” in these variables 

•  number of  variables ≈ sum of  support sizes 

 
yi (bi ) = E

b− i∼F− i
[xi (bi ,b− i )]

 
qi (bi ) = E

b− i∼F− i
[pi (bi ,b− i )]



A Projected Linear Program 

•  variable yi(bi)  (intent:                                            ) 

•  variable qi(bi)  (intent:                                            ) 

•  can express constraints “truthful bidding an 
equilibrium” and “truthful bidding guarantees non-
negative expected utility” in these variables 

•  number of  variables ≈ sum of  support sizes 

Problem: feasibility constraints                     (for all b) 

•  can these be expressed purely in terms of  the yi’s? 

xi (b) ≤1
i
∑

 
yi (bi ) = E

b− i∼F− i
[xi (bi ,b− i )]

 
qi (bi ) = E

b− i∼F− i
[pi (bi ,b− i )]



Interim Feasibility 

Key question: given yi(bi)’s, are they interim feasible --- are 
they induced by some set of  xi(b)’s? 
•  are given marginals consistent with some joint distribution? 
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Interim Feasibility 

Key question: given yi(bi)’s, are they interim feasible --- are 
they induced by some set of  xi(b)’s? 
•  are given marginals consistent with some joint distribution? 

 

“No” certificate: pick subsets A1,...,An of  bidders’   
supports, call i special if  vi in Ai. 

•  if  Pr[winning bidder is special] > Pr[exists special bidder] 

then yi(bi)’s cannot be interim feasible. 

sum of  some yi(bi)’s  constant (depending on prior) 



Border’s Theorem 

Theorem: [Border 91] yi(bi)’s are interim feasible if  and only if, 
for all subsets A1,...,An of  bidders’  supports, 

Pr[winning bidder is special] ≤ Pr[exists special bidder]. 



Border’s Theorem 

Theorem: [Border 91] yi(bi)’s are interim feasible if  and only if, 
for all subsets A1,...,An of  bidders’  supports, 

Pr[winning bidder is special] ≤ Pr[exists special bidder]. 

Theorems: [Alaei/Fu/Haghpanah/Hartline/Malekian 11], [Cai/
Daskalakis/Weinberg 11], [Che/Kim/Mierendorff  13] 

•  extend Border’s theorem to slightly more general settings 
(multi-unit auctions or additive valuations) 

•  quite general (1+ε)-approximate versions 

Question: can we extend Border’s theorem (exactly) 
significantly beyond single-item auctions? 



More Formally... 

Border-like theorem: a characterization of  feasible 
interim allocation rules by a set of  easy-to-verify linear 
inequalities. 

•  weaker goal than polynomial-time separation 

 



More Formally... 

Border-like theorem: a characterization of  feasible 
interim allocation rules by a set of  easy-to-verify linear 
inequalities. 

•  weaker goal than polynomial-time separation 

 

Theorem: Unless PNP=#P, there is no Border-like 
theorem for 
•  Public Projects (e.g., build a bridge or not?) 
•  Multi-item auctions with unit-demand bidders 
•  <your favorite setting here> 



Proof  Structure 

1)  If  a Border-like characterization exists for a certain 
mechanism design problem then the computational 
problem of  recognizing feasible interim allocations 
is in PNP.   (via ellipsoid) 



Proof  Structure 

1)  If  a Border-like characterization exists for a certain 
mechanism design problem then the computational 
problem of  recognizing feasible interim allocations 
is in PNP.   (via ellipsoid) 

2)  But, for public projects (and other mechanism 
design tasks) the computational problem of  
recognizing feasible interim allocations is #P-hard. 
(enough to show computing the optimal revenue is 
#P-hard, prove this via reduction, case-by-case) 



Connection to Boolean 
Function Analysis 

Boolean Functions 

•  It is #P-hard to compute the 
w-weighted sum of  
influences of  the w-
threshold function. 

 

•  It is #P-hard to determine 
whether a given vector of  
Chow parameters is feasible 
(by some 0≤f(x1…xn)≤1). 

Auctions 

•  It is #P-hard to compute the 
optimal revenue for the Boolean 
public project mechanism 
design problem. 

•  There is no characterization of  
feasible interim allocation rules 
by reasonable-complexity linear 
inequalities (unless Preasonable = 
#P) 



Take-Aways 

•  computational and communication complexity explain 
several “barriers” in proving desirable economic results 
•  existence of  Walrasian and more general price 

equilibria 
•  simple auctions with near-optimal equilibria 
•  tractable descriptions of  the (interim) auction design 

space 

•  research direction #1: characterize the tractable vs. 
intractable frontier (e.g.. optimal simple auctions) 
research direction #2: make impossibility results 
unconditional (e.g., extension complexity of  auctions) 

•  research direction #3: identify more such barriers! 
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