
CS264: Beyond Worst-Case Analysis
Lecture #2: Instance-Optimal Geometric Algorithms∗

Tim Roughgarden†

January 12, 2017

1 Preamble

This lectures touches on results of Afshani, Barbay, and Chan [1], who give a number of
interesting instance-optimality results for fundamental problems in computational geometry,
namely the problems of computing the maximal points or the convex hull of a point set in two
or three dimensions. These are perhaps the most compelling examples to date of instance-
optimal algorithms when the cost measure cost(A, z) is the running time of an algorithm.
We discuss only their simplest result, for the 2D Maxima problem; this suffices to showcase
most of the paper’s main ideas.

2 The Problem and the Goal

The input to the problem consists of n points in the plane. Assume for simplicity that all
coordinate values are distinct (this is not important). Say that x is dominated by y if y
is bigger in both coordinates (i.e., lies to the northeast of x). A maximal point is one not
dominated by any other.1 The goal is to compute the set of all maxima of the point set. See
Figure 1.

We use the comparison model, familiar from the study of sorting algorithms. That is,
we assume that an algorithm can access the input only through comparisons of coordinate
values, and define cost(A, z) as the number of comparisons that the algorithm A requires to
deduce the correct answer for the input z.2,3

∗ c©2014, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1Students of economics know these as “Pareto optimal” points.
2OK, so we lied slightly in Section 1 when we said that cost would measure the running time.
3The results in [1] for the convex hull problem use, for both the upper and lower bounds, a somewhat

richer set of primitives.

1

Maximal points

Figure 1: A point set and its maxima. Solid circles are the maximal points, hollow circles
are the dominated points. The dashed lines indicate the “region of domination” for each of
the maximal points.

Our goal is to prove that there is an instance-optimal algorithm A for the 2D Maxima
problem. Recall what this means from last lecture: there is a constant c ≥ 1 such that, for
every “natural” algorithm B,

cost(A, z) ≤ c · cost(B, z).

Proving that an algorithm is instance optimal involves two tasks: an upper bound for an
algorithm A on every input z, and a matching (up to a constant factor) lower bound for
every natural algorithm B and every input z. A prerequisite for a matching lower bound is
an input-by-input tight upper bound on the performance cost(A, ·) of algorithm A (why?).
This is a much stronger running time guarantee than the worst-case guarantees that you’re
probably accustomed to, and most of this lecture is devoted to such an upper bound. We’ll
only have time for a few comments on the lower bound, and defer the interested reader to
the paper [1] and Homework #1 for more details.

3 The KS Algorithm and Its Correctness

One neat aspect of the main result of this lecture is that it proves the instance optimality of
an existing algorithm for the problem — the classic and clever algorithm of Kirkpatrick and
Seidel [2], which we review next.

We claim that the KS algorithm, as described in Figure 2, correctly solves the 2D Max-
ima problem. First, note that all deletions are of dominated points and are therefore justified.

2

Input: a point set Q.

1. If |Q| ∈ {0, 1}, then return Q.

2. Split the input into left and right halves Q` and Qr, by computing the median x-
coordinate among points of Q.

3. Let q have the maximum y-coordinate in Qr, and add q to the output set S.

4. Delete q and everything it dominates.

5. Recurse on (what’s left of) Q` and Qr.

Figure 2: The Kirkpatrick-Seidel (KS) algorithm.

Second, observe that the point q is maximal in the point set Q: its x-coordinate is bigger
than everything in Q`, and its y-coordinate is bigger than everything in Qr. Thus, we only
need to argue that neither deletions nor recursing transforms a point from non-maximal to
maximal. Recursively computed maxima of Qr are also maxima in Q: such a point p is not
dominated by anything in Qr, nor by q (since it wasn’t pruned), nor by anything in Ql (all
of which have smaller x-coordinates than p). Finally, recursively computed maxima of Q`

(post-pruning) are also maxima in Q: such a point p is not dominated by anything in Ql,
nor by q (since p was not deleted), nor by anything in Qr (since q has larger y-coordinate
than any points in Qr). Thus every point is eventually either correctly deleted or correctly
identified as a maximal point of the original point set.

