
CS261: A Second Course in Algorithms
Lecture #7: Linear Programming: Introduction and

Applications∗

Tim Roughgarden†

January 26, 2016

1 Preamble

With this lecture we commence the second part of the course, on linear programming, with
an emphasis on applications on duality theory.1 We’ll spend a fair amount of quality time
with linear programs for two reasons.

First, linear programming is very useful algorithmically, both for proving theorems and
for solving real-world problems.

Linear programming is a remarkable sweet spot between power/generality and
computational efficiency.

For example, all of the problems studied in previous lectures can be viewed as special cases
of linear programming, and there are also zillions of other examples. Despite this generality,
linear programs can be solved efficiently, both in theory (meaning in polynomial time) and
in practice (with input sizes up into the millions).

Even when a computational problem that you care about does not reduce directly to
solving a linear program, linear programming is an extremely helpful subroutine to have in
your pocket. For example, in the fourth and last part of the course, we’ll design approx-
imation algorithms for NP -hard problems that use linear programming in the algorithm
and/or analysis. In practice, probably most of the cycles spent on solving linear programs
is in service of solving integer programs (which are generally NP -hard). State-of-the-art

∗ c©2016, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1The term “programming” here is not meant in the same sense as computer programming (linear program-

ming pre-dates modern computers). It’s in the same spirit as “television programming,” meaning assembling
a scheduled of planned activities. (See also “dynamic programming”.)

1

algorithms for the latter problem invoke a linear programming solver over and over again to
make consistent progress.

Second, linear programming is conceptually useful —- understanding it, and especially
LP duality, gives you the “right way” to think about a host of different problems in a simple
and consistent way. For example, the optimality conditions we’ve studied in past lectures
(like the max-flow/min-cut theorem and Hall’s theorem) can be viewed as special cases of
linear programming duality. LP duality is more or less the ultimate answer to the question
“how do we know when we’re done?” As such, it’s extremely useful for proving that an
algorithm is correct (or approximately correct).

We’ll talk about both these aspects of linear programming at length.

2 How to Think About Linear Programming

2.1 Comparison to Systems of Linear Equations

Once upon a time, in some course you may have forgotten, you learned about linear systems
of equations. Such a system consists of m linear equations in real-valued variables x1, . . . , xn:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

The aij’s and the bi’s are given; the goal is to check whether or not there are values for the
xj’s such that all m constraints are satisfied. You learned at some point that this problem
can be solved efficiently, for example by Gaussian elimination. By “solved” we mean that
the algorithm returns a feasible solution, or correctly reports that no feasible solution exists.

Here’s an issue, though: what about inequalities? For example, recall the maximum flow
problem. There are conservation constraints, which are equations and hence OK. But the
capacity constraints are fundamentally inequalities. (There is also the constraint that flow
values should be nonnegative.) Inequalities are part of the problem description of many
other problems that we’d like to solve. The point of linear programming is to solve systems
of linear equations and inequalities. Moreover, when there are multiple feasible solutions, we
would like to compute the “best” one.

2.2 Ingredients of a Linear Program

There is a convenient and flexible language for specifying linear programs, and we’ll get lots
of practice using it during this lecture. Sometimes it’s easy to translate a computational
problem into this language, sometimes it takes some tricks (we’ll see examples of both).

To specify a linear program, you need to declare what’s allowed and what you want.

2

Ingredients of a Linear Program

1. Decision variables x1, . . . , xn ∈ R.

2. Linear constraints, each of the form

n∑
j=1

ajxj (∗) bi,

where (*) could be ≤, ≥, or =.

3. A linear objective function, of the form

max
n∑
j=1

cjxj

or

min
n∑
j=1

cjxj.

