
CS264: Homework #2

Due by midnight on Thursday, January 26, 2017

Instructions:

(1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. See the
course site for submission instructions.

(2) Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page.

(3) Students taking the course for a letter grade should complete all exercises and problems. Students
taking the course pass-fail only need to complete the exercises.

(4) Write convincingly but not excessively. Exercise solutions rarely need to be more than 1-2 paragraphs.
Problem solutions rarely need to be more than a half-page (per part), and can often be shorter.

(5) You may refer to your course notes, and to the textbooks and research papers listed on the course
Web page only. You cannot refer to textbooks, handouts, or research papers that are not listed on the
course home page. (Exception: feel free to use your undergraduate algorithms textbook.) Cite any
sources that you use, and make sure that all your words are your own.

(6) If you discuss solution approaches with anyone outside of your team, you must list their names on the
front page of your write-up.

(7) Exercises are worth 5 points each. Problem parts are labeled with point values.

(8) No late assignments will be accepted.

Lecture 3 Exercises

Exercise 6

Prove that for every cache size k ≥ 1 and every page sequence σ, cost(LRU, k + 1, σ) ≤ cost(LRU, k, σ).

[As usual, cost(A, k, σ) denotes the number of page faults incurred by the paging algorithm A on the page
sequence σ when the cache size is k.]

Exercise 7

Recall the resource augmentation guarantee: for every cache size k (for LRU) and h ≤ k (for the offline
optimal algorithm),

cost(LRU, k, σ) ≤ k

k − h+ 1
· cost(OPT, h, σ).

Prove a matching lower bound. That is, for every choice of k and h ≤ k, every constant α < k
k−h+1 , and every

deterministic paging algorithm A, there exists a sequence σ such that cost(A, k, σ) > α · cost(OPT, h, σ).

1



Exercise 8

Suppose we try to interpolate between online and offline algorithms using the notion of lookahead. Precisely,
an `-lookahead paging algorithm makes each eviction decision using only knowledge of past requests and the
` next requests. (Online algorithms are the ` = 0 case, offline algorithms the ` = +∞ case.) Prove that for
every finite ` ≥ 0 and cache size k ≥ 1, every deterministic `-lookahead algorithm has competitive ratio at
least k.

[Interpretation: this result gives yet another sense in which worst-case competitive analysis gives misleading
information about online paging algorithms — it suggests that any finite amount of lookahead is completely
useless.]

Lecture 4 Exercises

Exercise 9

Prove that the model of locality introduced in this lecture has no implications for the competitive ratio of an
algorithm. Precisely, prove that for every concave function f with f(2) = 2 and lim`→∞ f(`) = N (where N
is the total number of pages), every cache size k, and every deterministic online algorithm A, the competitive
ratio of A on the subset of sequences legal for f is at least k.

Exercise 10

Recall the proof of the first lower bound (of αf (k)) given in this lecture. Given a concave function f with
f(2) = 2, the proof considered a page sequence σ that consists of an arbitrarily large number of phases.
Each phase consists of the same sequence of page requests: m2 requests in a row for page p1, m3 requests in
a row for page p2, . . . , and finally mk requests in a row for page pk−1. (Recall that mj denotes the number
of (consecutive) values of i for which f(i) = j, and that mj is nondecreasing in j by concavity of f .) Prove
that the sequence σ conforms to f .

Problems

Problem 3

Recall the online paging problem from Lecture #3. We proved that every deterministic paging algorithm
has competitive ratio at least k, where k is the cache size. We considered only deterministic algorithms,
because randomized paging algorithms are rarely used in practice. But the latter are fun to think about
from a theoretical standpoint. The goal of this problem is to prove that randomized paging algorithms can
have exponentially better competitive ratios than deterministic ones.

When a randomized paging algorithm suffers a page fault and has a full cache, it can use an arbitrary
probability distribution to choose which page to evict from its cache. The competitive ratio of such an
algorithm A is defined according to its expected number of page faults:

max
σ

E[cost(A, σ)]

cost(OPT, σ)
,

where the expectation is over the random flips of the algorithm A.1

We study the following randomized paging algorithm. The algorithm keeps track of the blocks of the
input sequence, as defined in Lecture #3 (maximal sequences with requests to only k distinct pages). When
the algorithm incurs a page fault and the cache is not full (as in the first block), it simply brings the requested
page into the cache. If the algorithm incurs a page fault in the block σi with a full cache, then among the
pages in the cache that have not yet requested in σi, it chooses one uniformly at random to evict.

1This is sometimes called the oblivious adversary model: an “adversary” commits to the worst sequence σ she can think of,
oblivious to the outcomes of the coin flips that will later be tossed by A. Positive results are much harder to come by with
adaptive adversaries, which are permitted to define the input sequence σ online, adapting to the previous random choices of
the algorithm.

2



(a) (2 points) Prove that the algorithm is well defined, meaning that when there is a page fault in block σi
with a full cache, there is at least one page in the cache that has not yet been requested in the block σi.

