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1 Multi-Unit Auctions with Downward-Sloping Valu-

ations

This lecture pursues good ascending auctions in a fourth scenario, multi-unit auctions.

Scenario #4:

• A set m identical items.

• Each bidder i has a private marginal valuation µi(j) for a jth item. Thus, bidder i’s
total valuation for ` units is vi(`) :=

∑`
j=1 µi(j).

• Valuations are downward-sloping, meaning that µi(1) ≥ µi(2) ≥ · · · ≥ µi(m) for every
i. Thus, additional units provide diminishing returns.

The first scenario — identical items and unit-demand valuations — corresponds to special
case in which µi(j) = 0 for all i and j ≥ 2. The second and third scenarios — which have
non-identical goods but restrict to additive or unit-demand valuations, respectively — are
incomparable to this one.

Our goals are the usual ones — a simple ascending auction that is EPIC and in which
sincere bidding leads to a welfare-maximizing allocation. Most aspects of the following
solution are simpler than in the unit-demand case we just studied, but we’ll see that non-
unit-demand valuations do introduce one important complication.
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2 A DSIC Solution

We begin with our usual “sanity check” that there is a good DSIC solution — i.e., that the
VCG mechanism can be implemented efficiently. In scenario #4, the VCG mechanism has
the following form.

1. Collect bid νi(j) for all bidder i and quantities j, with νi(j) nonincreasing in j for each
i, allegedly the bidders’ marginal valuations.

2. Compute quantities x1, . . . , xn maximizing
∑n

i=1

∑xi

j=1 νi(j) subject to
∑n

i=1 xi ≤ m.

3. Charge each bidder its externality (more details shortly).

A simple but important observation is that the second, welfare-maximization step can be
computed using a simple greedy algorithm. First, identify the set of the top m µi(j)’s. Since
the bids are downward-sloping, each bidder i will have a prefix of its first xi reported marginal
valuations in this set. A straightforward exchange argument shows that giving xi items to
each bidder i maximizes the welfare with respect to the reported marginal valuations.1

3 Walrasian Equilibria and VCG Payments

The biggest challenge posed by non-unit-demand valuations, even with identical items, is
that the VCG outcome need not correspond to a Walrasian equilibrium. Recall that this
equivalence was our most useful tool for designing an ascending auction in scenario #3.

In more detail, for multi-unit auctions, a Walrasian equilibrium for a valuation profile is
a pair (q,x) with the following properties:

1. q ≥ 0 is a nonnegative price per unit;

2. x1, . . . , xn are nonnegative integers with sum at most m;

3. each bidder i gets its preferred quantity at the price q, namely xi ∈ argmaxm
j=0{vi(j)−

q · j}

4.
∑n

i=1 xi < m only if q = 0.

Example 3.1 (VCG 6= WE) Consider two bidders and two identical items. The first
bidder is additive, with µ1(1) = µ1(2) = 2. The second bidder is unit-demand, with µ2(1) = 1
and µ2(2) = 0.

1This implementation of the VCG mechanism runs in time polynomial in n and m, which is polynomial
in the input size if each bidder’s valuation is an explicit list of marginal valuations. This running time can be
improved if we assume that each bidder can answer a “value query” — given j, return µi(j) — in sublinear
time. By cleverly using binary search, the welfare-maximizing allocation can be computed using a number
of value queries that is polynomial in n, log m, and the number of bits used to describe bidders’ valuations.
See [2, §4.2] for the details.
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Figure 1: When the other bids are sorted, the xi bids after the first m − xi bids form the
price for player i.

In the truthful VCG outcome, the first bidder receives both items and pays the externality
it creates, which is 1. This could only correspond to a WE with per-unit price 1

2
. But with

q = 1
2
, the second bidder would prefer quantity 1 to its allocation of zero.

Example 3.1 notwithstanding, most of the nice properties of WE carry over from the
third scenario to the present one. There always exists a WE; there is a smallest WE price;
and payments under the VCG mechanism are at most those in the smallest WE (though
equality need not hold). We leave the details to the Exercises.

In contrast to scenario #3, where we could attain the VCG outcome and a WE simulta-
neously, in this scenario we need to choose between two competing options.

1. Strive for an EPIC auction in which sincere bidding leads to a (non-VCG) WE outcome.

2. Strive for an EPIC auction in which sincere bidding leads to a (non-WE) VCG outcome.

We’ll see later why the first option is impossible. For starters, we leave as an exercise a
proof that the direct-revelation mechanism that charges the smallest WE price (with respect
to the reported valuations) is not DSIC. A key issue is “demand reduction” — with a
Walrasian price, bidders can have incentive to underbid, to obtain a smaller quantity at a
much cheaper price (and thus larger utility).

