
CS369E: Exercises & Problems

Instructions:

(1) Students should complete a selection of exercises — a couple per week on average, say — by the end
of the course, according to their interests.

(2) Your solutions are due to the instructor by Thursday March 19th, 2015.

(3) Problems marked “(*)” are recommended for being particularly relevant and/or interesting.

(4) There are surely some typos; please notify the instructor of any that you find.

Filling in Lecture Details

Lecture 1

1. (Posted 1/8/15.) Recall the one-pass (streaming) algorithm mentioned in lecture that, for a stream
that possesses a majority element (appearing more than m/2 times), allegedly terminates with this
element. Prove the correctness of this algorithm.

2. (*) (Posted 1/8/15.) In our analysis of the F2 estimator in lecture, we took the mean of s = 2
ε2δ

independent estimators to ensure an approximation of (1 ± ε) with probability at least 1 − δ. This
problem outlines a smarter “median of means” approach, which improves the approximation of the
basic estimator first and the success probability second, rather than both at once.

(a) Suppose we use only the average of s1 = c1
ε2 independent estimators, where c1 is a sufficiently

large constant (independent of all other parameters). Adapt the analysis from lecture to argue
the result is a (1 = ±ε)-approximation of F2 with probability at least 2/3.

(b) Now suppose we take s2 = c2 ln 1
δ independent groups of s1 independent estimators each, where

c2 is a sufficiently large constant (independent of all other parameters). Argue that if µ1, . . . , µs2
are the means of the groups, then the median of the µi’s is a (1 ± ε)-approximation of F2 with
probability at least 1− δ.

(c) Conclude that there is a randomized streaming algorithm that, with probability at least 1 − δ,
computes a (1± ε)-approximation of F2 using space O(ε−2(log n+ logm) log 1

δ).

3. (Posted 1/8/15.) The point of this problem is to outline a simple construction of a small family of
4-wise independent hash functions, as required by the AMS F2 streaming algorithm. Let n = |U | be
the universe size, let F be a finite field with 2r elements, with r ∈ N and n < |F| ≤ 2n. Associate the
elements of U with n distinct elements from F (arbitrarily).

(a) As a warm up, for a pair (a, b) ∈ F2 of coefficients, define

hab(x) = ax+ b

for x ∈ U , where all operations are in the field F. Prove that the family H = {hab : a, b ∈ F2}
is pairwise independent, meaning that for every distinct pair x, y ∈ U , for every image z, w ∈ F,
there is a unique function hab ∈ H with hab(x) = z and hab(y) = w. That is, H is pairwise
independent.

1

(b) For a 4-tuple (a, b, c, d) ∈ F4 of coefficients, define

habcd(x) = ax3 + bx2 + cx+ d,

where all operations take place in the field F. Let H denote the set of all |F|4 such functions. Prove
that for every 4-tuple (x1, x2, x3, x4) of distinct elements of U , and every 4-tuple z1, z2, z3, z4 of
images in F, there is a unique function habcd ∈ H with habcd(xi) = zi for i = 1, 2, 3, 4.

(c) Define gabcd(x) as +1 if habcd(x) is an even integer and -1 otherwise. Prove that G = {gabcd :
a, b, c, d ∈ F} is 4-wise independent, meaning that for all distinct x1, x2, x3, x4 ∈ U and all
z1, z2, z3, z4 ∈ {±1},

Prg∈G [g(xi) = zi for i = 1, 2, 3, 4] =
1
16
.

[Note: describing a function g of G requires only O(log n) bits, for the four coefficients a, b, c, d ∈ F.
The evaluation of such a hash function can also be carried out with a logarithmic amount of space.]

4. (*) (Posted 1/8/15.) This problem outlines the argument that, for every non-negative integer other
than 1, the deterministic approximate computation of Fk requires linear space. That is, randomization
is essential to our small-space estimation algorithms for F0 and F2.

