
CS261: Problem Set #2

Due by 11:59 PM on Tuesday, February 9, 2016

Instructions:

(1) Form a group of 1-3 students. You should turn in only one write-up for your entire group.

(2) Submission instructions: We are using Gradescope for the homework submissions. Go to www.gradescope.com
to either login or create a new account. Use the course code 9B3BEM to register for CS261. Only one
group member needs to submit the assignment. When submitting, please remember to add all group
member names in Gradescope.

(3) Please type your solutions if possible and we encourage you to use the LaTeX template provided on
the course home page.

(4) Write convincingly but not excessively.

(5) Some of these problems are difficult, so your group may not solve them all to completion. In this case,
you can write up what you’ve got (subject to (3), above): partial proofs, lemmas, high-level ideas,
counterexamples, and so on.

(6) Except where otherwise noted, you may refer to the course lecture notes only. You can also review any
relevant materials from your undergraduate algorithms course.

(7) You can discuss the problems verbally at a high level with other groups. And of course, you are
encouraged to contact the course staff (via Piazza or office hours) for additional help.

(8) If you discuss solution approaches with anyone outside of your group, you must list their names on the
front page of your write-up.

(9) Refer to the course Web page for the late day policy.

Problem 7

A vertex cover of an undirected graph (V,E) is a subset S ⊆ V such that, for every edge e ∈ E, at least one
of e’s endpoints lies in S.1

(a) Prove that in every graph, the minimum size of a vertex cover is at least the size of a maximum
matching.

(b) Give a non-bipartite graph in which the minimum size of a vertex cover is strictly bigger than the size
of a maximum matching.

(c) Prove that the problem of computing a minimum-cardinality vertex cover can be solved in polynomial
time in bipartite graphs.2

[Hint: reduction to maximum flow.]

(d) Prove that in every bipartite graph, the minimum size of a vertex cover equals the size of a maximum
matching.

1Yes, the problem is confusingly named.
2In general graphs, the problem turns out to be NP -hard (you don’t need to prove this).

1

Problem 8

This problem considers the special case of maximum flow instances where edges have integral capacities and
also

(*) for every vertex v other than s and t, either (i) there is at most one edge entering v, and this edge
(if it exists) has capacity 1; or (ii) there is at most one edge exiting v, and this edge (if it exists) has
capacity 1.

Your tasks:

(a) Prove that the maximum flow problem can be solved in O(m
√
n) time in networks that satisfy (*).

(As always, m is the number of edges and n is the number of vertices.)

[Hint: proceed as in Problem 4, but prove a stronger version of part (a) of that problem.]

(b) Prove that the maximum bipartite matching problem can be solved in O(m
√
n) time.

[Hint: examine the reduction in Lecture #4.]

Problem 9

This problem considers approximation algorithms for graph matching problems.

(a) For the maximum-cardinality matching problem in bipartite graphs, prove that for every constant
ε > 0, there is an O(m)-time algorithm that computes a matching with size at most εn less than the
maximum possible (where n is the number of vertices). (The hidden constant in the big-oh notation
can depend on 1

ε .)

[Hint: ideas from Problem 8(b) should be useful.]

(b) Now consider non-bipartite graphs where each edge e has a real-valued weight we. Recall the greedy
algorithm from Lecture #6:

Greedy Matching Algorithm

sort and rename the edges E = {1, 2, . . . ,m} so that w1 ≥ w2 ≥ · · ·wm
M = ∅
for i = 1 to m do

if wi > 0 and ei shares no endpoint with edges in M then
add ei to M

How fast can you implement this algorithm?

(c) Prove that the greedy algorithm always outputs a matching with total weight at least 50% times that
of the maximum possible.

[Hint: if the greedy algorithm adds an edge e to M , how many edges in the optimal matching can this
edge “block”? How do the weights of the blocked edges compare to that of e?]

Problem 10

This problem concerns running time optimizations to the Hungarian algorithm for computing minimum-cost
perfect bipartite matchings (Lecture #5). Recall the O(mn2) running time analysis from lecture: there are
at most n augmentation steps, at most n price update steps between two augmentation steps, and each
iteration can be implemented in O(m) time.

2

(a) By a phase, we mean a maximal sequence of price update iterations (between two augmentation
iterations). The naive implementation in lecture regrows the search tree from scratch after each price
update in a phase, spending O(m) time on this for each of up to n iterations. Show how to reuse work
from previous iterations so that the total amount of work done searching for good paths, in total over
all iterations in the phase, is only O(m).

[Hint: compare to Problem 2(a).]

(b) The other non-trivial work in a price update phase is computing the value of ∆ (the magnitude of the
update). This is easy to do in O(m) time per iteration. Explain how to maintain a heap data structure
so that the total time spent computing ∆ over all iterations in the phase is only O(m log n). Be sure
to explain what heap operations you perform while growing the search tree and when executing a price
update.

[This yields an O(mn log n) time implementation of the Hungarian algorithm.]