The rest of this lecture gives a solution to the second option.

4 Characterization of VCG Payments

Analogous to the previous scenario, to design a good ascending auction we need to understand
the special structure of the VCG payments in multi-unit auctions with downward-sloping
valuations. Recall that, by definition, the payment of bidder i under the VCG mechanism
is the maximum-possible welfare obtainable by the other n − 1 minus the welfare those
bidders obtain in the VCG outcome (with respect to the submitted bids). Because a greedy
algorithm maximizes the welfare in scenario #4, these payments are relatively simple, and
might plausibly be computed by an ascending auction.
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For a bidder i, imagine sorting the νk(j)’s submitted by other bidders from high to low
(Figure 1). We can divide the νk(j)’s into three regions: (i) the highest m − xi of them,
where xi is the number of units awarded to i in the VCG outcome; (ii) the next xi highest
νk(j)’s; and (iii) the rest of the νk(j)’s. The bids in the second category are precisely those
that will not be allocated when i is present, but will be allocated when i is absent. That is,
the VCG payment of bidder i is the sum of the xi νk(j)’s in category (ii). It is convenient
to associate these xi numbers with the xi units that i wins in the VCG outcome as follows:

VCG price pi(j) = (m− j + 1)th largest bk(`) (with k 6= i). (1)

As one would expect in a DSIC mechanism, the right-hand side of (1) is a function only of
the bids by bidders k 6= i. The following observations are immediate.

1. pi(1) ≤ pi(2) ≤ · · · ≤ pi(xi);

2. by the downward-sloping restriction, νi(1) ≥ νi(2) ≥ · · · ≥ νi(xi);

3.
νi(xi)︸ ︷︷ ︸

in the top m

≥ pi(xi)︸ ︷︷ ︸
not in the top m

;

4.
νi(xi + 1)︸ ︷︷ ︸

not in the top m

≤ pi(xi + 1)︸ ︷︷ ︸
in the top m

.

These four inequalities imply that the VCG mechanism gives bidder i the quantity xi that
maximizes ∑̀

j=1

(νi(j)− pi(j)) (2)

over all possibly quantities ` = 0, 1, 2, . . . ,m. One way to think about this is that items are
being doled out by a Pez dispenser at an increasing sequence of prices (which are independent
of i’s bids), and that the VCG mechanism keeps taking items on behalf of bidder i as long
as they contribute positively to its utility.

While simple enough, the expression in (1) references all of the bids by others — informa-
tion that is available in a direct-revelation mechanism but against the spirit of an ascending
auction, where such values should be implicitly elicited only on a “need to know” basis. With
this in mind, define the demand Di(q) of bidder i at the (per-unit) price q as the number of
units that i wants at price q — also known as max{j ≤ m : vi(j) > q}, or the length of the
prefix of i’s (downward-sloping) valuation that contains only number bigger than q. Since
the (m − j + 1)th largest of the νk(j)’s is also the threshold price at which the combined
demand of bidders other than i passes from m− j + 1 to m− j, we can write

VCG price pi(j) = inf{q :
∑
k 6=i

Dk(q) ≤ m− j}. (3)

The right-hand side of (3) is defined purely in terms of “demand queries,” which have thus
far been the method of communication between bidders and an ascending auction.
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5 The Clinching Auction

The clinching auction [1] is an ascending-price auction, that stops once demand equals supply.
To halt with the VCG payments (3), rather than the payments of some WE, units will
effectively be sold (i.e., “clinched”) as the auction proceeds, with the per-unit price increasing
as the auction proceeds. Using the characterization of VCG payments in (3), we can compute
the appropriate prices on the fly using demand queries.

Clinching Auction (Main Loop):

1. Initialize p = 0.

2. while (TRUE):

(a) Ask each bidder i a demand query a collection the resulting Di(p)’s.2

(b) If
∑n

i=1 Di(p) ≤ m, then halt (see below for final allocation and payments).

(c) Otherwise, increment p by ε.

Final allocation: Let p denote the price at termination. Give xi ∈ [Di(p), Di(p− ε)] units
to each bidder i, subject to

∑n
i=1 xi = m. This is possible because

∑n
i=1 Di(p) ≤ m <∑n

i=1 Di(p− ε).3

Final payments: For j = 1, 2, . . . ,m, define

qi(j) := −ε + min
t∈Z+

{εt :
∑
k 6=i

Dk(εt) ≤ m− j}. (4)

Bidder i pays qi(j) for its jth unit (j = 1, 2, . . . , xi). This is exactly the price during the
first iteration in which

∑
k 6=i Dk(p) ≤ m — in this iteration, bidder i “clinches” its j unit at

a price of qi(j).