(a) Let U be a universe of size n. You can assume that n is sufficiently large. Prove that there is a
constant c > 0 such that there exists a collection of C ⊆ 2U of subsets of U with the following
properties:

(i) |C| ≥ 2cn;
(ii) every subset S ∈ C has size |S| = n

4

(iii) every pair S, T ∈ C of distinct sets has small intersection |S ∩ T | ≤ n
8 .

[Hint: use the probabilistic method. That is, choose a bunch of sets S at random and argue, using
Chernoff bounds, that the resulting collection C satisfies (i)–(iii) with positive probability.]

(b) Consider streams of the form (S, T), where S and T are (not necessarily distinct) sets from C,
arranged in arbitrary order. Argue that a deterministic streaming algorithm with sublinear space
has identical memory contents for two different “first halves” S1 and S2.

(c) By considering the cases where T = S1 and T = S2, argue that no deterministic streaming
algorithm with sublinear space can always obtain a (1±0.1)-approximation estimate of Fk, where
k is a nonnegative integer other than 1.

Lecture 2

1. (Posted 1/26/15.) Suppose that a problem is solved by a public-coin randomized one-way protocol that
has two-sided error ε1 < 1

2 and uses communication c. Prove for every constant ε2 > 0, the problem is
also solved by a public-coin randomized one-way protocol with two-sided error ε2 and communication
O(c). What is the dependence on ε1 and ε2 of the constant hidden in the big-Oh notation?

2. (Posted 1/26/15.) Prove the harder direction of Yao’s Lemma. That is, suppose that every public-coin
randomized one-way protocol R for a problem that has two-sided error at most ε has communication
cost at least c. Prove that there exists a distribution D over inputs to the problem such that every de-
terministic protocol P for the problem with error at most ε (over the random input) has communication
cost at least c.

[Hint: assume and use von Neumann’s Minimax Theorem for zero-sum two-player games.]

3. (Posted 1/26/15.) Prove that for every positive integer n and k ∈ {1, 2, . . . , n},(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

2

For the second inequality, feel free to use Stirling’s approximation, which states that there is a constant
c (namely, c =

√
2π) such that, with negligible error,

n! ≈ c
√
n
(n
e

)n
(1)

for all positive integers n.

4. (Posted 1/26/15.) Prove that the probability that 2n fair coin flips produce an equal number of “heads”
and “tails” is ≈ c√

n
for a suitable constant c.

[Hint: use Stirling’s approximation (1).]

5. (Posted 1/26/15, corrected 3/6/15.) Fill in this missing details of the Chernoff bound application in
the proof of Theorem 7.1. Precisely, consider a coin that comes up “heads” with probability p, where
p is either 1

2 + 1√
n

(case 1) or 1
2 −

1√
n

(case 2). Flip this coin ` times to generate ` bits. Prove that,
provided ` = cn for a sufficiently large constant c, the probability that the number of heads is at least
`
2 +
√
` (when in case 1) or at most `

2 −
√
` (when in case 2) is at least 8

9 .

6. (Posted 1/26/15.) (*) Prove that the lower bound of Theorem 7.2 holds also for the problem of
approximating F2.

[Hint: make minor modifications to the reduction in Section 6.]

7. (Posted 1/26/15.) Extend Theorem 7.2 to show that a (1± ε)-approximation of F0 (with probability
at least 2/3) requires Ω(ε−2) space.

[Hint: just turn the “padding trick” mentioned in the lecture notes into a formal proof.]

Lecture 3

1. (Posted 1/26/15.) Use the Pigeonhole Principle to prove that every deterministic one-way protocol for
Equality has communication cost n. Do the same for the Augmented Index problem.

2. (Posted 2/4/15.) Prove Lemma 3.2 from the lecture notes.

[Hint: use the probabilistic method. Compare to exercise 4(a) of Lecture #1.]

3. (Posted 2/4/15.) Suppose there is an m × n matrix A (with linearly independent rows) such that:
there exists a constant c ≥ 1 and a recovery algorithm R that, for every x ∈ Rn, computes from Ax a
vector x′ such that

‖x′ − x‖1 ≤ c · res(x). (2)

Then, prove that there exists such a matrix A with orthonormal rows.

