
CS264: Homework #5

Due by midnight on Thursday, February 16, 2017

Instructions:

(1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. See the
course site for submission instructions.

(2) Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page.

(3) Students taking the course pass-fail should do five exercises and do not need to do any
problems. Students taking the course for a letter grade should do six exercises, and we’ll
grade the Problems out of a total of 40 points. Any points you receive on the problems in excess
of 40 will be treated as extra-credit points.

(4) Write convincingly but not excessively. Exercise solutions rarely need to be more than 1-2 paragraphs.
Problem solutions rarely need to be more than a half-page (per part), and can often be shorter.

(5) You may refer to your course notes, and to the textbooks and research papers listed on the course
Web page only. You cannot refer to textbooks, handouts, or research papers that are not listed on the
course home page. (Exception: feel free to use your undergraduate algorithms textbook.) Cite any
sources that you use, and make sure that all your words are your own.

(6) If you discuss solution approaches with anyone outside of your team, you must list their names on the
front page of your write-up.

(7) Exercises are worth 5 points each. Problem parts are labeled with point values.

(8) No late assignments will be accepted.

Lecture 9 Exercises

Exercise 24

Consider a random graph G drawn from the Erdös-Renyi distribution G(n, 12 ) described in lecture. Prove

that, for every ε > 0, the number of edges crossing every bisection of G is between (1− ε)n
2

8 and (1 + ε)n
2

8
with probability 1− o(1), where the o(1) term tends to 0 as n→∞.

[Hint: this follows from the classic one-two punch of the Chernoff bound and the Union bound.]

Exercise 25

Let M be a symmetric n × n matrix. By the spectral theorem, M has an orthonormal basis u1, . . . ,un of
eigenvectors, with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Prove the variational characterization of eigenvalues: for
every i ∈ {1, 2, . . . , n},

λi = max
u∈Ui

uTMu,

where Ui denotes the unit vectors that are orthogonal to u1, . . . ,ui−1.
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Exercise 26

Let G = (V,E) be an undirected graph and M the corresponding V × V adjacency matrix.

(a) Prove that the first eigenvalue λ1 of M is at least the average degree of G.

(b) Prove that if G is d-regular (i.e., every vertex has exactly d neighbors), then λ1 = d and |λi| ≤ d for
every i ∈ {1, 2, . . . , n}.
[Hint: note that the operator M (sending v 7→ Mv) has the following effect: for every vertex i ∈ V ,
the vertex’s old value vi is replaced by the sum of its neighbors’ old values.]

Exercise 27

Continuing the previous exercise, let G = (V,E) be a d-regular undirected graph and M the corresponding
V × V adjacency matrix. Prove that G is a connected graph if and only if the second eigenvalue λ2 of M is
strictly less than d.

[Comment: Thus the spectrum of G’s adjacency matrix M “knows” whether it’s connected or not!]

Exercise 28

Continuing the previous exercise, let G = (V,E) be a connected d-regular undirected graph and M the
corresponding V × V adjacency matrix. Prove that G is bipartite if and only if λn = −d.

Lecture 10 Exercises

Exercise 29

Prove that separation between eigenvalues is in general necessary for eigenvectors to be stable under small
perturbations (as in the Davis-Kahan theorem). Specifically, show that for every ε > 0, there is a matrix
M and a perturbation matrix P with ‖P‖ ≤ ε such that (for some i) M and M + P have orthogonal ith
eigenvectors.

Exercise 30

Consider the planted clique problem with clique size k at least c
√
n log n, where n is the number of vertices

and c is a sufficiently large constant. Prove that, with high probability (i.e., going to 1 as n → ∞), the
vertices of the planted clique are the same as the k vertices with the largest degrees.

[Hint: look up Chebyshev’s inequality in the large deviation notes posted to the course Web site. In G(n, 12 ),
what is the standard deviation of the degree of a vertex?]

Exercise 31

Recall the “expected adjacency matrix” M̂ for the planted clique problem:

ˆ̂
M =
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2 · · · 1

2
...
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...
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1 · · · 1 1

2 · · · 1
2

1
2 · · · 1

2
1
2 · · · 1

2
...
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...
1
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2
1
2 · · · 1
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Given a closed-form expression for the first eigenvector and eigenvalue of M̂, as a function of the number of
vertices n and the planted clique size k.