Several comments. First, the aij’s, bi’s, and cj’s are constants, meaning they are part of the
input, numbers hard-wired into the linear program (like 5, -1, 10, etc.). The xj’s are free, and
it is the job of a linear programming algorithm to figure out the best values for them. Second,
when specifying constraints, there is no need to make use of both “≤” and “≥”inequalities
— one can be transformed into the other just by multiplying all the coefficients by -1 (the
aij’s and bi’s are allowed to be positive or negative). Similarly, equality constraints are
superfluous, in that the constraint that a quantity equals bi is equivalent to the pair of
inequality constraints stating that the quantity is both at least bi and at most bi. Finally,
there is also no difference between the “min” and “max” cases for the objective function
— one is easily converted into the other just by multiplying all the cj’s by -1 (the cj’s are
allowed to be positive or negative).

So what’s not allowed in a linear program? Terms like x2
j , xjxk, log(1 + xj), etc. So

whenever a decision variable appears in an expression, it is alone, possibly multiplied by
a constant (and then summed with other such terms). While these linearity requirements
may seem restrictive, we’ll see that many real-world problems can be formulated as or well
approximated by linear programs.

3

2.3 A Simple Example

Figure 1: a toy example of linear program.

To make linear programs more concrete and develop your geometric intuition about them,
let’s look at a toy example. (Many “real” examples of linear programs are coming shortly.)
Suppose there are two decision variables x1 and x2 — so we can visualize solutions as
points (x1, x2) in the plane. See Figure 2.3. Let’s consider the (linear) objective function of
maximizing the sum of the decision variables:

max x1 + x2.

We’ll look at four (linear) constraints:

x1 ≥ 0

x2 ≥ 0

2x1 + x2 ≤ 1

x1 + 2x2 ≤ 1.

The first two inequalities restrict feasible solutions to the non-negative quadrant of the
plane. The second two inequalities further restrict feasible solutions to lie in the shaded
region depicted in Figure 2.3. Geometrically, the objective function asks for the feasible
point furthest in the direction of the coefficient vector (1, 1) — the “most northeastern”
feasible point. Put differently, the level sets of the objective function are parallel lines
running northwest to southeast.2 Eyeballing the feasible region, this point is (1

3
, 1

3
), for an

optimal objective function value of 2
3
. This is the “last point of intersection” between a

level set of the objective function and the feasible region (as one sweeps from southwest to
northeast).

2Recall that a level set of a function g has the form {x : g(x) = c}, for some constant c. That is, all
points in a level set have equal objective function value.

4

2.4 Geometric Intuition

While it’s always dangerous to extrapolate from two or three dimensions to an arbitrary
number, the geometric intuition above remains valid for general linear programs, with an ar-
bitrary number of dimensions (i.e., decision variables) and constraints. Even though we can’t
draw pictures when there are many dimensions, the relevant algebra carries over without any
difficulties. Specifically:

1. A linear constraint in n dimensions corresponds to a halfspace in Rn. Thus a feasible
region is an intersection of halfspaces, the higher-dimensional analog of a polygon.3

2. The level sets of the objective function are parallel (n− 1)-dimensional hyperplanes in
Rn, each orthogonal to the coefficient vector c of the objective function.

3. The optimal solution is the feasible point furthest in the direction of c (for a maximiza-
tion problem) or −c (for a minimization problem). Equivalently, it is the last point of
intersection (traveling in the direction c or −c) of a level set of the objective function
and the feasible region.

4. When there is a unique optimal solution, it is a vertex (i.e., “corner”) of the feasible
region.

There are a few edge cases which can occur but are not especially important in CS261.

1. There might be no feasible solutions at all. For example, if we add the constraint
x1 +x2 ≥ 1 to our toy example, then there are no longer any feasible solutions. Linear
programming algorithms correctly detect when this case occurs.

2. The optimal objective function value is unbounded (+∞ for a maximization problem,
−∞ for a minimization problem). Note a necessary but not sufficient condition for
this case is that the feasible region is unbounded. For example, if we dropped the
constraints 2x1 + x2 ≤ 1 and x1 + 2x2 ≤ 1 from our toy example, then it would have
unbounded objective function value. Again, linear programming algorithms correctly
detect when this case occurs.