4 Running Time Analysis of the KS Algorithm

An O(n log n) Bound. First, observe that the work done — in particular, the number
of comparisons made — in a call to the KS algorithm (finding a median, a maximum, and
pruning) is linear in the input size, not counting the work done by further recursive calls.
Each recursive call is on at most half of the input. The standard MergeSort recurrence
T (n) ≤ 2T (n/2) + O(n) gives an upper bound of O(n log n) on the running time of the KS
algorithm.

An O(n log h) Bound. In Homework #1 you will show that the running time of the KS
algorithm is Ω(n log n) in the worst case. But some inputs are easy: for the point set in
Figure 3, there is only one maximal point, which is identified in the outermost recursive call.
On this input, the KS algorithm terminates in O(n) time. We conclude that some point sets
are easier than others — at least for the KS algorithm, if not more fundamentally.

Recall that a prerequisite for an instance-optimality result is a tight input-by-input upper
bound on the performance of the allegedly optimal algorithm. The O(n log n) upper bound,

3

Figure 3: An easy point set where the KS algorithm runs in O(n) time.

while best-possible among bounds that are parameterized solely by the input size n, is not
going to cut it. We need a more tightly parameterized upper bound.

The next idea is to parameterize the running time of the KS algorithm both by the input
size n and by the output size — the number of maxima — which we denote by h. These are
sometimes called output-sensitive time bounds.

We claim that the KS algorithm runs in O(n log h) time on every input. The informal
proof is as follows. Every recursive call successfully identifies a new maximal point (the
point q). Thus the jth level of recursion identifies 2j new maximal points. Thus there can
only be log h recursion levels, and the total work at each level is O(n).4

A Still More Refined Bound. We know that the O(n log h) running time bound is tight
in the worst case, but it is not tight input-by-input (see below and Homework #1). To prove
an instance-optimality result, we need an even more precisely parameterized running time
bound on the KS algorithm. To state the parameterization, suppose that we can partition
the input set S into groups S1, . . . , Sk where for each i:

1. either Si is a single point; or

2. there is an axis-aligned box Bi such that its interior contains all of Si and lies strictly
below the “staircase” of S (recall Figure 1).5

We call such a partition legal; see Figure 4 for an example. The intuition is that each
group Si of the second type represents a cluster of points that can conceivably be eliminated
by an algorithm such as the KS algorithm in one fell swoop.6 Thus the bigger the Si’s, the
easier one might expect the instance to be. Formally, we prove the following.

4This is not quite right, as some recursive calls might wind up empty, in which case less than 2j maxima
will be identified at recursion level j. Do you see how to extend the proof to obtain the O(n log h) time
bound?

5Don’t forget that this partitioning is for analysis purposes only — the algorithm remains the five lines
of code in Figure 2.

6Beginning from the northeast corner of the box, travel north until you hit the staircase, and then east
until you hit a maximal point q. The point q dominates all of the points in Si.

4

S1

S2

S3

S4
S5

S6

Figure 4: A legal partition of a point set.

Theorem 4.1 ([1]) For every point set S, the running time of the KS algorithm is

O

(
min

legal {Si}

k∑
i=1

|Si| log
n

|Si|

)
. (1)

Theorem 4.1 is a very fine-grained upper bound on the running time of the KS algorithm,
parameterized by the “easiness” of the input point set. To get a feel for the expression in (1),
note that it is certainly O(n log n) for every n-point set S — just partition the point set into
singletons. It is also O(n log h) for every n-point set S with h maxima: take the Si’s to be
“vertical slabs” as in Figure 4 (and each maximal point in its own set), and use the convexity
of the function x log x (see Homework #1). It is tempting to interpret the expression in (1)
as some type of “entropy measure” for point sets, albeit a measure specific to the problem
of computing maxima.