Exercise 32

In this exercise we’ll finish the proof of correctness of our spectral algorithm for planted clique, by showing
that the final clean-up step recovers the planted clique with high probability.

Formally, consider an instance G = (V,E) of planted clique, with planted clique C∗ of size k = Θ(
√
n).

Let C(G) denote the set C computed by the canonical spectral algorithm (i.e., by the first three steps) given
the graph G. Let E denote the event that C(G) contains at least 5

6k vertices of C∗. (We proved in lecture
that Pr[E ] = 1 − o(1).) Prove that, conditioned on E , with high probability over G, the following holds: a
vertex i ∈ V has at least 5

6k − 1 neighbors in C(G) if and only if i ∈ C∗.
[Hints: By symmetry, it is enough to consider the case where C∗ is deterministic, say C∗ = {1, 2, . . . , k}.
Chernoff bounds will be useful. But be careful completing the argument: G and C(G) are dependent random
variables.]

Exercise 33

Prove that there is an algorithm running in nO(logn) time1 that correctly computes a maximum clique with
high probability (approaching 1 as n→∞) over the distribution of instances in the planted clique problem.
(Here n is the number of vertices, and the planted clique size k can be anything in {1, 2, . . . , n}.)
[Hint: You can assume without proof that the size of the maximum clique in a random graph from G(n, 12 ) is
at most 3 log2 n with high probability. For k ≥ 10 log2 n, say, suppose you correctly guessed 10 log2 n vertices
of the planted clique C∗? How would you figure out the rest of them?]

Problems

Problem 16

(15 points) In this problem we study the planted bisection problem in the relatively undemanding regime
where there is a constant gap between the edge densities p and q. Specifically, assume that p ≥ c1 and
q ≤ p− c2 for constants c1, c2 > 0. Consider the following simple combinatorial algorithm (given an instance
G = (V,E)).

A Combinatorial Algorithm for Planted Bisection

1. Choose a vertex v ∈ V arbitrarily.

2. Let A denote the n
2 vertices that have the fewest common neighbors with v.

3. Let B denote the rest of the vertices (including v) and return (A,B).

Prove that, with high probability over the random choice of G (approaching 1 as n → ∞), this algorithm
exactly recovers the planted bisection.2

[Hint: compute the expected number of common neighbors for pairs of vertices on the same and on different
sides of the planted partition. Use the Chernoff bound.]

1Also known as “quasi-polynomial-time.”
2Formally, exact recovery means that the algorithm outputs a bisection (A,B) such that either A = A∗ and B = B∗ or else

A = B∗ and A∗ = B, where (A∗, B∗) is the planted partition.
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Problem 17

In Lectures #9–10 we proved that, in n-vertex planted bisection instances with p = Ω(1) and p − q =

Ω(
√

logn
n ), the canonical spectral algorithm returns a cut (A,B) that misclassifies at most n

32 vertices (with

high probability). That is, we can label the sides of the planted bisection (A∗, B∗) so that the number of
vertices of A∗ in B plus the number of vertices of B∗ in A is at most n

32 . Getting most but not all of the
planted solution is known as partial recovery. This problem describes how to modify the canonical spectral
algorithm to get exact recovery of (A∗, B∗), with high probability.

Here is the new (randomized) algorithm (given instance G = (V,E)):

The Final Planted Bisection Algorithm

1. Randomly partition the vertex set V into two equal-size groups, V1 and V2. Let H1

and H2 denote the subgraphs of G induced by V1 and V2.

2. Run the canonical spectral algorithm separately on H1 and H2, to obtain cuts (A1, B1)
of H1 and (A2, B2) of H2.

3. Place each vertex v ∈ V1 into either Â1 or B̂1, according to whether v has more
neighbors in A2 or B2 (breaking ties arbitrarily). Similarly, place each vertex v ∈ V2
into either Â2 or B̂2, according to whether v has more neighbors in A1 or B1.

4. Return either the cut (Â1 ∪ Â2, B̂1 ∪ B̂2) or the cut (Â1 ∪ B̂2, B̂1 ∪ Â2), whichever one
is a bisection with fewer crossing edges. (If neither is a bisection, the algorithm fails.)