3. The optimal solution need not be unique, as a “side” of the feasible region might
be parallel to the levels sets of the objective function. Whenever the feasible region
is bounded, however, there always exists an optimal solution that is a vertex of the
feasible region.4

3A finite intersection of halfspaces is also called a “polyhedron;” in the common special case where the
feasible region is bounded, it is called a “polytope.”

4There are some annoying edge cases for unbounded feasible regions, for example the linear program
max(x1 + x2) subject to x1 + x2 = 1.

5

3 Some Applications of Linear Programming

Zillions of problems reduce to linear programming. It would take an entire course to cover
even just its most famous applications. Some of these applications are conceptually a bit
boring but still very important — as early as the 1940s, the military was using linear pro-
gramming to figure out the most efficient way to ship supplies from factories to where they
were needed.5 Several central problems in computer science reduce to linear programming,
and we describe some of these in detail in this section. Throughout, keep in mind that all
of these linear programs can be solved efficiently, both in theory and in practice. We’ll say
more about algorithms for linear programming in a later lecture.

3.1 Maximum Flow

If we return to the definition of the maximum flow problem in Lecture #1, we see that it
translates quite directly to a linear program.

1. Decision variables: what are we try to solve for? A flow, of course, Specifically, the
amount fe of flow on each edge e. So our variables are just {fe}e∈E.

2. Constraints: Recall we have conservation constraints and capacity constraints. We
can write the former as ∑

e∈δ−(v)

fe︸ ︷︷ ︸
flow in

−
∑

e∈δ−(v)

fe︸ ︷︷ ︸
flow out

= 0

for every vertex v 6= s, t.6 We can write the latter as

fe ≤ ue

for every edge e ∈ E. Since decision variables of linear programs are by default allowed
to take on arbitrary real values (positive or negative), we also need to remember to
add nonnegativity constraints:

fe ≥ 0

for every edge e ∈ E. Observe that every one of these 2m + n− 2 constraints (where
m = |E| and n = |V |) is linear — each decision variable fe only appears by itself (with
a coefficient of 1 or -1).

3. Objective function: We just copy the same one we used in Lecture #1:

max
∑

e∈δ+(s)

fe.

Note that this is again a linear function.

5Note this is well before computer science was field; for example, Stanford’s Computer Science Department
was founded only in 1965.

6Recall that δ− and δ+ denote the edges incoming to and outgoing from v, respectively.

6

3.2 Minimum-Cost Flow

In Lecture #6 we introduced the minimum-cost flow problem. Extending specialized al-
gorithms for maximum flow to generalized algorithms takes non-trivial work (see Problem
Set #2 for starters). If we’re just using linear programming, however, the generalization
is immediate.7 The main change is in the objective function. As defined last lecture, it is
simply

min
∑
e∈E

cefe,

where ce is the cost of edge e. Since the ce’s are fixed numbers (i.e., part of the input), this
is a linear objective function.

For the version of the minimum-cost flow problem defined last lecture, we should also
add the constraint ∑

e∈δ+(s)

fe = d,

where d is the target flow value. (One can also add the analogous constraint for t, but this
is already implied by the other constraints.)

To further highlight how flexible linear programs can be, suppose we want to impose a
lower bound `e (other than 0) on the amount of flow on each edge e, in addition to the
usual upper bound ue. This is trivial to accommodate in our linear program — just replace
“fe ≥ 0” by fe ≥ `e.

8

3.3 Fitting a Line

We now consider two less obvious applications of linear programming, to basic problems in
machine learning. We first consider the problem of fitting a line to data points (i.e., linear
regression), perhaps the simplest non-trivial machine learning problem.

Formally, the input consists of m data points p1, . . . ,pm ∈ Rd, each with d real-valued
“features” (i.e., coordinates).9 For example, perhaps d = 3, and each data point corresponds
to a 3rd-grader, listing the household income, number of owned books, and number of years
of parental education. Also part of the input is a “label” `i ∈ R for each point pi.10 For
example, `i could be the score earned by the 3rd-grader in question on a standardized test.
We reiterate that the pi’s and `i’s are fixed (part of the input), not decision variables.