Proof of Theorem 4.1: Consider a legal partition, as above. The proof amounts to a very
clever method of accounting for all the work done over the course of the KS algorithm. First
note that the total number of comparisons used across all recursive calls at a given recursion
level j is linear in the number of points that remain at this level (i.e., that have not been
pruned in an earlier recursive call). This is because the point sets belonging to different

5

recursive calls at the same level are disjoint, and because a recursive call uses a number of
comparisons linear in its input size (to compute the median and then prune as necessary).

We now bound each set Si’s contribution to the number of remaining points at each
recursion level. The theorem will then follow by summing over all of the Si’s.

Consider a set Si. Obviously it contributes at most |Si| points to each recursion level.
The key step in the proof is the following alternative upper bound.

Key Claim: Every set Si has O(n/2j) unpruned points remaining at the jth recursion
level of the KS algorithm.

Let’s prove the theorem assuming the key claim. Observe that the bound of |Si| is
better than the bound of n/2j for the first ≈ log2(n/|Si|) recursion levels. Summing over all
recursion levels j, the total contribution of the points of Si to the running time of the KS
algorithm is at most a constant factor times

≤ |Si|+ |Si|+ · · ·+ |Si|︸ ︷︷ ︸
log(n/|Si|) times

+
|Si|
2

+
|Si|
4

+
|Si|
8

+ · · · ,

which is O(|Si| log n
|Si|). Summing over all the Si’s proves the theorem.

Proof of the Key Claim: Fix the recursion level j. We break the proof into two bite-size
pieces.

(1) All of Si’s remaining points are sandwiched (in x-coordinate) between two adjacent (in
x-coordinate) maxima-so-far.

(2) For every pair of adjacent (in x-coordinate) maxima-so far, there are O(n/2j) remaining
points sandwiched between them.

To prove (1), let a, b denote the x-coordinates of the maximal points identified so far that
flank the right-hand side of Si’s box Bi (see Figure 5). Take a = −∞ or b = +∞ if q1 or q2
doesn’t exist. By definition, all points of Si (surviving or not) have x-coordinate less than b.
Since the interior of Bi lies below the staircase of S (recall Figure 4) and q1 is a maximal
point, q1 lies at or above the top of Bi. Points of Si with x-coordinate less than a were
pruned when q1 was identified (if not earlier), so all surviving points of Si have x-coordinate
bigger than a.

To prove (2), induction on j shows that the (at most) 2j level-j recursive calls bucket
by x-coordinate the surviving points into (at most) 2j non-empty buckets with population
at most n/2j each (Figure 6). Each of these recursive calls identifies a maximal point in
its bucket. After these maxima are identified, there are at most 2 · n/2j surviving points
strictly between two successive maximal points (which occurs with two consecutive buckets
that have maximal points at the “far left” and “far right,” respectively).

This completes the proof of (2), and hence of the Key Claim, and hence of Theorem 4.1.
�

6

Maxima so far

Si

a

b

Figure 5: Proof of key claim (part 1) for Theorem 4.1.

Figure 6: Proof of key claim (part 2) for Theorem 4.1, showing 5 of the 2j buckets formed
by the level-j recursive calls.

5 Instance Optimality of the KS Algorithm

Theorem 4.1 gives a fine-grained parameterized upper bound on the running time of the KS
algorithm. Proving that the KS algorithm is instance optimal in the comparison model is
equivalent to proving that, for every input z, every (correct) algorithm B requires

Ω

(
min

legal {Si}

{∑
i

|Si| log
n

|Si|

})
(2)

comparisons to compute the maximal points of the point set specified by z.
But there is a problem: this is clearly false. The irritating reason is that an algorithm

can “memorize” (i.e., have hard-coded within) the correct answer for a particular input z,
and regurgitate it without any non-trivial work. Precisely, for a fixed input z, consider the
following algorithm (which is defined for every input w):

