
CS264: Homework #1

Due by midnight on Thursday, January 19, 2017

Instructions:

(1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. See the
course site for submission instructions.

(2) Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page.

(3) Students taking the course for a letter grade should complete all exercises and problems. Students
taking the course pass-fail only need to complete the exercises.

(4) Write convincingly but not excessively. Exercise solutions rarely need to be more than 1-2 paragraphs.
Problem solutions rarely need to be more than a half-page (per part), and can often be shorter.

(5) You may refer to your course notes, and to the textbooks and research papers listed on the course
Web page only. You cannot refer to textbooks, handouts, or research papers that are not listed on the
course home page. (Exception: feel free to use your undergraduate algorithms textbook.) Cite any
sources that you use, and make sure that all your words are your own.

(6) If you discuss solution approaches with anyone outside of your team, you must list their names on the
front page of your write-up.

(7) Exercises are worth 5 points each. Problem parts are labeled with point values.

(8) No late assignments will be accepted.

Lecture 1 Exercises

Exercise 1

This exercise and the next consider instance-optimal algorithms in the comparison model. Here, cost(A, z)
is defined as the number of comparisons that algorithm A uses to determine the (correct) solution to the
input z. An algorithm A is instance-optimal if

cost(A, z) ≤ c · cost(B, z) (1)

for every (correct) algorithm B and input z, where c ≥ 1 is a constant independent of B and z.
Prove that there is no instance-optimal algorithm for sorting a given array (in the comparison model).

Exercise 2

Is there an instance-optimal algorithm for computing the median element of a given array (in the comparison
model)? Prove your answer.

Lecture 2 Exercises

Exercise 3

Prove that, for arbitrarily large n, there are n-point instances of the 2D Maxima problem on which the
Kirkpatrick-Seidel (KS) algorithm uses Ω(n log n) comparisons.
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Exercise 4

Prove that the comparison bound from lecture

min
legal S1,...,Sk

{
k∑

i=1

(
|Si| log

n

|Si|

)}
(2)

is always at most O(n log h), where n is the number of input points and h is the number of output points.

[Hint: consider vertical slabs.]

Exercise 5

Give an infinite family of 2D Maxima instances in which the number of output points h tends to infinity (so
n log h is super-linear) but the upper bound (2) is linear (at most cn for a constant c > 0 that is independent
of n and h).

Problems

Problem 1

The point of this problem is to study another example of an instance-optimal algorithm, in a different
application domain. Consider a set X of objects, each with m real-valued attributes between 0 and 1 (higher
is better). Given is a scoring function σ : [0, 1]m → [0, 1] which aggregates m attribute values into a single
score; we always assume that σ is nondecreasing in each component. Example scoring functions include the
average and the maximum.

The objects X can only be accessed in a restricted way. For each attribute, there is a list Li that
contains X, sorted according to ith attribute values (highest to lowest). Think of X as large and m as a
small constant.1 An algorithm can only access the data by requesting the next object in one of the lists
(like popping a stack). Thus an algorithm could ask for the first (highest) object of L4, followed by the first
object of L7, followed by the second object of L4, and so on. Such a request reveals the name of said object
along with all m of its attribute values. We charge an algorithm a cost of 1 for each such data access —
cost(A, z) is the number of data accesses that the algorithm A needs to correctly identify the solution of the
input z.

The computational problem that we consider is: given a positive integer k, identify k objects of X that
have the highest scores according to σ (ties can be broken arbitrarily).2

Input: a parameter k and m sorted lists.

1. Repeat

(a) Fetch the next item from each of the m lists.

(b) Let R denote the set of objects that have been encountered in at least one list. Let S ⊆ R denote
the set of objects that have already been encountered in every one of the m lists.

until S contains at least k objects.

2. Return the k objects of R that have the highest score under σ, breaking ties arbitrarily.

Figure 1: The straightforward algorithm.

1For example, X could be Web pages, and attributes the ranking (e.g., PageRank) of a Web page under m different search
engines.

2To develop intuition for the problem, note that an object with the highest score might only appear far from the front of
every one of the sorted lists.

2



(a) (4 points) Consider the “straightforward algorithm” shown in Figure 1. Prove that, for every scoring
function, this algorithm is correct.

[Recall that scoring functions are always assumed to be monotone.]

(b) (4 points) Prove that there is a scoring function σ and choices of m and k such that, for some inputs z,
the straightforward algorithm incurs cost strictly larger than m times that of other (correct) algorithms.

[Hint: How does the execution of the straightforward algorithm depend on σ? Think of a (possibly
uninteresting) scoring function where much less work is needed to correctly solve the problem.]

(c) (5 points) Consider the “threshold algorithm” shown in Figure 2. Prove that, for every scoring function,
this algorithm is correct.

[Hint: the intuition is that t acts as an upper bound on the best-possible score of an unseen object.]

Input: a parameter k and m sorted lists.
Invariant: of the objects seen so far, S is those with the top k scores.

1. Fetch the next item from each of the m lists.

2. Compute the score σ(x) of each object x returned, and update S as needed.

3. Let ai denote the ith attribute value of the object just fetched from the list Li, and set a threshold
t := σ(a1, . . . , am).

