CS364B: Exercise Set #4

Due by the beginning of class on Wednesday, February 5, 2014

Instructions:

(1) Turn in your solutions to all of the following exercises directly to one of the TA (Okke). Please type
your solutions if possible and feel free to use the LaTeX template provided on the course home page.
Email your solutions to cs364b-win1314-submissions@cs.stanford.edu. If you prefer to hand-write
your solutions, you can give it to Okke in person at the start of the lecture.

(2) Your solutions will be graded on a “check/minus/zero” system, with “check” meaning satisfactory and
“minus” meaning needs improvement.

(3) Solve the non-optimal exercises and write up your solutions on your own. You may, however, discuss
the exercises verbally at a high level with other students. You may also consult any books, papers,
and Internet resources that you wish. And of course, you are encouraged to contact the course staff
(via Piazza or office hours) to clarify the questions and the course material.

(4) No late assignments will be accepted.

Lecture 7 Exercises

Exercise 22 (Optional — Do Not Hand In)

This exercise outlines a proof that there is no ascending auction that is guaranteed to converge to the VCG
outcome for every profile of gross substitutes valuations. For this exercise, we define an ascending auction
as a procedure that asks demand queries at a sequence p°,p!,..., of nondecreasing price vectors, where
every demand query posed depends only on the answers to previous demand queries. (Thus, for each p?, the
auction may as well pose a demand query at these prices to every bidder.) The final allocation and payments
can be an arbitrary function of all demand query answers over the course of the auction (cf., the clinching
auction for identical goods).
Now consider a set U = {a, b, ¢,d} of four items. There are three bidders:

e The first bidder’s valuation satisfies v1(a) = v1(b) = vi(ab) = 2, vi(c) = v1(d) = vi(ed) = 2, and
v1(S) =v1(SN{a,b}) +vi(SN{e,d}) for SCU.

e The second bidder’s valuation satisfies va(c) = z, va(a) = ve(ac) = 1, va(d) = 0, v2(b) = vo(bd) = 1,
and v2(S) = v2(SN{a, c}) +v2(SN{b,d}) for S C U. Here z is an unknown parameter between + and
i
e The third bidder’s valuation satisfies vs(a) = y, vs(c) = vs(ac) = 1, v3(b) = 0, v3(d) = v3(bd) = 1, and
v3(9) = v3(S N {a,c}) +v3(SN{b,d}) for S CU. Here y is an unknown parameter between § and 3.
(a) Argue that vy, v, vs satisfy the gross substitutes condition.

[Hint: prove that the “direct sum” of two G.S. valuations is again G.S.]
(b) Argue that the VCG payments are 2 for bidder 1, y for bidder 2, and « for bidder 3.

(c) Argue that to compute the correct VCG payment x for bidder 3 (for every z € (4,3)), there must
exist a price vector p? with p’(c) <z and p/(a) — p’(c) > 1 — x.



(d) Argue that to compute the correct VCG payment y for bidder 2 (for every y € (1, 1)), there must exist

a price vector p* with p‘(a) <y and p*(c) — p‘(a) > 1 —y.

(e) Conclude from (d) and (e) that no ascending auction correctly computes the VCG payments for every
value of x and y.

Exercise 23

Prove that the following are equivalent for a valuation v on a set U = {A, B} of two items:
(i) v satisfies the gross substitutes condition;
(ii) v is submodular;

(iii) v is subadditive, meaning v({A, B}) < v({A}) + v({ B}).

Exercise 24 (Optional — Do Not Hand In)

Recall that a budgeted additive valuation has the form v(S) = min{B, Y, s v;}, where v1,...,v;, and B are
nonnegative numbers. Note that every such valuation is submodular and can be described using a linear (in
m) number of parameters.

Prove that computing a welfare-maximizing allocation for bidders with budgeted additive valuations is
NP-hard, even when there are only two bidders.

[Hint: reduce from Partition.]

Exercise 25 (Optional — Do Not Hand In)

This exercise gives a second %—approximation algorithm for computing a welfare-maximizing allocation for

bidders with monotone submodular valuations. It does not have the “auction-like” flavor of the approxi-

mation algorithm from lecture, but it is still very simple, and has the added benefits of needing only value

queries (as opposed to demand queries) and running in polynomial (rather than pseudopolynomial) time.
The algorithm is greedy, and makes one pass through the items:

1. Order the items U arbitrarily as 1,2,...,m.
2. Initialize S; = 0 for every i.
3. Forj=1,2,...,m:

(a) Add item j to the bundle ¢ that maximizes the marginal value v;(S; U{j}) — v;(S;) (breaking ties
arbitrarily).

Prove that this algorithm computes an allocation that has welfare at least % times the maximum possible.

[Hint: let A; denote the increase in welfare of the greedy algorithm’s allocation when it assigns item j. Use
the greedy criterion and submodularity to argue that, for each bidder i, v;(SFUS;) —v;(S;) < Zjes,;‘\s,- Aj.
Finish by summing over all bidders and rearranging.]

Lecture 8 Exercises

Exercise 26 (Optional — Do Not Hand In)

Recall scenario #7, where there are m identical items and each bidder 7 has a (not necessarily downward
sloping) valuation given by nonnegative marginal values p;(1),..., u;(m). Prove that a welfare-maximizing
allocation can be computed in time polynomial in n and m.

[Hint: dynamic programming,]



Exercise 27

Let x be a maximal-in-distributional-range (MIDR) allocation rule. Recall this means that there is a set D
of distributions over Q) — the distributional range — such that x has the following form:

1. Given (reported) valuations b on 2, compute the distribution D* that maximizes the expected welfare
Eoep[Y i bi(w)] over D € D.!

2. Return an outcome w drawn at random from the distribution D*.

The key points are: (i) D is defined up front, independent of the reported valuations b; (ii) given D, the
allocation rule is uniquely defined (up to tie-breaking) — it samples an outcome from the distribution that
maximizes expected welfare with respect to the reported valuations.

Now define a payment rule by

Pi(b)ZglgngeD %;bi(w) — Euep- %;bi(w) ;

that is, bidder i pays the loss of expected welfare to others caused by its participation in the mechanism.
Prove that (x,p) is a DSIC (randomized) mechanism, meaning that for every bidder ¢, valuation v;, and
reported valuations b_; by the others, ¢ maximizes its expected quasi-linear utility by revealing its true
valuation:
v; € arg;naX{Ewwx(b,y,b,i)[Ui(w) —pi(bi, )]}

i

1To ensure that this maximum exists, it is a good idea to take D to be a compact set.