7

A Stupid Algorithm

1. Check if the real input w is z.

2. If so, output the (hard-coded) correct answer for z.

3. If not, run (say) the KS algorithm on w.

This algorithm is clearly correct. Since each of the first two steps takes linear time, this
algorithm runs in linear time on the input z. We see that the ambition of instance optimality
is so strong that lower bounds arise for trivial reasons.7

A general pep talk: annoying counterexamples are not a good reason to abandon the
quest for an interesting theorem. If you have a particular theorem in mind, perhaps the
model or the theorem statement can be modified slightly to obtain a true and meaningful
result? Afshani et al. [1] persevered in the face of the stupid example above and proved an
instance-optimality-like guarantee for the KS algorithm.

The motivation for the guarantee formulated and proved in [1] is the following observa-
tion: our running time bound for the KS algorithm depends only on the set S of input points,
and is independent of the order in which these points happened to listed in the input to the
algorithm. On the other hand, the stupid algorithm above does not have this property: if
only the unordered set S were memorized in advance, then the first step (verifying that the
input is in fact S, listed in some order) would require Ω(n log n) comparisons (why?) and
the algorithm would pose no barrier to an instance optimality result. Intuitively, one expects
the running time bound of a “natural” algorithm to be “order-oblivious” in the same sense
as our analysis of the KS algorithm.

The sensible new (but still ambitious) goal is to formulate a definition of a “natural” or
“order-oblivious” algorithm, and then show the following:

Theorem 5.1 (Informal Version [1]) For every input z of 2D Maxima, every “order-
oblivious” algorithm requires

Ω

(
min

legal {Si}

{∑
i

|Si| log
n

|Si|

})

comparisons.

This is precisely the spirit of the results of Afshani et al. [1], and thus the KS algorithm is
instance optimal among the class of order-oblivious algorithms.

The precise statement in [1] is even cooler. There remains the lingering question of
how to formally define an “order-oblivious” algorithm. This issue is sidestepped in [1] by
proving a stronger result. Rather than restricting the class of possible algorithms, we allow

7Why does this problem not occur with the Threshold Algorithm (Homework #1)? Because in that
setting we are only interested in sublinear time bounds — by the time an algorithm verified the input (as in
Step 1 above), the Threshold Algorithm likely would have stopped early and left it in the dust.

8

an arbitrary algorithm B and evaluate its running time under a worst-case ordering of a
given point set S. In our abstract notation, we now think of cost(B, ·) as a vector indexed
not by (ordered) inputs but by (unordered) point sets, and we define

cost(B, S) = max
π
{cost(B, π(S))} , (3)

where S denotes a point set, π(S) denotes the input in which the points of S are presented
according to the ordering π, and cost(B, π(S)) denotes the number of comparisons used by B
to correctly solve the input π(S). Thus we (conceptually) run the algorithm |S|! different
times — once for each ordering of S — and take the largest number of comparisons used.
Obviously, for every “order-oblivious” algorithm — one for which (our upper bound on) its
running time is order-independent, like the KS algorithm — this extra max operator has no
effect. But an algorithm that memorizes an input no longer performs well by this measure.
Indeed, the KS algorithm is “order-oblivious instance-optimal” in the following sense.

Theorem 5.2 (Formal Version [1]) For every point set S and every (correct) algorithm B,

cost(B, S) = Ω

(
min

legal {Si}

{∑
i

|Si| log
n

|Si|

})
,

where cost(B, S) is defined as in (3).

In fact, Afshani et al. [1] prove an even stronger instance-optimality result for the KS al-
gorithm, which replaces the right-hand side of (3) by the average of cost(A, π(S)) over all
orderings π. Thus, for every point set, no algorithm can beat the lower bound of (2) on a
“typical” ordering.