7While linear programming is a reasonable way to solve the maximum flow and minimum-cost flow
problems, especially if the goal is to have a “quick and dirty” solution, but the best specialized algorithms
for these problems are generally faster.

8If you prefer to use flow algorithms, there is a simple reduction from this problem to the special case
with `e = 0 for all e ∈ E (do you see it?).

9Feel free to take d = 1 throughout the rest of the lecture, which is already a practically relevant and
computationally interesting case.

10This is a canonical “supervised learning” problem, meaning that the algorithm is provided with labeled
data.

7

Informally, the goal is to expresses the `i as well as possible as a linear function of the
pi’s. That is, the goal is to compute a linear function h : Rd → R such that h(pi) ≈ `i for
every data point i.

The two most common motivations for computing a “best-fit” linear function are pre-
diction and data analysis. In the first scenario, one uses labeled data to identify a linear
function h that, at least for these data points, does a good job of predicting the label `i
from the feature values pi. The hope is that this linear function “generalizes,” meaning that
it also makes accurate predictions for other data points for which the label is not already
known. There is a lot of beautiful and useful theory in statistics and machine learning about
when one can and cannot expect a hypothesis to generalize, which you’ll learn about if you
take courses in those areas. In the second scenario, the goal is to understand the relationship
between each feature of the data points and the labels, and also the relationships between
the different features. As a simple example, it’s clearly interesting to know when one of the d
features is much more strongly correlated with the label `i than any of the others.

We now show that computing the best line, for one definition of “best,” reduces to linear
programming. Recall that every linear function h : Rd → R has the form

h(z) =
d∑
j=1

ajzj + b

for some coefficients a1, . . . , ad and intercept b. (This is one of several equivalent definitions
of a linear function.11 So it’s natural to take a1, . . . , ad, b as our decision variables.

What’s our objective function? Clearly if the data points are colinear we want to compute
the line that passes through all of them. But this will never happen, so we must compromise
between how well we approximate different points.

For a given choice of a1, . . . , ad, b, define the error on point i as

Ei(a, b) =

∣∣∣∣∣∣∣∣∣∣
(

d∑
j−1

ajp
i
j − b

)
︸ ︷︷ ︸

prediction

− `i︸︷︷︸
“ground truth”

∣∣∣∣∣∣∣∣∣∣
. (1)

Geometrically, when d = 1, we can think of each (pi, `i) as a point in the plane and (1) is
just the vertical distance between this point and the computed line.

In this lecture, we consider the objective function of minimizing the sum of errors:

min
a,b

m∑
i=1

Ei(a, b). (2)

This is not the most common objective for linear regression; more standard is minimizing the
squared error

∑m
i=1 E

2
i (a, b). While our motivation for choosing (2) is primarily pedagogical,

11Sometimes people use “linear function” to mean the special case where b = 0, and “affine function” for
the case of arbitrary b.

8

this objective is reasonable and is sometimes used in practice. The advantage over squared
error is that it is more robust to outliers. Squaring the error of an outlier makes it a squeakier
wheel. That is, a stray point (e.g., a faulty sensor or data entry error) will influence the line
chosen under (2) less that it would with the squared error objective (Figure 2).12

Figure 2: When there exists an outlier (red point), using the objective function defined
in (2) causes the best-fit line not to ”stray” as far away from the non-outliers (blue line) as
when using the squared error objective (red line), because the squared error objective would
penalize more greatly when the chosen line is far from the outlier.

Consider the problem of choosing a, b to minimize (2). (Since the aj’s and b can be
anything, there are no constraints.) The problem: this is not a linear program. The source
of nonlinearity is the absolute value sign | · | in (1). Happily, in this case and many others,
absolute values can be made linear with a simple trick.

The trick is to introduce extra variables e1, . . . , em, one per data point. The intent is for
ei to take on the value Ei(a, b). Motivated by the identify |x| = max{x,−x}, we add two
constraints for each data point:

ei ≥

(
d∑
j=1

ajp
i
j − b

)
− `i (3)

and

ei ≥ −

[(
d∑
j=1

ajp
i
j − b

)
− `i

]
. (4)

12Squared error can be minimized efficiently using an extension of linear programming known as convex
programming. (For the present “ordinary least squares” version of the problem, it can even be solved
analytically, in closed form.) We may discuss convex programming in a future lecture.