Problem 11

In the minimum-cost flow problem, the input is a directed graph G = (V,E), a source s ∈ V , a sink t ∈ V ,
a target flow value d, and a capacity ue ≥ 0 and cost ce ∈ R for each edge e ∈ E. The goal is to compute
a flow {fe}e∈E sending d units from s to t with the minimum-possible cost

∑
e∈E cefe. (If there is no such

flow, the algorithm should correctly report this fact.)
Given a min-cost flow instance and a feasible flow f with value d, the corresponding residual network Gf

is defined as follows. The vertex set remains V . For every edge (v, w) ∈ E with fvw < uvw, there is an edge
(v, w) in Gf with cost ce and residual capacity ue − fe. For every edge (v, w) ∈ E with fvw > 0, there is a
reverse edge (w, v) in Gf with the cost −ce and residual capacity fe.

A negative cycle of Gf is a directed cycle C of Gf such that the sum of the edge costs in C is negative.
(E.g., v → w → x→ y → v, with cvw = 2, cwx = −1, cxy = 3, and cyv = −5.)

(a) Prove that if the residual network Gf of a flow f has a negative cycle, then f is not a minimum-cost
flow.

(b) Prove that if the residual network Gf of a flow f has no negative cycles, then f is a minimum-cost
flow.

[Hint: look to the proof of the minimum-cost bipartite matching optimality conditions (Lecture #5)
for inspiration.]

(c) Give a polynomial-time algorithm that, given a residual network Gf , either returns a negative cycle or
correctly reports that no negative cycle exists.

[Hint: feel free to use an algorithm from CS161. Be clear about which properties of the algorithm
you’re using.]

(d) Assume that all edge costs and capacities are integers with magnitude at most M . Give an algorithm
that is guaranteed to terminate with a minimum-cost flow and has running time polynomial in n = |V |,
m = |E|, and M .3

[Hint: what would the analog of Ford-Fulkerson be?]

Problem 12

The goal of this problem is to revisit two problems you studied in CS161 — the minimum spanning tree
and shortest path problems — and to prove the optimality of Kruskal’s and Dijkstra’s algorithms via the
complementary slackness conditions of judiciously chosen linear programs.

3Thus this algorithm is only “pseudo-polynomial.” A polynomial algorithm would run in time polynomial in n, m, and
logM . Such algorithms can be derived for the minimum-cost flow problem using additional ideas.

3

(a) For convenience, we consider the maximum spanning tree problem (equivalent to the minimum spanning
tree problem, after multiplying everything by -1). Consider a connected undirected graph G = (V,E)
in which each edge e has a weight we.

For a subset F ⊆ E, let κ(F) denote the number of connected components in the subgraph (V, F).
Prove that the spanning trees of G are in an objective function-preserving one-to-one correspondence
with the 0-1 feasible solutions of the following linear program (with decision variables {xe}e∈E):

max
∑
e∈E

wexe

subject to ∑
e∈F

xe ≤ |V | − κ(F) for all F ⊆ E∑
e∈E

xe = |V | − 1

xe ≥ 0 for all e ∈ E.

(While this linear program has a huge number of constraints, we are using it purely for the analysis of
Kruskal’s algorithm.)

(b) What is the dual of this linear program?

(c) What are the complementary slackness conditions?

(d) Recall that Kruskal’s algorithm, adapted to the current maximization setting, works as follows: do a
single pass over the edges from the highest weight to lowest weight (breaking ties arbitrarily), adding
an edge to the solution-so-far if and only if it creates no cycle with previously chosen edges. Prove that
the corresponding solution to the linear program in (a) is in fact an optimal solution to that linear
program, by exhibiting a feasible solution to the dual program in (b) such that the complementary
slackness conditions hold.4

[Hint: for the dual variables of the form yF , it is enough to use only those that correspond to subsets F ⊆
E that comprise the i edges with the largest weights (for some i).]

(e) Now consider the problem of computing a shortest path from s to t in a directed graph G = (V,E)
with a nonnegative cost ce on each edge e ∈ E. Prove that every simple s-t path of G corresponds to
a 0-1 feasible solution of the following linear program with the same objective function value:5

min
∑
e∈E

cexe

subject to ∑
e∈δ+(S)

xe ≥ 1 for all S ⊆ V with s ∈ S, t /∈ S

xe ≥ 0 for all e ∈ E.

(Again, this huge linear program is for analysis only.)

(f) What is the dual of this linear program?

(g) What are the complementary slackness conditions?

4You can assume without proof that Kruskal’s algorithm outputs a feasible solution (i.e., a spanning tree), and focus on
proving its optimality.

5Recall that δ+(S) denotes the edges sticking out of S.

4

(h) Let P denote the s-t path returned by Dijkstra’s algorithm. Prove that the solution to the linear
program in (e) corresponding to P is in fact an optimal solution to that linear program, by exhibiting
a feasible solution to the dual program in (f) such that the complementary slackness conditions hold.

[Hint: it is enough to use only dual variables of the form yS for subsets S ⊆ V that comprise the first i
vertices processed by Dijkstra’s algorithm (for some i).]

5