There are two approaches to proving Theorem 5.2, both of which can be made to work.
The first method is based on the following intuition: every correct algorithm must implicitly
justify every input point that it does not output, by identifying some other point that dom-
inates it. Thus the transcript of every correct algorithm encodes a proof of non-maximality
of all the non-maximal points. Recalling the intuition behind the definition of legal parti-
tions, it is plausible that the expression in (2) is related to the length of such proofs, and it
can be shown that the proof length necessary (for a worst-case ordering) is indeed bounded
below by (2). The second proof approach uses an adversary argument. Here, we consider an
arbitrary point set S and the best legal partition {Si} for it, and an arbitrary algorithm B.
We simulate B, and adversarially resolve comparisons to adaptively hide the maxima. That
is, as long as the number of comparisons used by B so far is too small (less than (2)), we can
order the points of S so that B cannot yet be sure of what the correct answer is, because
there remain two inputs consistent with the comparisons so far but with different sets of
maximal points. The details are non-trivial but readable; see [1].

9

6 Conclusions

6.1 Key Contributions

The 2D Maxima analysis in [1] has three main points.

1. A novel and fine-grained measure of the “input complexity” of a point set — with
respect to the 2D Maxima problem — and a point set-by-point set matching upper
bound for the running time of the KS algorithm. We can think of this measure (2) as
a “condition number” for the 2D Maxima problem; we’ll return to this idea several
times in future lectures.

2. A model that sidesteps the annoying issue of “algorithms that memorize the correct an-
swer.” An interpretation of the solution in [1] is that only “order-oblivious” algorithms
are allowed as competitors, but the actual statement is stronger and more elegant.

3. A proof that, point set-by-point set, the above measure of input complexity lower
bounds the number of comparisons of every algorithm under a worst-case (or even
average-case) ordering of the point set.

We emphasize that it’s pretty amazing that there are instance-optimal algorithms — with
any reasonable version of the definition — for such fundamental problems. This seems to be
the exception, rather than the rule.

6.2 Discussion and Take-Home Points

1. Instance optimality is an input-by-input guarantee, and as such is essentially the
strongest notion of optimality one could hope for, and the only uncontroversial no-
tion of optimality. (Of course, the value of the suppressed constant factor can also be
important.)

2. Because of its strength, few instance optimality guarantees are known. Finding more,
across all sorts of problem domains and cost measures, is a great research direction.

3. The first reason that instance-optimal results appear rare is that they simply don’t
exist in many cases (see Homework #1). This accords with practice where, for many
computational problems, the “right” algorithm really does seem to depend on the
domain (i.e., on the set of inputs).

The definition of instance optimality can be weakened in various ways to make such
guarantees more feasible. Section 5 considered point set-by-point set guarantees, rather
than input-by-input guarantees. More generally, one can have groups of inputs, and ask
about group-by-group guarantees. The definition of “natural algorithms” also provides
a knob to turn, interpolating between bigger classes of algorithms (and hence stronger
instance-optimality results) and smaller ones (where instance-optimality results are
more likely to exist).

10

4. The second reason that instance-optimal algorithms seem rare is that, even when they
do exist, proving instance optimality might be out of reach of all known proof tech-
niques. Recall that a prerequisite for an instance optimality result is an input-by-input
lower bound on the performance of every algorithm. Thus, one should only seek in-
stance optimality results in models where there are lower bound techniques. For run-
ning time analyses, this would seem to limit the possibilities to problems solvable in
close to linear time (as in this lecture); even here, we worked in the comparison model
so that super-linear lower bounds were readily available. In computational models that
admit information-theoretic lower bounds — like in Problem #1 of Homework #1, or
in online algorithms, streaming algorithms, and mechanism design — there would seem
to be many more opportunities.

References

[1] P. Afshani, J. Barbay, and T. M. Chan. Instance-optimal geometric algorithms. In
Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 129–138, 2009.

[2] D. G. Kirkpatrick and R. Seidel. Output-size sensitive algorithms for finding maximal
vectors. In Proceedings of the First Annual ACM Symposium on Computational Geom-
etry, pages 89–96, 1985.

11