9

We change the objective function to

min
m∑
i=1

ei. (5)

Note that optimizing (5) subject to all constraints of the form (3) and (4) is a linear program,
with decision variables e1, . . . , em, a1, . . . , ad, b.

The key point is: at an optimal solution to this linear program, it must be that ei =
Ei(a, b) for every data point i. Feasibility of the solution already implies that ei ≥ Ei(a, b) for
every i. And if ei > Ei(a, b) for some i, then we can decrease ei slightly, so that (3) and (4)
still hold, to obtain a superior feasible solution. We conclude that an optimal solution to
this linear program represents the line minimizing the sum of errors (2).

3.4 Computing a Linear Classifier

Figure 3: We want to find a linear function that separates the positive points (plus signs)
from the negative points (minus signs)

Next we consider a second fundamental problem in machine learning, that of learning a
linear classifier.13 While in Section 3.3 we sought a real-valued function (from Rd to R),
here we’re looking for a binary function (from Rd to {0, 1}). For example, data points could
represent images, and we want to know which ones contain a cat and which ones don’t.

Formally, the input consists of m “positive” data points p1, . . . ,pm ∈ Rd and m′ “neg-
ative” data points q1, . . . ,qm

′
. In the terminology of the previous section, all of the labels

13Also called halfspaces, perceptrons, linear threshold functions, etc.

10

are “1” or “0,” and we have partitioned the data accordingly. (So this is again a supervised
learning problem.)

The goal is to compute a linear function h(z) =
∑

j=1 ajzj + b (from Rd to R) such that

h(pi) > 0 (6)

for all positive points and
h(qi) < 0 (7)

for all negative points. Geometrically, we are looking for a hyperplane in Rd such all positive
points are on one side and all negative points on the other; the coefficients a specify the
normal vector of the hyperplane and the intercept b specifies its shift. See Figure 3. Such a
hyperplane can be used for predicting the labels of other, unlabeled points (check which side
of the hyperplane it is on and predict that it is positive or negative, accordingly). If there is
no such hyperplane, an algorithm should correctly report this fact.

This problem almost looks like a linear program by definition. The only issue is that
the constraints (6) and (7) are strict inequalities, which are not allowed in linear programs.
Again, the simple trick of adding an extra decision variable solves the problem. The new
decision variable δ represents the “margin” by which the hyperplane satisfies (6) and (7). So
we

max δ

subject to

d∑
j=1

ajp
i
j + b− δ ≥ 0 for all positive points pi

d∑
j=1

ajq
i
j + b+ δ ≤ 0 for all negative points qi,

which is a linear program with decision variables δ, a1, . . . , ad, b. If the optimal solution
to this linear program has strictly positive objective function value, then the values of the
variables a1, . . . , ad, b define the desired separating hyperplane. If not, then there is no such
hyperplane. We conclude that computing a linear classifier reduces to linear programming.

3.5 Extension: Minimizing Hinge Loss

There is an obvious issue with the problem setup in Section 3.4: what if the data set is not
as nice as the picture in Figure 3, and there is no separating hyperplane? This is usually the
case in practice, for example if the data is noisy (as it always is). Even if there’s no perfect
hyperplane, we’d still like to compute something that we can use to predict the labels of
unlabeled points.

We outline two ways to extend the linear programming approach in Section 3.4 to handle
non-separable data.14 The first idea is to compute the hyperplane that minimizes some notion

14In practice, these two approaches are often combined.

11

of “classification error.” After all, this is what we did in Section 3.3, where we computed
the line minimizing the sum of the errors.

Probably the most natural plan would be to compute the hyperplane that puts the
fewest number of points on the wrong side of the hyperplane — to minimize the number
of inequalities of the form (6) or (7) that are violated. Unfortunately, this is an NP -hard
problem, and one typically uses notions of error that are more computationally tractable.
Here, we’ll discuss the widely used notion of hinge loss.