(a) (12 points) Assume for simplicity of analysis that n is a multiple of 4 and that the algorithm chooses
V1, V2 so that each contains exactly half of A∗ and half of B∗.3

Under this assumption, prove that when p ≥ c1 and p − q ≥ c2

√
logn
n for sufficiently large constants

c1, c2 > 0, the algorithm above exactly recovers the planted bisection (with probability approaching 1
as n→∞).

[Hint: the “principle of deferred decisions” is your friend. You may also need Chebyshev’s inequality.]

(b) (3 points) Why bother with the first and fourth steps? Why not just run the canonical spectral
algorithm on the entire graph G to get a cut (A,B), and return the cut (Â, B̂), where Â (resp., B̂) is
the set of vertices that have more neighbors in A (resp., B) than B (resp., A)?

Problem 18

This problem fills in the gaps of the proof sketch from lecture that the operator norm ‖R‖ of the perturbation
matrix R is O(

√
n log n). For this problem, assume that R is a random symmetric matrix, where each Rij

lies in [−1, 1] (with probability 1) and E[Rij ] = 0. Also, all of the entries Rij with i ≤ j are independent
from one another. (The entries Rij with i > j have their values forced by the symmetry constraint.)

For part (a) below, you should assume and use the following version of Hoeffding’s inequality, which acts
like a Chernoff bound but for additive error.4 Let X1, . . . , Xn be independent random variables, where Xi

takes on values in [ai, bi]. Let S = X1 + · · · + Xn denote the sum and µ = E[S] its expectation. Then for
every t ≥ 0,

Pr[|S − µ| ≥ t] ≤ 2 exp

(
− t2

2
∑n
i=1(bi − ai)2

)
.

3A straightforward Chernoff bound argument shows that this will be “almost true” with high probability, and so H1 and
H2 each contain a planted cut with approximately balanced sides. With minor additional work, the partial recovery guarantee
of the canonical spectral algorithm can be extended from planted bisections to planted approximately-balanced cuts. Further
details are left to the reader.

4The proofs of the two bounds are similar, see CS265.
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(a) (5 points) Prove that for every unit vector u and t ≥ 0,

Pr
[
|uTRu| ≥ t

]
≤ 2e−t

2/2.

[Hint: note that for a unit vector u, 1 = ‖u‖2 · ‖u‖2 =
∑n
i=1 u

4
i + 2

∑
i<j u

2
iu

2
j .]

(b) (5 points) An ε-net of a metric space (X, d) is a set N ⊆ X such that, for every x ∈ X, there exists
y ∈ N such that d(x, y) < ε.

Prove that there is a constant c > 0 such that, for all n ≥ 1 and ε ∈ (0, 1), the unit ball {v ∈ Rn :
‖v‖ = 1} in n-dimensional Euclidean space has an ε-net of size ( cε )

n.

[Hints: use a greedy algorithm to construct the net and a volume argument to prove termination. You
don’t need to explicitly compute any volumes—just assume and use the fact that the (n-dimensional)
volume of a δ ball centered at a point u (i.e., the set {v ∈ Rn : ‖u− v‖ ≤ δ}) is δn times the volume
of a unit ball.]

(c) (5 points) Let N be an ε-net of the unit sphere in Rn. Prove that there is a constant c > 0 such that
the following holds, with probability 1 over the choice of R: if |uTRu| ≤ t for some t ≤ n and every
u ∈ N , then |uTRu| ≤ t+ c · εn for every unit vector u.

[Hint: what’s a trivial upper bound on ‖R‖ and hence vTRv?]

(d) (5 points) Conclude that with high probability (approaching 1 as n→∞), ‖R‖ = O(
√
n log n).5

Problem 19

Continuing Problem 18, in this problem we prove a tighter bound of O(
√
n) on the size ‖R‖ of the pertur-

bation matrix R in that problem (with high probability). This sharper bound is not relevant for our planted
bisection recovery result in Lecture #9, but it is important for our planted clique recovery result in Lecture
#10.6

Throughout this problem, p∗ denotes the probability that, for a fixed unit vector u, a random unit vector
v is close to u, in the sense that 〈u,v〉 ≥

√
3/2. (By symmetry, p∗ does not depend on u.)

