CS261: Exercise Set #3

For the week of January 18–22, 2016

Instructions:

- (1) Do not turn anything in.
- (2) The course staff is happy to discuss the solutions of these exercises with you in office hours or on Piazza.
- (3) While these exercises are certainly not trivial, you should be able to complete them on your own (perhaps after consulting with the course staff or a friend for hints).

Exercise 11

Recall that in the maximum-weight bipartite matching problem, the input is a bipartite graph $G = (V \cup W, E)$ with a nonnegative weight w_e per edge, and the goal is to compute a matching M that maximizes $\sum_{e \in M} w_e$.

In the minimum-cost perfect bipartite matching problem, the input is a bipartite graph $G = (V \cup W, E)$ such that |V| = |W| and G contains a perfect matching, and a nonnegative cost c_e per edge, and the goal is to compute a perfect matching M that minimizes $\sum_{e \in M} c_e$.

Give a linear-time reduction from the former problem to the latter problem.

Exercise 12

Suppose you are given an undirected bipartite graph $G = (V \cup W, E)$ and a positive integer b_v for every vertex $v \in V \cup W$. A *b*-matching is a subset $M \subseteq E$ of edges such that each vertex v is incident to at most b_v edges of M. (The standard bipartite matching problem corresponds to the case where $b_v = 1$ for every $v \in V \cup W$.)

Prove that the problem of computing a maximum-cardinality bipartite *b*-matching reduces to the problem of computing a (standard) maximum-cardinality bipartite matching in a bigger graph. Your reduction should run in time polynomial in the size of G and in $\max_{v \in V \cup W} b_v$.

Exercise 13

A graph is d-regular if every vertex has d incident edges. Prove that every d-regular bipartite graph is the union of d perfect matchings. Does the same statement hold for d-regular non-bipartite graphs?

[Hint: Hall's theorem.]

Exercise 14

Prove that the minimum-cost perfect bipartite matching problem reduces, in linear time, to the minimum-cost flow problem defined in Lecture #6.

Exercise 15

In the *edge cover* problem, the input is a graph G = (V, E) (not necessarily bipartite) with no isolated vertices, and the goal is to compute a minimum-cardinality subset $F \subseteq E$ of edges such every vertex $v \in V$ is the endpoint of at least one edge in F. Prove that this problem reduces to the maximum-cardinality (non-bipartite) matching problem.