
CS261: Exercise Set #4

For the week of January 25–29, 2016

Instructions:

(1) Do not turn anything in.

(2) The course staff is happy to discuss the solutions of these exercises with you in office hours or on
Piazza.

(3) While these exercises are certainly not trivial, you should be able to complete them on your own
(perhaps after consulting with the course staff or a friend for hints).

Exercise 16

In Lecture #7 we noted that the maximum flow problem translates quite directly into a linear program:

max
∑

e∈δ+(s)

fe

subject to ∑
e∈δ−(v)

fe −
∑

e∈δ+(v)

fe = 0 for all v 6= s, t

fe ≤ ue for all e ∈ E
fe ≥ 0 for all e ∈ E.

(As usual, we are assuming that s has no incoming edges.) In Lecture #8 we considered the following
alternative linear program, where P denotes the set of s-t paths of G:

max
∑
P∈P

fP

subject to ∑
P∈P : e∈P

fP ≤ ue for all e ∈ E

fP ≥ 0 for all P ∈ P.

Prove that these two linear programs always have equal optimal objective function value.

Exercise 17

In the multicommodity flow problem, the input is a directed graphG = (V,E) with k source vertices s1, . . . , sk,
k sink vertices t1, . . . , tk, and a nonnegative capacity ue for each edge e ∈ E. An si-ti pair is called a
commodity. A multicommodity flow if a set of k flows f (1), . . . , f (k) such that (i) for each i = 1, 2, . . . , k, f (i)

is an si-ti flow (in the usual max flow sense); and (ii) for every edge e, the total amount of flow (summing
over all commodities) sent on e is at most the edge capacity ue. The value of a multicommodity flow is the
sum of the values (in the usual max flow sense) of the flows f (1), . . . , f (k).

Prove that the problem of finding a multicommodity flow of maximum-possible value reduces in polyno-
mial time to solving a linear program.
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Exercise 18

Consider a primal linear program (P) of the form

max cTx

subject to

Ax = b

x ≥ 0.

The recipe from Lecture #8 gives the following dual linear program (D):

min bTy

subject to

ATy ≥ c

y ∈ R.

Prove weak duality for primal-dual pairs of this form: the (primal) objective function value of every
feasible solution to (P) is bounded above by the (dual) objective function value of every feasible solution
to (D).1

Exercise 19

Consider a primal linear program (P) of the form

max cTx

subject to

Ax ≤ b

x ≥ 0

and corresponding dual program (D)
min bTy

subject to

ATy ≥ c

y ≥ 0.

Suppose x̂ and ŷ are feasible for (P) and (D), respectively. Prove that if x̂, ŷ do not satisfy the complementary
slackness conditions, then cT x̂ 6= bT ŷ.

Exercise 20

Recall the linear programming relaxation of the minimum-cost bipartite matching problem:

min
∑
e∈E

cexe

1In Lecture #8, we only proved weak duality for primal linear programs with only inequality constraints (and hence dual
programs with nonnegative variables), like those in Exercise 19.
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subject to ∑
e∈δ(v)

xe = 1 for all v ∈ V ∪W

xe ≥ 0 for all e ∈ E.

In Lecture #8 we appealed to the Hungarian algorithm to prove that this linear program is guaranteed to
have an optimal solution that is 0-1. This point of this exercise is to give a direct proof of this fact, without
recourse to the Hungarian algorithm.

(a) By a fractional solution, we mean a feasible solution to the above linear program such that 0 < xe < 1
for some edge e ∈ E. Prove that, for every fractional solution, there is an even cycle C of edges with
0 < xe < 1 for every e ∈ C.

(b) Prove that, for all ε sufficiently close to 0 (positive or negative), adding ε to xe for every other edge
of C and subtracting ε from xe for the other edges of C yields another feasible solution to the linear
program.

(c) Show how to transform a fractional solution x into another fractional solution x′ such that: (i) x′ has
fewer fractional coordinates than x; and (ii) the objective function value of x′ is no larger than that
of x.

(d) Conclude that the linear programming relaxation above is guaranteed to possess an optimal solution
that is 0-1 (i.e., not fractional).
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