(a) (5 points) Fix an arbitrary symmetric matrix A. Prove that for a uniformly random unit vector v,

Pr

[
|vTAv| ≥ 1

2
‖A‖

]
≥ p∗.

[Hint: take u equal to the eigenvector corresponding to the eigenvalue of A with the largest magnitude.]

(b) (4 points) For arbitrary t ≥ 0, consider the expression

Pr

[
‖R‖ ≥ t and |vTRv| ≥ 1

2
‖R‖

]
, (1)

where the probability is over both the choice of R and the choice of a uniformly random unit vector v.

Prove that the expression in (1) is at least p∗ ·Pr[‖R‖ ≥ t].

(c) (4 points) Prove that the expression in (1) is at most 2e−t
2/8.

[Hint: Use Problem 18(a).]

5In part (b) you only exhibited a small ε-net for the unit ball, rather than for the unit sphere, which is not quite the same
thing. In this part you can assume the easy-to-believe fact that the sphere also admits an ε-net of the same size (which can be
proved, for example, by replacing volumes in the argument in (b) with surface areas).

6With considerably more work, it’s even possible to improve the bound to
√
n plus lower-order terms (i.e., the leading

coefficient is 1).
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(d) (9 points) Prove that

p∗ ≥ c1
n2n

,

where c1 is a sufficiently small constant (independent of n).

[Hints: you can use without proof any of the formulas on the Wikipedia page for “Volume of an n-ball.”
Note that the set of unit vectors v for which 〈u,v〉 ≥

√
3/2 is a spherical cap (i.e., the intersection

of a sphere and a halfspace). The boundary of this spherical cap itself defines a sphere, in one lower
dimension, with radius 1

2 (why?). (Draw pictures of this in two and three dimensions!) Lower bound
the surface area of the spherical cap by the surface area of the induced lower-dimensional sphere.]

(e) (3 points) Conclude that Pr[‖R‖ ≥ t] ≤ 1
n provided t ≥ c2

√
n, where c2 is a sufficiently large constant.

Problem 20

(15 points) In Lecture #10 we showed that a planted clique of size k = c1
√
n can be recovered exactly in

polynomial time (with high probability), provided c1 is a sufficiently large constant. Piggyback on this result
to prove that, for every constant ε > 0, planted cliques of size ε

√
n can be recovered exactly in polynomial

time (with high probability). The running time of your algorithm is allowed to depend exponentially on 1
ε .

[Hints: Enumerate over all subsets of s vertices (where s depends only on c1 and ε). For each such subset
S, consider the subgraph GS induced by the vertices that are adjacent to all of the vertices of S, and run
the original recovery algorithm on GS .]

Problem 21

In this problem we prove a bound relating the eigenvalues of the sum A + B of two matrices with the
eigenvalues of A and B. We used this bound in the proof of the David-Kahan theorem (see Lecture #10
notes).

(a) (5 points) Let A be an n× n symmetric matrix. Consider the following game:

(i) You pick a k-dimensional subspace U of Rn.

(ii) Your opponent picks a unit vector v ∈ U .

Your payoff in the game is defined as vTAv. (You want to maximize this, your opponent wants to
minimize this.) Assuming that your opponent plays optimally, prove that the maximum payoff you
can obtain in this game is precisely the kth largest eigenvalue λk of A.

(b) (5 points) Consider an alternative game, with payoffs defined as before:

(i) Your opponent picks a (n− k + 1)-dimensional subspace U .

(ii) You pick a unit vector v ∈ U .

Prove that, again, the maximum payoff you can obtain in this game (assuming optimal play by your
opponent) is precisely λk.

(c) (5 points) Let A,B be n × n symmetric matrices with eigenvalues λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µn.
Prove that, for i = 1, 2, . . . , n, the ith eigenvalue νi of A + B satisfies

νi ≤ λi +
n

max
j=1
|µj |︸ ︷︷ ︸

:=‖B‖

.

[Hint: Use (b), and the fact that vT (A + B)v = vTAv + vTBv.]
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