(b) (2 points) Prove that the algorithm can only fault on a page p in a block σi on the first request to p
in σi.

(c) (2 points) Consider a block σi with i > 1. Let Xi and Yi denote the k distinct pages requested in σi−1
and σi, respectively. Call the pages of Xi ∩ Yi and Yi \Xi old and new pages, respectively. Prove that,
on the first request to a new page, the algorithm incurs a fault (with probability 1).

(d) (8 points) Consider again a block σi with i > 1. Let ti denote the number of new pages (ti =
|Yi \ Xi|). Among the old pages, suppose p is the jth one to be requested in the block σi (for some
j ∈ {1, 2, . . . , k − ti}). Prove that the probability (over the algorithm’s random choices) that the
algorithm incurs a fault on the first request to p in block σi is at most

ti
k − j + 1

.

[Hints: Argue that the worst case is when all requests to new pages precede all requests to old pages.
Prove (carefully!) that the cache slots occupied by the new pages and the already-requested j − 1 old
pages are precisely the slots occupied by these old pages at the beginning of the block, plus a random
subset of the other k − j + 1 slots of size ti.]

(e) (4 points) Prove that the expected total number of page faults incurred by the algorithm over all blocks

after the first is at most Hk ·
∑
i>1 ti, where Hk denotes the kth Harmonic number

∑k
j=1

1
j .2

(f) (5 points) Prove that the offline optimal algorithm incurs at least 1
2

∑
i>1 ti page faults.

[Hint: for each i > 1, how many distinct page requests are there in the blocks σi−1 and σi combined?]

(g) (2 points) Conclude that, modulo an additive term from the first block, E[cost(A, k, σ)] ≤ 2Hk ·
cost(OPT, k, σ), for every cache size k and input σ.

(h) (6 points extra credit) Consider the following simpler randomized paging algorithm: whenever there is
a page fault and the cache is full, evict one the cache’s k pages uniformly at random. Is this algorithm
also O(log k)-competitive in expectation? Prove your answer.

Problem 4

Note: This problem makes use of Markov’s inequality, the simplest large deviation inequality. See, for
example, Lecture #18 from the instructor’s CS261 course (notes posted on the Web site).

In Lecture #3 we discussed the idea of weakening the offline optimal algorithm to obtain smaller com-
petitive ratios. Another idea is to strengthen the online algorithm. One way of doing this is to provide the
algorithm with partial information about the input z; such algorithms are called semi-online.

(a) (3 points) Consider the following problem: you have a single bin with capacity 1, and items with
positive sizes s1, s2, . . . arrive online, one-by-one. When an item arrives, you have to choose whether
or not to put it in the bin. The sum of the sizes of the items in the bin must be at most 1, and you are
not allowed to take items out of the bin. The objective function is to maximize the sum of the sizes of
the items packed in the bin.3

Prove that for every constant c > 0, there is no deterministic algorithm with competitive ratio at
least c.

2Note that Hk is roughly ln k (as seen by approximating the sum with the integral
∫ k
1

dx
x

).
3Note that with maximization objective like this, competitive ratios will be at most 1, the closer to 1 the better.

3



(b) (5 points) Suppose that you are told 1 bit of information before any items arrive: whether or not
there will be at least one item that has size at least 1

2 . Show that, with this information, there is a
deterministic online algorithm with competitive ratio (at least) 1

2 .

(c) (8 points) The previous part motivates a general definition. By a b-bit oracle, we mean a function a
from problem instances to {0, 1}b. An online algorithm with b bits of advice receives the bits a(z) in
advance of the input z, where a is a b-bit oracle. (In the previous part, b = 1.)

It turns out that there is a close connection between randomized online algorithms and online algo-
rithms with advice. For example, consider the online paging problem. Fix a cache size k and a finite
universe U of all pages; we consider page request sequences of length n, with n → ∞. (k and U are
constants, independent of n.) Let A be a randomized online paging algorithm (without advice) that
is c-competitive in expectation (cf., Problem 3). We can imagine that A makes all of the coin flips
that it might need in advance (to be examined as needed during A’s execution), and use r ∈ {0, 1}`
to denote the outcome of these flips (where ` can depend on n and is big enough to describe all of the
randomness needed). Note that, given r, A is a deterministic algorithm; we write cost(A, r, σ) for the
performance of the randomized algorithm A on a given input σ for a given random string r.

Prove that, for every n, there exists random strings r1, r2, . . . , rt ∈ {0, 1}` such that:

(i) there are constants α, d (independent of n) such that t ≤ αnd;
(ii) for every input σ of length n, there exists an index i ∈ {1, 2, . . . , t} such that cost(A, ri, σ) ≤

2c · cost(OPT, σ).

[Hints: use Markov’s inequality to upper the probability (over the random string) that the cost incurred
by the online algorithm is more than 2c times that of the offline optimal. Repeat this experiment a
polynomial number of times, and then take a union bound over all possible sequences of length n.]

(d) (4 points) Conclude that there is a deterministic online algorithm with O(log n) bits of advice that is
O(log k)-competitive on length-n input sequences.

4