Example 5.1 Recall Example 3.1, with n = m = 2, µ1(1) = µ1(2) = 2, µ2(1) = 1 and
µ2(2) = 0. Observe that D1(q) = 2 for q ∈ [0, 2) while D2(q) = 1 for q ∈ [0, 1). In the
clinching auction with sincere bidding, up to an ε, bidder 1 pays 0 for the first unit and 1
for the second unit. This matches the truthful VCG outcome.

6 Analysis of the Clinching Auction

We assume in this section that bidders bid sincerely; the next section addresses incentive
issues.

2In contrast to the unit-demand case, the final payments are computed using the whole history of demand
query answers, not merely the most recent answers. The fact that VCG payments are not generally a WE
necessitates this complexity.

3In the trivial case where
∑n

i=1 Di(0) ≤ m, all the units can be given away to free to those who want
them.
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We first note that the clinching auction approximately maximizes welfare, and hence
simulates the allocation of the VCG mechanism.

Lemma 6.1 If all bidders bid sincerely, then the allocation computed by the clinching auction
is within mε of the maximum possible.

Proof: Recall that, because valuations are downward-sloping, the maximum-possible welfare
is the sum of the top m µi(j)’s. The last two iterations of the clinching auction identify the set
B1 of µi(j)’s that exceed p and the set B2 of µi(j)’s that exceed p− ε, with |B1| ≤ m < |B2|.
The welfare of the clinching auction’s allocation is the sum of all terms in |B1| plus the sum
of m−|B1| terms from B2. Since all terms of B2 \B1 are within ε of each other, its allocation
is at most mε less than the maximum possible. �

We next show that the clinching auction also simulates the VCG payments, in the sense
that all bidders’ utilities are approximately the same in both mechanisms.

Theorem 6.2 ([1]) The utility of every bidder in the sincere bidding outcome of the clinch-
ing auction is within ±mε of its utility in the truthful VCG outcome.

Proof: Recall from (2) the utility of bidder i in the truthful VCG outcome:

∑̀
j=1

(µi(j)− pi(j)), (5)

where pi(j) is defined in (3) and ` is the largest index for which µi(`) > pi(`).
Assume that bidders bid sincerely in the clinching auction and let p∗ denote the final

price. The utility of bidder i is
xi∑

j=1

(µi(j)− qi(j)). (6)

We first note that every term in (6) is nonnegative. If i wins at least j units in the clinching
auction, then j ≤ Di(p

∗ − ε); since qi(j) ≤ p∗ − ε (by (4)), µi(j) ≥ p∗ − ε ≥ qi(j). Second,
consider a term in (5) with value greater that ε — i.e., a unit j with µi(j) > pi(j)+ ε. Then,
by the definition 3 of pi(j), there will be an iteration of the clinching auction with p < µi(j)
(and hence Di(p) ≥ j) and

∑
k 6=i Dk(p) ≤ m− j. This implies that bidder i receives at least

j units when the auction terminates.
We’ve proved that (6) has only nonnegative terms and is only missing terms from (5)

that contribute utility at most ε. Finally, comparing the definitions of pi(j) in (3) and qi(j)
in (4) shows that qi(j) ≤ pi(j) for all i, j. It follows that i’s utility (6) in the clinching
auction is within mε of that (5) in the VCG mechanism. �
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7 Incentives in the Clinching Auction

We conclude this lecture by proving that the clinching auction is EPIC. As discussed last
lecture, this does not follow automatically from Theorem 6.2 because of possible vulnera-
bilities to deviations to inconsistent actions. In the clinching auction, however, it is easy to
show that such deviations are of no use.

Theorem 7.1 ([1]) The clinching auction is EPIC (up to mε).

Proof: Fix a valuation profile v and a bidder i. Assume that all bidders other than i bid
sincerely. This means, in particular, that other bidders’ responses to demand queries are
independent of bidder i’s action. Since the prices qi(j) paid by bidder i are a function only
of the demand query responses of other bidders, these prices are independent of bidder i’s
action. The proof of Theorem 6.2 shows that sincere bidding maximizes i’s utility (6) up to
mε; thus, an arbitrary action can only improve i’s utility by this amount. �
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