4. (*) (Posted 2/4/15.) In our proof of Theorem 3.1, we assumed that the sensing matrix A has entries
that can be described with O(log n) bits each. Extend the reduction to handle the case of sensing
matrices A with arbitrary entries.

[Hints: building on the previous exercise, show that A can be converted (by Alice and Bob, before the
protocol starts) into a matrix A′ with entries that are polynomially bounded integers such that given
A′y Bob can find (by brute-force search) a very small vector s such that A(y + s) = A′y. That is,
it’s as if Alice used the true sensing matrix A but accidentally used a slightly perturbed version of
the intended vector y. Show that, because s is small, this is good enough for Bob to run the recovery
algorithm R (for A) and deduce Alice’s input to the Index function.]

3

Lecture 4

1. (Posted 2/4/15.) Prove that a subset S ⊆ X × Y is a rectangle — that is, of the form S = A× B —
if and only if S is closed under “mix and match:” whenever (x1,y1) and (x2,y2) belong to S, so do
(x1,y2) and (x2,y1).

2. (Posted 2/4/15.) Let X and Y denote the sets of possible inputs to Alice and Bob, respectively.
We showed in lecture that every deterministic protocol induces a partition of X × Y into rectangles,
with one rectangle per protocol transcript (equivalently, per leaf of the protocol tree). Show that the
converse fails: there are sets X,Y and a partition of X ×Y into rectangles so that no protocol induces
the partition.

[Hint: Try it with |X| = |Y | = 3.]

3. (Posted 2/4/15.) Recall the Clique-Independent Set problem from lecture. Prove that the one-way
randomized communication complexity of the problem is Ω(n).

4. (*) (Posted 2/4/15.) In lecture we used Newman’s Theorem to give a private-coin randomized protocol
for Equality with constant error and communication cost O(log n). (One-way, even.) This exercise
gives a more direct argument that achieves the same communication cost, and with better error to
boot.

Recall that for every k > 1 there is at least one prime number between k and 2k. Alice and Bob
agree on such a prime p in {n2 + 1, . . . , 2n2 − 1} in advance. (Or Alice can pick it and send it to Bob
later, it doesn’t matter.) When Alice receives her input x ∈ {0, 1}n, she interprets it as the univariate
polynomial

a(z) =
n∑
i=1

xiz
i−1.

She then chooses an evaluation point t ∈ {0, 1, 2, . . . , p − 1} uniformly at random and sends t and
a(t) mod p to Bob. Bob interprets his input y as the polynomial

b(z) =
n∑
i=1

yiz
i−1.

and answers “equal” if b(z) mod p = a(z) mod p and “not equal” otherwise.

Prove that this one-way private-coin communication protocol has communication cost O(log n) and
1-sided error at most 1/n.

[Hint: assume and use the fact that, for a prime p, a polynomial of degree d has at most d roots over
the field Zp.]

Lecture 5

1. (Posted 3/15/15.) Prove the Birkhoff-von Neumann Theorem. This theorem states that every frac-
tional perfect matching of a bipartite graph — xij ’s in [0, 1] (with i ∈ U, v ∈ V) satisfying

∑
j∈V xij = 1

for every i ∈ U and
∑
i∈U xij = 1 for every j ∈ V — is the convex combination of (characteristic vectors

of) perfect matchings.

[Hint: viewing the xij ’s as a matrix, argue that the support of the matrix must include that of a
permutation matrix. Then proceed by induction on the number of non-zero xij ’s.]

2. (*) (Posted 3/15/15.) We proved one direction of Yannakakis’s Lemma — if there exists an extended
formulation Q of a polytope P with only r inequalities, then the slack matrix of P has nonnegative
rank at most r. (Recall in the slack matrix S, for a row (face) f and a column (vertex) v, Sfv is defined
as b− aT v, where aTx ≤ b is a supporting hyperplane inducing the face f .) Prove the converse: if the
slack matrix S of P has nonnegative rank r, then there is an extended formulation Q that uses only r
inequalities.