4. If all objects of S have score at least t, halt; otherwise return to step 1.

Figure 2: The threshold algorithm.

(d) (8 points) Prove that, for every scoring function, the threshold algorithm is instance-optimal, in the
sense that

cost(A, z) ≤ m · cost(B, z) (3)

for every algorithm B and input z (i.e., lists L1, . . . , Lm).

[Hint: the hard part is to lower bound the cost of every correct algorithm. Argue that if an algorithm B
stops too early on an input z, then there exists an input z′ consistent with B’s execution-so-far for
which B’s answer is incorrect.]

(e) (4 points) Prove that, in general, there is no deterministic algorithm that satisfies (3) with an approx-
imation factor smaller than m.

[Hint: take k = 1 and suppose there is a unique highest-scoring object.]

Problem 2

In Lecture #2 we mentioned that Afshani/Barbay/Chan proved their lower bound for the 2D Maxima
problem (for every algorithm, for a worst-case ordering of the point set) using an “adversary argument.”
The high-level idea is to take an arbitrary algorithm B, simulate it, and adversarially resolve comparisons
to adaptively hide the maxima. The goal of this problem is to introduce you to such adversary arguments,
in a simpler, one-dimensional context.

Consider the problem of computing the median element of an array. For simplicity, assume that the array
length is odd, and that all of the array elements are distinct. We consider the comparison model, in which
the only way an algorithm can learn about the input elements is through pairwise comparisons.

To make the problem more interesting than the version studied in CS161, we’ll strive for “lightweight”
algorithms, in the spirit of the obvious one-pass algorithm for computing the maximum element of an array,
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or the clever one-pass algorithm for computing a majority element (when one exists).3 Could there be a
similarly slick algorithm for computing the median?

Formally, here is our computational model.4 The input is an array A of length n. For positive integers
p ≥ 1 and s ∈ {1, 2, . . . , n}, a p-pass space-s algorithm works as follows:

1. Initialize an array S of length s. [This is the working space used by the algorithm.]

2. For i = 1, 2, . . . , p: [each iteration corresponds to a pass over the input]

(a) For j = 1, 2, . . . , n: [one pass over the input array]

i. If desired, copy A[j] over into some cell of S. (The choice of which cell of S can depend on
the current contents of S.)

ii. Perform any comparisons you like between the elements stored in S.

3. Return the final answer.

For example, there is a 1-pass O(1)-space algorithm for computing the maximum element of an array (why?).5

(a) (8 points) Fix an arbitrary p-pass space-s algorithm B and consider its first pass over the input. Prove
that there exists an input array A such that, after the first pass of B, there exists a subset T of array
elements such that:

1. |T | = Ω(n/s);

2. no element outside T lies between two elements of T ;

3. the algorithm has not yet made any comparisons between any pair of elements of T .

[Hint: if the algorithm is about to copy A[j] over into the cell of S that contains the kth order statistic
of S, then instantiate A[j] as an element that, once copied, will again be the kth order statistic of S.]

(b) (7 points) Extend your argument from part (a) to achieve an additional property: the median of T is
the same as the median of the entire array A.

[Hint: define the first half of A as in (a), and the second half to achieve this additional property.]

(c) (5 points) Conclude that every p-pass space-s algorithm that correctly computes the median satisfies
s = Ω(n1/p).6

Extra Credit

Extra Credit Problem 1

(10 points) In our definition (1) of instance optimality, we insisted that the approximation factor c be
independent of the algorithm B (and of course the input z). This problem explains the importance of this
choice for settings in which cost denotes the running time of an algorithm: allowing the approximation to
depend on B permits highly impractical instance-optimal algorithms.

Consider an arbitrary search problem — given an instance, the responsibility of the algorithm is to exhibit
a correct solution or report that none exist — in which every correct algorithm takes at least linear time
(e.g., from reading the input). Suppose further that the correctness of a purported solution can be verified
in linear time. Show that for every such problem there is an instance-optimal algorithm A in the sense that

cost(A, z) ≤ f(|A′|) · cost(A′, z)

3If you haven’t seen it before: (i) maintain a frontrunner and a counter (initially 0); (ii) in one pass over the array,
increment/decrement the counter whenever the current element is/is not the same as the frontrunner; (iii) whenever the
counter hits 0, make the next element the next frontrunner (with the counter initialized to 1).

4For simplicity, in this problem we consider only deterministic algorithms.
5Technically, the algorithm for computing a majority element works in a slightly richer model, where the algorithm can also

increment or decrement a counter. Given this counter, there is again a 1-pass O(1)-space algorithm.
6For example, with one pass linear space is necessary (and sufficient — why?). With two passes, Ω(

√
n) space is necessary

— is it also sufficient?
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for every input z and (correct) algorithm A′, where |A′| denotes the size (e.g., number of lines of code) of
the algorithm A′ and f(|A′|) is some function that depends only on |A′| and not on the length of z.

[Hint: consider enumerating and deftly simulating all programs of at most a given length.]
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