Let’s say that in a perfect world, we would like a linear function h such that

h(pi) ≥ 1 (8)

for all positive points pi and
h(qi) ≤ −1 (9)

for all negative points qi; the “1” here is somewhat arbitrary, but we need to pick some
constant for the purposes of normalization. The hinge loss incurred by a linear function h on
a point is just the extent to which the corresponding inequality (8) or (9) fails to hold. For a
positive point pi, this is max{1−h(pi), 0}; for a negative point qi, this is max{1 +h(pi), 0}.
Note that taking the maximum with zero ensures that we don’t reward a linear function for
classifying a point “extra-correctly.” Geometrically, when d = 1, the hinge loss is the vertical
distance that a data point would have to travel to be on the correct side of the hyperplane,
with a “buffer” of 1 between the point and the hyperplane.

Computing the linear function that minimizes the total hinge loss can be formulated as a
linear program. While hinge loss is not linear, it is just the maximum of two linear functions.
So by introducing one extra variable and two extra constraints per data point, just like in
Section 3.3, we obtain the linear program

min
m∑
i=1

ei

subject to:

ei ≥ 1−

(
d∑
j=1

ajp
i
j + b

)
for every positive point pi

ei ≥ 1 +

(
d∑
j=1

ajq
i
j + b

)
for every negative point qi

ei ≥ 0 for every point

in the decision variables e1, . . . , em, a1, . . . , ad, b.

12

3.6 Extension: Increasing the Dimension

Figure 4: The points are not linearly separable, but they can be separated by a quadratic
line.

A second approach to dealing with non-linearly-separable data is to use nonlinear boundaries.
E.g., in Figure 4, the positive and negative points cannot be separated perfectly by any line,
but they can be separated by a relatively simple boundary (e.g., of a quadratic function).
But how we can allow nonlinear boundaries while retaining the computationally tractability
of our previous solutions?

The key idea is to generate extra features (i.e., dimensions) for each data point. That
is, for some dimension d′ ≥ d and some function ϕ : Rd → Rd′ , we map each pi to ϕ(pi)
and each qi to ϕ(qi). We’ll then try to separate the images of these points in d′-dimensional
space using a linear function.15

A concrete example of such a function ϕ is the map

(z1, . . . , zd) 7→ (z1, . . . , zd, z
2
1 , . . . , z

2
d, z1z2, z1z3, . . . , zd−1zd); (10)

that is, each data point is expanded with all of the pairwise products of its features. This
map is interesting even when d = 1:

z 7→ (z, z2). (11)

Our goal is now to compute a linear function in the expanded space, meaning coefficients

15This is the basic idea behind “support vector machines;” see CS229 for much more on the topic.

13

a1, . . . , ad′ and an intercept b, that separates the positive and negative points:

d′∑
i=1

aj · ϕ(pi)j + b > 0 (12)

for all positive points and
d′∑
i=1

aj · ϕ(qi)j + b < 0 (13)

for all negative points. Note that if the new feature set includes all of the original features,
as in (10), then every hyperplane in the original d-dimensional space remains available in
the expanded space (just set ad+1, ad+2, . . . , ad′ = 0). But there are also many new options,
and hence it is more likely that there is way to perfectly separate the (images under ϕ of
the) data points. For example, even with d = 1 and the map (11), linear functions in the
expanded space have the form h(z) = a1z

2 + a2z + b, which is a quadratic function in the
original space.

We can think of the map ϕ as being applied in a preprocessing step. Then, the resulting
problem of meeting all the constraints (12) and (13) is exactly the problem that we already
solved in Section 3.4. The resulting linear program has decision variables δ, a1, . . . , ad′ , b
(d′ + 2 in all, up from d+ 2 in the original space).16

16The magic of support vector machines is that, for many maps ϕ including (10) and (11), and for many
methods of computing a separating hyperplane, the computation required scales only with the original
dimension d, even if the expanded dimension d′ is radically larger. This is known as the “kernel trick;” see
CS229 for more details.

14