4

Lecture 8

1. (Posted 3/11/15.) Theorem 5.4 gives a lower bound for the worst ε-Nash equilibrium of the game.
Explain why the worst-case lower bound holds more generally for every (non-empty) subset of ε-Nash
equilibria such that: (i) there is at least one member of the subset with description length polynomial
in k, the logarithm of the maximum number of actions of a player, and 1

ε ; and (ii) membership in the
subset can be verified by the players without any communication.

2. (*) (Posted 3/11/15.) Does the proof of Theorem 5.4 imply that every ε-Nash equilibrium with suf-
ficiently small description has expected welfare at most a 1/α fraction of the maximum possible?
Explain.

3. (Posted 3/11/15.) Consider the welfare-maximization problem with all values vi(S) polynomially
bounded integers. Prove that there is an auction with a doubly exponential number of actions per
player such that, for every choice v1, . . . , vk of valuations, there exists an exact Nash equilibrium such
that: (i) the welfare is optimal; (ii) the description length is polynomial in k and the logarithm of the
maximum number of actions of a player; (iii) the equilibrium can be verified privately by the players
(cf., Exercise 1 above).

[Hint: read about the “VCG mechanism,” e.g. in Lecture #7 of the instructor’s CS364A course.]

4. (*) (Posted 3/11/15.) Consider a two-player game, where each player has s strategies. Assume that all
player utilities are between 0 and 1. Prove that there is an ε-Nash equilibrium in which all probabilities
are multiples of 1/t for an integer t = O(ε−2 log s). [In particular, each player randomizes over at most
t different strategies.]

[Hint: fill in the details of the proof outline given in lecture.]

5. (Posted 3/11/15.) Extend the preceding result to k-player games. Can you achieve t polynomial in k,
logm, and 1

ε ? How about polynomial in log k, logm, and 1
ε ?

Lecture 9

1. (Posted 3/15/15.) Recall the distinction between non-adaptive and adaptive testers. Prove that the
query complexity of non-adaptive testers is at most exponential in that of adaptive testers.

2. (*) (Posted 3/15/15.) Prove that our analysis of the edge tester is tight in the Boolean case: there
exists a Boolean function f that is ε-far from monotone, and set the probability that a single random
edge find a monotonicity violation is only O(ε/n), where n is the number of coordinates.

3. (*) (Posted 3/15/15.) Prove an upper bound of O(nε) log |R|) on the query complexity of testing
monotonicity of functions from {0, 1}n to a totally ordered set R.

[Hint: make precise the “divide and conquer” idea mentioned in class.]

4. (Posted 3/15/15.) Recall we concluded the lecture by proving an Ω(n) query complexity lower bound
for ranges of size Θ(

√
n) (for constant ε). Use a padding argument to obtain a lower bound of Ω(|R|2)

for small ranges R.

5. (*) (Posted 3/17/15.) We proved Theorem 3.1 for functions with domain {0, 1}n and range {0, 1}n.
Suppose we try to re-use the same proof for a function with domain {0, 1}n and an arbitrary totally
ordered range R. Where exactly (if anywhere) does the proof break? Specifically, does fixing the
coordinates one-by-one by swapping function values result produce a monotone function after modifying
f in at most 2

∑n
i=1 |Ai| entries?

6. (*) (Posted 3/17/15.) We concluded lecture with a general template for deriving query complexity lower
bounds for adaptive testers from communication complexity loewr bounds for general communication
protocols. Formulate an analogous template and simulation argument for non-adaptive testers and
one-way communication protocols.

5

Further Communication Complexity

1. (*) (Posted 2/4/15.) It is clear that if every protocol tree of a deterministic protocol that computes
a function f has at least t leaves, then the deterministic communication complexity of f is at least
≈ log2 t. But what about the converse? Is it possible that a function f has large communication
complexity even though it can be computed by a protocol whose tree has a small number of leaves?
In principle, this could happen if all such trees are “scraggly,” with a large depth (and hence large
worst-case communication) despite having few leaves.

This exercise rules out this possibility. Prove that if a function can be computed by a protocol with a
tree that has at most ` leaves, then its deterministic communication complexity is O(log `).

[Hint: use the fact that every binary tree with t nodes has a “median” — a node such that every
one of its subtrees contains at most 2

3 t nodes. Use this to transform an arbitrary protocol tree into a
relatively balanced one.]

2. (*) (Posted 2/4/15.) Recall from Lecture #4 the matrix M(f) of a function f . Prove that the
deterministic communication complexity of f is at least log2(2rank(M(f))− 1), where rank(·) denotes
the rank of the matrix over the reals.

[Hints: To prove a lower bound of log2 rank(M(f)), think of the 1-rectangles in a partition of M(f)
into monochromatic rectangles as a decomposition of M(f) into rank 1 matrices. To boost the lower
bound to log2(2rank(M(f)) − 1) by getting the 0-rectangles involved, apply the same argument to
J−M(f), where J is the all-ones matrix.]

3. (*) (Posted 2/4/15.) The log-rank conjecture, which remains very much open, speculates a converse
to the previous exercise, that the deterministic communication complexity of a function f is at most
polylogarithmic in log2 rank(M(f)).

Show that, at the very least, the deterministic communication complexity of a function f is at most
rank(M(f)) + 1.

[Hint: if M(f) has rank r, how many distinct rows can it have?]

4. (Posted 3/15/15.) We defined nondeterministic protocols with a third-party prover, and where Alice
and Bob don’t communicate directly at all. Formulate an alternative notion of communication protocols
where Alice and Bob communicate nondeterministically (without any explicit prover), and prove that
the two notions are equivalent.

5. (Posted 3/15/15.) Prove that every communication complexity lower bound for nondeteministic pro-
tocols applies also to randomized protocols with 1-sided error.

Further Results: Streaming Algorithms and Lower Bounds

1. (Posted 1/8/15.) Misra-Gries algorithm. Suppose you are told that a data stream of length m will
contain k − 1 elements that each appear strictly more than m/k times. Give a generalization of the
one-pass algorithm for finding a majority element for finding these k − 1 elements. Your algorithm
should only remember k − 1 elements at any given time, plus a counter for each. Prove that your
algorithm is correct.

2. (*) (Posted 1/8/15.) Morris’s algorithm. As mentioned in Lecture #1, it is trivial to compute F1 (i.e.,
to count) using ≈ log2m space, where m is the number of objects being counted. But what if we only
care about about counting approximately, up to a (1 ± ε) factor? Here’s a way to reduce the space
to O(ε−2 log logm log 1

δ). The basic idea is to count (probabilistically) logm rather than m itself, and
then aggregate many independent estimates (as in our F2 analysis).

(a) The basic estimator is the following. Initialize Z = 0. When a new object arrives, increment Z
with probability 2−Z (else leave it unchanged). At the end, output X = 2Z − 1.
Prove that the estimator is unbiased, that E[X] = m.
[Hint: prove by induction on i that, after seeing i objects, E

[
2Z
]

= 2i − 1.]

6

(b) Prove that E
[
22Z
]

= 3
2m

2 + 3
2m+ 1.

[Hint: again, induction on i.]

(c) Conclude that Var[X] = n(n−1)
2 .

(d) Use the average of several independent estimators and Chebyshev’s inequality (as in Lecture
#1) and the median trick from Exercise 2 of Lecture #1 to prove that a probabilistic (1 ±
ε)-approximate counter requires only O(ε−1 log logm log δ 1

δ) space (where δ upper bounds the
probability of failing to compute a (1± ε)-approximation).

(e) Explain how to use such probabilistic approximate counters to improve the space usage of the F2

estimation algorithm in lecture from O(ε−2(log n+logm) log 1
δ) to O(ε−2(log n+log logm) log 1

δ).

7

